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Objective: To examine amide proton transfer-weighted (APTw) combined with 
diffusion weighed (DWI) and dynamic contrast enhanced (DCE) MRI for early 
prediction of pathological response to neoadjuvant chemotherapy in invasive 
breast cancer.

Materials: In this prospective study, 50 female breast cancer patients 
(49.58  ±  10.62  years old) administered neoadjuvant chemotherapy (NAC) were 
enrolled with MRI carried out both before NAC (T0) and at the end of the second 
cycle of NAC (T1). The patients were divided into 2 groups based on tumor 
response according to the Miller-Payne Grading (MPG) system. Group 1 included 
patients with a greater degree of decrease in major histologic responder (MHR, 
Miller-Payne G4-5), while group 2 included non-MHR cases (Miller-Payne G1-
3). Traditional imaging protocols (T1 weighted, T2 weighted, diffusion weighted, 
and DCE-MRI) and APTw imaging were scanned for each subject before and 
after treatment. APTw value (APTw0 and APTw1), Dmax (maximum diameter, 
Dmax0 and Dmax1), V (3D tumor volume, V0 and V1), and ADC (apparent 
diffusion coefficient, ADC0 and ADC1) before and after treatment, as well as 
changes between the two times points (ΔAPT, ΔDmax, ΔV, ΔADC) for breast 
tumors were compared between the two groups.

Results: APT0 and APT1 values significantly differed between the two groups 
(p  =  0.034 and 0.01). ΔAPTw values were significantly lower in non-MHR tumors 
compared with MHR tumors (p  =  0.015). ΔDmax values were significantly higher 
in MHR tumors compared with non-MHR tumors (p  =  0.005). ADC0 and ADC1 
values were significantly higher in MHR tumors than in non-MHR tumors 
(p  =  0.038 and 0.035). AUC (Dmax+DWI  +  APTw)  =  AUC (Dmax+APTw)  >  AUC 
(APTw)  >  AUC (Dmax+DWI)  >  AUC (Dmax).

Conclusion: APTw imaging along with change of tumor size showed a significant 
potential in early prediction of MHR for NAC treatment in breast cancer, which 
might allow timely regimen refinement before definitive surgical treatment.
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Introduction

Neoadjuvant chemotherapy (NAC) has become the standard 
treatment option for locally advanced breast cancer. Early and accurate 
prediction of tumor response to NAC is critical for treatment 
management (1, 2). However, breast cancer’s response to NAC varies 
widely among different patients, it is estimated that 19–30% of patients 
experience major histologic responders (MHRs) and 5–20% exhibit 
non-major histologic responders (non-MHRs) (3, 4). The 2019 
National Comprehensive Cancer Network (NCCN) guidelines for 
breast cancer suggest magnetic resonance imaging (MRI) may help 
assess tumor range, remission status after treatment and feasibility of 
breast-conserving surgery before and after NAC (5). Functional and 
molecular imaging MRI methods, including dynamic contrast 
enhanced MRI (DCE-MRI) (6), intravoxel incoherent motion (IVIM) 
(7), diffusion kurtosis imaging (DKI) (8), and magnetic resonance 
spectroscopy (MRS) (9), provide insights into the underlying 
pathophysiology of tissues from morphology to cellular metabolism 
(10–12). But, currently, there is still no standard method or imaging 
biomarker in clinical practice to accurately predict predicting pCR to 
NAC in patients with breast cancer.

Chemical exchange saturation transfer (CEST) imaging is a novel 
magnetic resonance molecular imaging method derived from the 
magnetization transfer (MT) technology (13). It provides molecular 
level data instead of microstructural information compared to DCE- 
and DWI-based MR techniques, with orders of magnitude higher 
detection sensitivity compared to MRS. Amide proton transfer 
weighted (APTw) imaging, as a kind of CEST method, can reflect the 
concentration of exchangeable amide protons in endogenous mobile 
proteins or polypeptides in the cytoplasm, and hence indirectly detects 
in vivo changes in protein expression rate and related 
pathophysiological features in living cells (14, 15) Dula et al. (16) 
firstly established breast APTw imaging with good stability and 
repeatability. In addition, the effect of the menstrual cycle on APTw 
imaging in human breast was also assessed (17). Our previous study 
(18) has shown the potential of breast 3D APTw imaging in 
differetiation between benign and malignant tumors. APTw has also 
been used to evaluate lymphatic damage and interstitial protein 
accumulation in patients with breast cancer treatment-related 
lymphedema (19).

