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The increasing life expectancy observed in recent years has resulted in a higher

prevalence of late-onset hypogonadism (LOH) in older men. LOH is

characterized by the decline in testosterone levels and can have significant

impacts on physical and mental health. While the underlying causes of LOH

are not fully understood, there is a growing interest in exploring the role of

inflammaging in its development. Inflammaging is a concept that describes the

chronic, low-grade, systemic inflammation that occurs as a result of aging. This

inflammatory state has been implicated in the development of various age-

related diseases. Several cellular and molecular mechanisms have been identified

as contributors to inflammaging, including immune senescence, cellular

senescence, autophagy defects, and mitochondrial dysfunction. Despite the

extensive research on inflammaging, its relationship with LOH has not yet been

thoroughly reviewed in the literature. To address this gap, we aim to review the

latest findings related to inflammaging and its impact on the development of

LOH. Additionally, we will explore interventions that target inflammaging as

potential treatments for LOH.
KEYWORDS

Leydig cell, late-onset hypogonadism (LOH), inflammaging, mitochondrial, senescence-
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1 Introduction

Aging is a complex biological process characterized by physiological and biochemical

changes in the human body. In the male context, a significant outcome of aging is the

gradual reduction in the production of testosterone, a pivotal hormone with diverse

physiological functions (1). The primary site of testosterone production is the Leydig cells

situated in the interstitial tissue of the testes. However, these cells undergo structural and

functional alterations with age, leading to decreased testosterone output (2). This reduction

in testosterone levels corresponds with a condition termed Late-Onset Hypogonadism

(LOH), which is marked by a range of symptoms including diminished libido, fatigue,

sarcopenia, and mood fluctuations (3).
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Studies indicate that luteinizing hormone (LH) levels remain

relatively stable in older males, while testosterone secretion

substantially declines (4). Comparative analysis of Leydig cell

populations in young and older men reveals a significant

reduction in Leydig cell numbers in the elderly (5). Moreover,

aging Leydig cells experience disrupted redox balance, leading to

intracellular reactive oxygen species (ROS) accumulation and

subsequent oxidative stress. This oxidative stress disrupts

signaling pathways vital for testosterone synthesis, resulting in

reduced expression of key testosterone production molecules and

impeding Leydig cell function (6).

Concomitantly, the aging process leads to a chronic low-grade

inflammatory state termed inflammaging (7). C-reactive protein,

interleukin-6, tumor necrosis factor-a, interleukin-1b, and other

related markers are routinely utilized as straightforward serum

biomarkers for assessing inflammaging (8). Circulating miRNA

sequencing and quantification of circulating cell-free mitochondrial

DNA copy numbers are also approaches for assessing systemic

inflammation (9, 10). Unlike acute inflammation, inflammaging

persists over time and is closely linked to the onset of several

chronic and age-related ailments (8). Numerous studies

consistently demonstrate elevated levels of inflammatory factors

like TNF-a, IL-1b, and IL-6 in older males’ circulation (11–13).

The activation of inflammatory signaling pathways, predominantly

orchestrated by NF-KB and P38MAPK, assumes a central role in

cellular aging. These pathways’ activation prompts the release of

inflammatory mediators and proteases, culminating in the formation

of the Senescence-Associated Secretory Phenotype (SASP) (14). Due

to the lack of a protective blood-testis barrier, these inflammatory

cytokines can easily enter the testicular interstitium through

circulation, adversely affecting Leydig cell function (15).

Additionally, the aging process can prompt the shift of M2-type

testicular macrophages to pro-inflammatory M1-type testicular

macrophages, releasing inflammatory cytokines and exacerbating

testicular interstitial inflammation (16).

This article offers a comprehensive overview of recent research

on inflammaging, immune senescence, cellular senescence,

mitochondrial dysfunction, and the pathophysiological

progression of LOH. Furthermore, we delve into the potential of

targeting inflammaging as a promising strategy for future

therapeutic interventions to slow down or halt the progression of

age-related LOH.
2 Regulation of testosterone synthesis
in Leydig cells

Testosterone synthesis within Leydig cells is primarily orchestrated

by the hypothalamic-pituitary-gonadal (HPG) axis (17). The

hypothalamus releases gonadotropin-releasing hormone (GnRH) in

rhythmic pulses (18). GnRH interacts with pituitary gonadotroph

receptors, stimulating LH secretion from the pituitary gland (19). LH

binds to Leydig cell receptors, activating adenylyl cyclase. This triggers

ATP to cyclic adenosine monophosphate (cAMP) conversion,

activating Protein Kinase A (PKA) downstream (20). Cholesterol
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then enters Leydig cells, converting to free cholesterol. Steroidogenic

acute regulatory protein (StAR) transports free cholesterol to

mitochondria. P450scc enzyme in mitochondria cleaves free

cholesterol to form pregnenolone (21, 22). Pregnenolone moves to

the endoplasmic reticulum, becoming progesterone and

dehydroepiandrosterone via enzymes like 3b-hydroxysteroid
dehydrogenase (3b-HSD) and cytochrome P450 17A1 (CYP17A1)

(23). Both progesterone and dehydroepiandrosterone are

subsequently transformed into androstenedione. Ultimately,

testosterone synthesis is realized through the catalytic action of 17b-
hydroxysteroid dehydrogenase (17b-HSD) (24). During the aging

process, certain changes in the body may affect testosterone synthesis

by influencing the function of the HPG axis.
3 Immuno-senescence

Immuno-senescence, the gradual decline in immune system

function with age, is a pivotal factor in the aging process (25). It

involves reduced immune cell abundance, compromised efficiency,

altered response patterns, heightened inflammation, and reduced

tolerance (26). The aging process affecting peripheral blood

immune cells can induce systemic inflammation, potentially

disrupting the stable functioning of the hypothalamic-pituitary-

gonadal (HPG) axis and resulting in impaired regulation of

testosterone synthesis. Furthermore, the aging of testicular

macrophages may contribute to localized inflammation, directly

impeding the normal functionality of Leydig cells.
3.1 Changes in peripheral blood
immune cells

Aging immune cells contribute to systemic inflammation and

age-related disorders (27). Huang et al.’s single-cell sequencing

study on human immune profiles across aging and gender

revealed significant shifts in peripheral blood immune cells,

contributing to systemic inflammation (28).