Therefore, we hypothesis that APTw imaging may be a potential 
tool for assessing the response of breast cancer to chemotherapy, 
expecially, the early response to NAC (16). Krikken et al. (20) assessed 
noninvasive early detection of treatment response in 9 patients with 
breast cancer to NAC using APTw at 7 T. While higher-field strength 

could improve APTw sensitivity, the associated safety issues cannot 
be overlooked (21). This study aims to explore whether APTw imaging 
at 3 T could be used for early evaluation of the efficacy of NAC in 
breast cancer.

Materials and methods

Patients

This prospective study was approved by the Ethics Committee 
of First Affiliated Hospital of Dalian Medical University 
(PJ-KS-XJS-2020-19). Informed consent was obtained from each 
patient. Patients with primary biopsy-proven, locally advanced, 
unilateral breast cancer scheduled for NAC between 2020 and 2022 
were included. All eligible patients underwent two MR scans, 
3–7 days before NAC (T0) and at the end of the second NAC cycle 
(T1). Totally 58 female patients were initially scheduled for MRI, 
among whom 50 (mean age, 49.58 ± 10.62 years; age range, 
31–68 years) were finally enrolled with the following exclusion 
criteria: (1) incomplete chemotherapy (n  = 3); (2) no surgical 
treatment after NAC (n = 2); (3) sub-quality APTw imaging (n = 3) 
(Figure 1).

MRI protocol

MRI was performed on a 3.0 T scanner (Philips Ingenia CX, 
Philips Healthcare, the Netherlands) using a seven-channel bilateral 
phase-arrayed breast coil. Each patient was placed in the prone 
position without compression of breasts. Each patient was placed 
in the prone position without compression of breasts, and a sandbag 
was placed on the patient’s back during the scan to minimized the 
respiratory movement distortion.APTw images were acquired with 
a three-dimensional (3D) turbo-spin-echo (TSE) sequence besides 
traditional imaging protocols (T1WI, T2WI, DWI, and DCE 
imaging). The applied imaging parameters are detailed in Table 1. 
The total scanning time is 22 min: 44 s. For APTw imaging (18), the 
saturation pulse train with a duration of 2 s was applied with 2-μT 
B1 amplitude at each of the following 6 frequencies for the 
reconstruction of the Z spectrum in each image voxel: ±2.7 ppm, 
±3.5 ppm, and ± 4.3 ppm, where 0 ppm was water proton resonance. 
A reference acquisition was carried out with a radio frequency (RF) 
of −1,560 ppm. Three acquisitions were performed at a saturation 
frequency of +3.5 ppm with shifted echo times to build a B0 map 
for voxel-wise frequency correction to the Z spectrum. To reduce 
the influence of B1 field inhomogeneity, unilateral APTw imaging 
of only one breast instead of two breasts was implemented; to 

Abbreviations: APTw, amide proton transfer-weighted; NAC, neoadjuvant 

chemotherapy; MHR, major histologic responders; ADC, apparent diffusion 

coefficient.
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reduce image artifacts induced by chest motion, the prone position 
was adopted (only data from 2 patients were excluded due to 
unacceptable motion artifacts). APTw and DWI sequences were 
conducted before injection of the gadolinium contrast agent 

(Gadodiamide, Bayer AG). Traditional imaging protocols were 
prescribed to cover the entire bilateral breast tissue, and the APTw 
imaging protocol was prescribed unilaterally to cover the entire 
tumor based on T2WI scans.

FIGURE 1

Study flowchart.

TABLE 1 Acquisition parameters of scan sequences.

T1WI T2WI T2WI DWI APTw DCE

Orientation Tra Tra Sag Tra Tra Tra

TR [ms] 653 3,840 3,840 6,500 6,445 4

TE [ms] 8.4 100 100 79 7.8 2

FOV [mm2/mm3] 281 × 340 281 × 340 240 × 200 300 × 369 130 × 130 × 49 240 × 299 × 160

Voxel size 0.80 × 0.79 0.80 × 0.90 0.80 × 0.90 2.40 × 2.40 2.03 × 2.00 × 7.00 1.00 × 1.20 × 4.00

Slice thickness [mm] 4 4 4 4 7 4

Flip angle [°] 90 90 90 90 90 15

TSE factor 14 15 15 -- 100 --

Acceleration factor SENSE 4 SENSE 4 SENSE 4 SENSE 4 SENSE 1.6 CS 4

b-value [s/mm2] -- -- -- 01000 -- --

Fat suppression -- SPAIR SPAIR SPAIR SPIR SPAIR

Bandwidth  

(Hz/pixel)
221.9 218.2 218.0 31.8 702.5 826.7

Saturation  

pulse/duration
-- -- -- -- 2.0 μT, 200 ms, 4 --

Scan time (min: sec) 1:05 3:36 2:21 2:53 4:58 7:51

DCE, dynamic contrast enhanced; SENSE, sensitivity encoding; CS, compressed sensing; SPAIR, spectral attenuated inversion recovery; SPIR, spectral pre-saturation with inversion recovery.
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Image analysis

All images were analyzed with the IntelliSpace Portal (ISP, Philips 
Healthcare, Cleveland, OH, United  States) workstation. The 
magnetization transfer ratio with asymmetric analysis at +3.5 ppm 
(MTRasym [+3.5 ppm]) for each image voxel was carried out to 
generate APTw maps from raw images in real time on the console with 
Z-spectrum fitting and B0 correction (14), where values in the maps 
refer to differences between the signal intensities at ±3.5 ppm of water 
proton resonance, as percentages of the signal intensities when the 
saturation pulse applied is far off resonance. Image analysis was 
carried out by two breast radiologists (readers 1 and 2 with 13 and 
6 years of experience in imaging diagnosis, respectively, blinded to 
final pathological results and other clinical data). In each patient, 
APTw maps were firstly fused onto DCE images at approximately the 
same slice position (22), and a 2D region of interest (ROI) was 
delineated on the slice transecting the largest area of the lesion. The 
ROIs included the most enhanced lesion regions on DCE images 
while avoiding cystic or necrotic lesions (Figure 2A). The maximum 
diameter (Dmax) and 3D volume (V) of each tumor were measured 
on DCE images. The threshold extraction method of the MR 
Segmentation software on the workstation (Intellispace Portal v7.0, 
Philips Healthcare) was used to extract the tumor as a whole, and the 
software automatically yielded Dmax and V (Figures 2B,C). Apparent 
diffusion coefficient (ADC) values were measured on DWI images. 
APTw, V, Dmax and ADC values at the time points T0 and T1 were 
annotated as APTw0, APTw1, V0, V1, Dmax0, Dmax1, ADC0 and 
ADC1, and changes in APTw, V, Dmax and ADC values at T1 relative 
to T0 were termed ΔAPTw, ΔV, ΔDmax and ΔADC, respectively.

Time–intensity curves (TICs) were obtained from DCE images, 
which were divided into three categories (23): I-type: slow or medium 
wash-in (0 < SI < 100% increase) in the initial phase and plateau 
(SI ± 10% change) or persistent (SI < 10% increase) in the delayed 
phase; II-type: rrapid wash-in in the initial enhancement phase and 
plateau in the delayed enhancement phase; and III-type: rapid wash-in 
(SI > 100% increase) in the initial phase and rapid wash-out (SI > 10% 
decrease) in the delayed phase. Based on morphological features in 
DCE images, the tumors were classified based on the following criteria 

(24): mass shape (oval, round and irregular); mass margin 
(circumscribed and not circumscribed); and internal enhancement 
(homogeneous, heterogeneous and rim enhancement).

Pathological analysis

All diagnoses were confirmed by surgical histopathology after 
MRI. Cancer grades were evaluated based on pathological criteria: 
grade I, well-differentiated tumor; grade II, moderately differentiated 
tumor; and grade III, poorly differentiated tumor. The Miller-Payne 
Grading (MPG) system (Supplementary Table S1) was utilized to 
assess tumor response (25). MPG 4–5 case were classified as major 
histologic responders (MHRs), and MPG 1–3 cases were classified as 
non-major histologic responders (non-MHRs) (26). The final surgical 
specimen (lumpectomy versus mastectomy) was employed to examine 
MHRs (Group 1) or non-MHRs (Group 2). Estrogen receptor (ER) 
and progesterone receptor (PR) positivity was reflected by expression 
of the given receptor in 10% or more of tumor cells. The expression 
criteria for human epidermal growth factor receptor-2 (HER2) were 
negative (+ and – signals) or positive (+++ signals). Samples with ++ 
signals were further submitted to in situ hybridization. Cases with 
amplified genes were considered positive, and those without amplified 
genes were considered negative. The cut-point between ‘high’ and 
‘low’ values for Ki-67 was 20%.

Statistical analysis

SPSS (version 21, SPSS Inc., Chicago, IL, United States) was used 
for data analysis. Intraclass correlation coefficients (ICCs) and the 
Bland–Altman analysis were utilized to evaluate measurement 
consistency between the two readers and assess the 95% limit of 
agreement (95% LoA). An ICC above 0.75 indicated good agreement. 
The Kolmogorov–Smirnov test was caried out to assess differences in 
Dmax, V, APTw and ADC values between the two groups. Data are 
mean ± standard deviation. The Kappa test was carried out to assess 
differences in TIC type between the two groups. Finally, multivariate 

FIGURE 2

A 45-year-old woman with grade III invasive ductal breast cancer: a 43-year-old woman with grade III invasive breast cancer: (A) image of DCE, (B) the 
volume of interest was also determined on the contrast enhanced image using a threshold method, and the Dmax and V measured for tumor were 
83.31  mm and 69.71  mm3, respectively. (C) the tumor region of interest was determined on the contrast enhanced image and copied to the APTw 
image for APTw value measurement (APTw  =  3.51  ±  1.23).
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logistic regression analysis was conducted for independent variables 
based on indicators with statistical differences between the two 
groups. Receiver operating characteristic (ROC) curves were 
employed to assess the diagnostic performances of various parameters 
in breast cancer. The DeLong test was performed to analyze differences 
in areas under the curves (AUCs) for various parameters.

Results

Clinicopathological data

Fifty patients (mean age 49.58 ± 10.62 years, ranging from 31 to 
68 years) were finally included, whose clinical characteristics are 
summarized in Table  2. All patients received NAC with types 
including AC-TH [Adriamycin (A) or epirubicin 
(E) + cyclophosphamide (C) 4 cycles followed by docetaxel or 
paclitaxel + herceptin (H) 4 cycles], TCbHP [Taxoid drugs (T), 
carboplatin double chemotherapy (Cb) + trastuzumab (H), 
pertuzumab (P) 6 cycles], TEC [Taxoid drugs (T) + epirubicin 
(E) + cyclophosphamide (C) 6 cycles] shown in Table 2.

Comparison of morphological changes 
under different NAC responses

In consistency analysis between the two readers, ICC values for 
data measurements showed high reliability, shown in Table 3. (All 
ICC > 0.9). Bland–Altman plots also showed excellent consistency 
between the two groups. Measurements by both readers are listed in 
Supplementary material, and the data obtained by the senior observer 
(reader 1) were selected for follow-up analysis.

The two groups did not significantly differ in mass enhancement 
characteristics (lesion shape, p = 0.872; internal enhancement in the 
initial phase, p = 0.544; internal enhancement in the delayed phase, 
p = 0.329; TIC type, p = 0.836; edge, 0.971). Likewise, axillary lymph 
node metastasis (with or without) was not significantly different 
between the two groups (p = 0.728) (Table 4).

Comparison of APTw, Dmax, V, and ADC 
changes under different NAC responses

Comparison of APTw between the two groups is shown in Table 5. 
There were significant differences in APT0 and APTw1 between the 

TABLE 2 Patient baseline characteristics in the MHR and non-MHR groups.

All (n =  50) MHR (n =  14) n-MHR (n =  36) P

Mean age (range) 50 (31–68) 52 (34–68) 49 (31–68) 0.854

Tumor histologic type 0.941

Invasive ductal 49 14 35

Invasive lobular 1 0 1

Tumor size pre-NAC 0.546

T1 3 0 3

T2 29 8 21

T3/4 18 6 12

N stage pre-NAC 0.654

N0 16 5 11

N1 34 9 25

Grade

I 1 0 1 0.423

II 33 7 26

III 16 7 9

Receptor status 0.564

ER positive/PR positive 38 10 28

ER negative/PR negative 12 4 8

HER2 negative 28 1 27

HER2 positive 22 13 9

Triple negative 5 1 4

Types of NAC 0.856

AC-TH 5 2 3

TCbHP 17 7 10

TEC 28 5 23
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two groups (p = 0.034, and p < 0.001). APTw values of breast tumors 
decreased significantly before and after NAC, as shown in Figure 3 and 
Table 5. ∆APTw values were significantly lower in non-MHR tumors 
compared with MHR tumors. (0.58 ± 0.98% and 1.44 ± 1.11%, 
respectively, p = 0.015) (Figure 4).

Comparison of Dmax V, and ADC values between the two groups 
is also shown in Figure 5; Table 5. ∆Dmax values were significantly 
higher in MHR tumors compared with non-MHR tumors (p = 0.005). 
ADC0 and ADC1 values were significantly higher in MHR tumors 
than in non-MHR tumors (p = 0.038 and 0.035). There was no 

significant difference in Dmax0, Dmax1, V0, V1, ∆V, and ∆ADC 
between the two groups (p = 0.324).

Diagnostic efficacy

Before NAC (T0), areas under the curves (AUCs) for MHR 
prediction (Figure 6A) were acquired with optimal thresholds for 
APT0 and ADC0 of 0.690 and 0.694, respectively, (sensitivities of 55.6 
and 63.9%, and specificities of 78.6 and 78.6%, respectively). At the 
end of the second cycle of NAC (T1), AUCs for MHR prediction 
(Figure 6A) were acquired with optimal thresholds for APT1, ∆APTw, 
∆Dmax, and ADC1 of 0.837, 0.723, 0.685, and 0.692; sensitivities of 
69.4, 55.6, 97.2, and 83.3% were obtained, respectively; and specificities 
of 92.9, 85.7, 42.9, and 57.1%, respectively. Predicting the efficacy of 
NAC in breast cancer, AUCs for MHR prediction (Figure 6B) were 
acquired using APT (APT0 + APT1 + ∆APT), DWI (ADC0&ADC1), 
∆Dmax, ∆Dmax&DWI, ∆Dmax&APTw, and ∆Dmax&DWI&APTw 
with optimal thresholds of 0.879, 0.704, 0.685, 0.752, 0.903, and 0.903, 
respectively; sensitivities of 88.9, 75, 97.2%, 63.9, 88.9, and 86.1% were 
obtained, respectively, with specificities of 78.6, 71.4, 42.9%, 78.6, 78.6, 
and 78.6%, respectively. The Delong test showed AUC 
(Dmax+DWI + APTw) = AUC (Dmax+APTw) > AUC (APTw) > AUC 
(Dmax+DWI) > AUC (Dmax) (all p < 0.05).

TABLE 3 Consistency analysis between the two readers for data 
measurements.

Variable Reader 1 Reader 2 ICC

APT0 (%) 3.66 ± 0.50 3.78 ± 0.45 0.940

APT1 (%) 2.23 ± 0.86 2.56 ± 0.77 0.921

Dmax0 (mm) 43.02 ± 20.61 43.66 ± 20.99 0.997

Dmax1 (mm) 30.41 ± 16.91 30.56 ± 16.45 0.940

V0 (mm3) 28.26 ± 30.90 28.89 ± 30.59 0.992

V1 (mm3) 5.44 ± 3.17 5.45 ± 3.78 0.996

ADC0 1.12 ± 0.17 1.55 ± 0.17 0.940

ADC1 1.05 ± 0.11 1.05 ± 0.77 0.921

TABLE 4 conventional MRI data for patients.

Variable Total
(n =  50)

n-MHR (n =  36) MHR (n =  14) P

Lesion shape 0.872

Oval 1 1 0

Round 3 2 1

Irregular 46 33 13

Internal enhancement in initial phases 0.544

Homogeneous 3 3 0

Heterogeneous 37 26 11

Rim enhancement 10 7 3

Internal enhancement in delayed phases 0.329

Homogeneous 6 6 0

Heterogeneous 33 23 10

Rim enhancement 11 7 4

Axillary lymph node metastasis 0.728

Yes 34 25 9

No 16 11 5

Type of TIC 0.836

I 33 24 9

II 11 8 3

III 6 4 2

Margin 0.971

Circumscribed 7 5 2

Not circumscribed 43 31 12
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Discussion

This study demonstrated that high sensitivity performance can 
be achieved by APTw for early prediction of MHR status at the end of 
the first two NAC cycles, which might allow timely regimen refinement 
before definitive surgical treatment. APTw in combination with tumor 
diameter and DWI can further improve diagnostic accuracy.

Our previous studies confirmed that APTw values significantly 
differed between fibroadenomas and malignant breast tumors (18), and 
the repeatability and stability of 3D APTw were tested with good 
results. Higher field strength (7 T) may help increase the signal-to-
noise and contrast-to-noise ratios in APTw imaging, and prolonged 
endogenous T1 relaxation under high field strength may also increase 
CEST signals (20). However, the high field intensity can increase the 
magnetic susceptibility and local field inhomogeneity of tissues (27), 
which may downgrade the performance of APTw imaging. Contrasting 
a previous study (19, 28) (using Dixon acquisition for water-fat 
separation), multi-echo Dixon acquisition was introduced for B0 map 

generation and thus B0 correction in the present study. Besides, SPIR 
(spectral pre-saturation with inversion recovery) but not SPAIR 
(spectral attenuated inversion recovery) was applied for fat suppression 
in APTw imaging in the present study for its better compatibility with 
the saturation pulses of APTw and shorter scan time. A previous study 
showed that due to high blood hemoglobin and albumin, angiogenesis 
increases protein contents (29) and thus elevates APTw values in 
malignant tumors. Additionally, in a study (17) assessing the effect of 
menstrual cycle on APT, menstrual cycle-related APT signal 
fluctuations seemed to be negligible compared to APT signal increase 
in breast cancer tissue. To avoid such effects, this study performed MR 
examination during 7–14 days of the menstrual cycle. Unilateral APTw 
imaging of only one breast instead of both breasts was performed to 
reduce the effects of B1 field inhomogeneity, with motion artifacts of 
the breast and scan time both considered in clinical application.

About 37% of patients exhibit no benefits from NAC (3). 
Early and accurate prediction of tumor response to NAC is 
critical for treatment management. Studies have revealed the 

FIGURE 3

Fusion of APTw and DCE-MRI of the breast of a 45-year-old perimenopausal woman with right Her-2+ invasive breast cancer at T0 (A) and T1 (B). The 
measured APTw0 and APT1 values were 3 and 1.8%, respectively. The case was confirmed by pathological analysis of the surgical specimen collected 
after the first 2  cycles of NAC as having non-pCR.

FIGURE 4

(A) APTw values for pathologic non-MHR and MHR groups at baseline (T0), and after two cycles (T1) in the 50 examined participants. Differences in 
ΔAPT and ΔDmax for the pCR and non-pCR groups are shown in (B,C), respectively. **p  <  0.01.
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FIGURE 5

DCE-MRI of a 32-year-old woman with left ER+ invasive breast cancer at T0 (A,B) and T1 (C,D): tumor maxmium diameter meausred at T0 (Dmax0) 
and T1 (Dmax1) were 39.77 and 37.60  mm, respectively and tumor volume meausred at T0(V0) and T1(V1) were 6.00 cm3 and 3.41 cm3, respectively. 
The patient was confirmed by pathological analysis of the surgical specimen collected after first 2  cycles of NAC as having pCR.

FIGURE 6

(A) Receiver operating characteristic curves for individual imaging parameters obtained at T0 or T1: AUC (APT0)  =  0.690, AUC (ADC0)  =  0.694, AUC 
(APT1)  =  0.837, AUC (ΔAPTw)  =  0.723, AUC (ΔDmax)  =  0.685 and AUC (ADC1)  =  0.692; (B) Receiver operating characteristic curves for different 
combinations of imaging paramenters: AUC (APT)  =  0.879, AUC (DWI)  =  0.704, AUC (Dmax+DWI)  =  0.752, AUC (Dmax+APTw)  =  0.903, AUC 
(APTw+DWI)  =  AUC (Dmax+DWI  +  APTw)  =  0.904 (APT  =  APT0  +  APT1  +  ΔAPT; DWI  =  ADC0  +  ADC1).
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MHR status or minimal residual disease as the best predictor of 
good long-term prognosis (30, 31). As the gold standard for 
evaluating tumor response, pathological examination has high 
diagnostic accuracy, but must be performed after surgery, making 
it easy to miss the best opportunity for treatment adjustment. 
Therefore, it is necessary to develop tools that could dynamically 
assess tumor response to NAC in vivo. Due to elevated 
hemoglobin and albumin concentrations, angiogenesis may 
increase protein signaling in malignant tumors (16, 29), 
indicating NAC-induced angionecrosis may potentially 
be examined by APTw. Dula et al. (16) evaluated only one patient 
by pCR status, whose APTw value decreased from 4.86 ± 0.15% 
to 3.5 ± 1.59% after 1 cycle of NAC. In this study, APTw values of 
MHR in 50 breast cancer patients significantly lower than 
non-MHR before NAC, and early after chemotherapy (2 cycles) 
were compared and it was found that APTw values in the MHR 
group decreased significantly after NAC, with a more pronounced 
reduction than in the non-MHR group. This observation 
corroborated a study by Zhang et al. (32) in which APTw values 
after NAC were significantly different from baseline in the MHR 
group (3.19% vs. 2.43%; p = 0.03), while there was no difference 
in the non-MHR group (2.76% vs. 2.50%, p > 0.05). These results 
indicate that NAC reduces mobile protein concentrations in 
MHR and non-MHR patients in early treatment, reflecting 
reduced protein expression in breast cancer cells stressed by 
NAC. Importantly, NAC-induced decrease in APTw value was not 
due to treatment-induced changes in tumor acidosis. In 
aggressive tumors, glycolysis upregulation is common, resulting 
in acidic tumors (33). The chemical exchange of amide protons 
with water is base-catalyzed; therefore, acidic tumors have low 
APTw values, which may be  increased by therapies reducing 
glycolytic metabolism. We  observed no increase in APTw in 
response to NAC, suggesting NAC-induced decrease in APTw is 
due to decreased mobile protein content rather than reduced 
glycolytic metabolism and tumor acidity. This finding 
corroborated a previous study (34).

The combination of DWI and DCE-MRI may improve the 
accuracy of differential diagnosis between benign and malignant 

tumors. DWI reflects the change of tumor cell density, which is more 
accurate than the change of tumor size in assessing NAC efficacy 
(35). ADC values derived from DWI may be a sensitive measure of 
the response of the cellular microenvironment to cytotoxic drugs. 
Park et  al. (36) reported that cancers with low-ADC values on 
pretreatment images have good response to NAC. This study also 
demonstrated that ADC value can be used to predict NAC efficacy, 
consistent with two studies that found significantly higher 
pretreatment ADC values in responders compared with the 
non-MHR group (36, 37). In addition, lower pre-treatment ADC 
metrics were generally detected in responders to therapy in this 
study, in agreement with Wilmes et al. (38). However, ΔADC values 
did not differ between the two groups. Better results might 
be obtained with ADC values evaluated at an earlier time point. 
ADC evaluation is not stable in sensitivity to reflect NAC efficacy in 
the 2nd cycle may be too late to detect necrotic changes induced by 
chemotherapy, when lesions may have started to be transformed into 
fibrous tissue (39). Besides, because of no standardization of DWI 
acquisition, data post-processing and b value selection (0–800 s/
mm2), divergent ΔADC data for evaluating the response to NAC 
have been reported (40–42). The scanning scheme of APTw has been 
proved to be relatively stable in the earlier researchs (16), and the 
measurement method is relatively uniform (14).

Tumor response to treatment was assessed with RECIST 
criteria based on the longest diameter of the target lesion, which 
has limitations, especially in tumor evaluation in the 
non-concentric shrinkage mode (NCS) (10, 43). In the present 
study, the threshold method was utilized to extract the volume of 
the whole breast tumor, and the maximum diameter of the tumor 
was assessed in three dimensions, which reduces errors caused by 
two-dimensional measurements and increases the accuracy of 
measurements. Lorenzon et  al. (44) showed that volume 
measurement is very accurate for non-mass lesions. Rieber et al. 
(45) found that tumors may have no or weak enhancement after 
NAC, resulting in unreliable determination of residual tumor size 
in carcinomas with significant response to chemotherapy, which 
might lead to false-negative results. In the current study, the 
maximum diameters and volumes of tumors were measured by 
semi-automatic segmentation and fusion (22). As shown above, 
treatment evaluation using the maximum diameter of the tumor 
yielded similar efficiency to that of APTw. We found a significant 
difference in Dmax between the two groups, with a high diagnostic 
power for ∆Dmax. Hylton et al. (46) found the segmented volume 
performed better in MHR prediction after the first cycle than 
tumor diameter; however, in this study, diameter measures were 
more advantageous than or similar to tumor volume, corroborating 
a previous report by Minarikova et al. (39). Therefore, we speculated 
that APTw imaging can reflect the pathological changes of breast 
cancer earlier than morphological findings and help predict NAC 
efficacy earlier. The results showed that APTw change was more 
sensitive and appeared earlier than volume change. Additionally, 
APTw combined with Dmax without DWI improved the predictive 
efficacy of NAC to 90.3%. Although the combination of APTw and 
DWI as well as the maximum tumor diameter may provide a 
relatively high diagnostic efficiency (AUC = 0.903), there were still 
two mis-classified cases in this study (MHR mis-classified as 
non-MHR, including one triple-negative and one HER2-negative 
cases). We considered that differences in receptor status and Dmax 

TABLE 5 Quantitative MRI data (mean ±  standard deviation).

Variable MHR (n =  14) n-MHR 
(n =  36)

P

APT0 (%) 2.66 ± 0.50 3.13 ± 0.77 0.034*

APT1 (%) 1.23 ± 0.86 2.51 ± 0.98 <0.001*

ΔAPT (%) 1.44 ± 1.11 0.58 ± 1.17 0.015*

Dmax0 (mm) 53.02 ± 22.61 40.72 ± 22.90 0.093

Dmax1 (mm) 30.41 ± 16.91 31.95 ± 16.81 0.773

ΔDmax (mm) 22.61 ± 22.44 8.77 ± 10.97 0.005*

V0 (mm3) 24.26 ± 30.18 19.47 ± 21.74 0.535

V1 (mm3) 3.44 ± 3.17 7.04 ± 3.44 0.085

ΔV (mm3) 20.81 ± 29.58 12.39 ± 16.25 0.203

ADC0 1.03 ± 0.12 0.97 ± 0.25 0.038*

ADC1 1.15 ± 0.14 1.04 ± 0.20 0.035*

ΔADC −0.18 ± 0.22 −0.17 ± 0.27 0.324
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(20–25 mm) led to prediction failure. APTw imaging for different 
molecular types of breast cancer needs further investigation.

Limitations

There were limitations in this study. First, this study was a single-
center investigation with a limited number of patients, especially 
MHR cases. Secondly, the effects of patient age, tumor size and 
extended molecular typing were not analyzed, and different NAC 
regimens were used, although all NAC regimens were confirmed to 
be standard. Finally, all patients in the prospective study had mass 
enhancement lesions, and non-mass enhancement lesions should 
be included in future studies.

Conclusion

In summary, APTw value has potential diagnostic value in 
distinguishing between MHRs and non-MHRs. Specifically, APTw 
may be an early indicator of inferior response to NAC, enabling the 
discontinuation of ineffective treatment and the initiation of a more 
promising alternative. These findings suggest APTw MRI has good 
potential to evaluate and predict NAC efficacy.
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