3.1.1 T cell alterations in aging males
T cells are the most significantly altered immune cell type in the

peripheral blood of elderly males, characterized by a marked

decrease in quantity, significant features of cellular aging, and

upregulation of inflammatory gene expression. Firstly, single-cell

sequencing studies suggest a significant reduction in the numbers of

CD8+ T cells and CD4+ naïve T cells in the peripheral blood of

elderly males (28). Martinez-Zamudio et al. noted senescent

features in CD8+ T cells, including elevated intracellular

Senescence-associated beta-galactosidase (SA-bGal) activity,

telomere dysfunction, and impaired mitochondrial transcription

factors in older males (29). In addition, elderly males exhibit

elevated expression of specific genes like DUSP2, CXCR4, DDIT4,

NF-KBIA, and JUNB in CD8+ T cells and CD4+ T cells, along with

the activation of MAPK signaling pathways (28). These changes
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impair T cell function, causing reduced proliferation, increased

lysosomal content, and excess pro-inflammatory cytokines (30, 31).

3.1.2 Natural killer cell dynamics in aging males
Natural Killer (NK) cells, crucial components in innate

immunity, express CD56 and CD16 (32). Based on CD56

expression, they can be classified into CD56brightCD16+ and

CD56dimCD16+ subpopulations. CD56brightCD16+ NK cells

possess cytokine secretion capabilities and regulate immunity,

while CD56dimCD16+ NK cells exhibit higher cytotoxicity and

mainly engage in innate immunity (33). Aging affects these NK

cell subsets in men’s peripheral blood, reducing CD56brightCD16+

and increasing CD56dimCD16+ NK cell absolute numbers and

proportions (34). Moreover, a subset of CD56dimCD16+ NK cells

has been observed to express elevated levels of CD57, a marker

associated with highly differentiated cells (35). Some

CD56dimCD16+CD57+ cells exhibit heightened expression of

senescence-associated genes like ZFP36 and DUSP2 (28),

elevating cytotoxicity and cytokine secretion (IL-6, TNF-a)
(36–38).

3.1.3 Monocyte changes in aging males
The influence of aging on peripheral blood monocyte counts

remains debated. Seidler S et al.’s study suggests minimal impact

(39). However, recent sequencing studies reveal increased monocyte

levels in aging individuals (28). However, multiple studies have

consistently concluded that aging leads to an increase in the number

of CD16+ monocytes, indicating phenotypic alterations in

monocytes during the aging process (28, 39–41). Unlike classical

CD14+ monocytes, CD16+ monocytes have an enhanced

inflammatory potential that promotes the development of the

SASP (42, 43). Simultaneously, the NF-KB signaling pathway, IL-

1 signaling pathway, and inflammatory response signaling pathway

in monocytes were markedly activated, with a concomitant

significant upregulation in the expression of pro-inflammatory

genes TNF, JUNB, and DDIT4 in aging men (28).

3.1.4 Dendritic cell dynamics in aging males
Dendritic cells play a pivotal role in the immune response as

they serve as antigen-presenting cells to T cells. They encompass

plasmacytoid dendritic cells (pDCs) and myeloid dendritic cells

(mDCs) (44). Most scientific investigations have consistently

concluded that the quantity of dendritic cells in the peripheral

blood of healthy older adults does not exhibit noteworthy changes

when compared to their younger counterparts (28, 45, 46).

Nevertheless, shifts in pDCs and mDCs proportions during

senescence remain debated (47–49). Regardless of mDCs

abundance changes, they exhibit pronounced pro-inflammatory

characteristics compared to pDCs. Senescent mDCs exhibit

reduced phosphoinositide 3-kinase (PI3K) activity, amplifying

NF-KB activation and subsequent pro-inflammatory cytokine

generation (45). Senescent mDCs also show elevated CD68

expression, indicating sustained activation, leading to heightened
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pro-inflammatory cytokine production even without external

stimuli (50).
3.2 Changes of testicular macrophages

3.2.1 Function of testicular macrophages
Testicular macrophages are pivotal in maintaining testicular

immune privilege, supporting spermatogenesis, and modulating

testosterone synthesis (51–53). They are categorized into

interstitial and peritubular macrophages based on phenotypic

traits (54). These cells originate from embryonic and bone

marrow progenitors, adopting an anti-inflammatory state with

TGF-b and IL-10 secretion to support testosterone synthesis and

spermatogenesis (52, 55). Furthermore, these macrophages possess

the capability to secrete 25-hydroxycholesterol, facilitating the

process of testosterone synthesis in Leydig cells (56).
3.2.2 Influence of aging on
testicular macrophages

In early investigations, transmission electron microscopy was

employed to examine age-related alterations in testicular

macrophages, revealing abnormalities in cellular structures such

as mitochondria and the Golgi apparatus (57). However, the

mechanisms underlying these changes in aging macrophages

remained unclear due to methodological limitations. With the

advent and progression of sequencing technologies, we have

attained a more comprehensive understanding of the genetic,

phenotypic, and quantitative changes in aging macrophages.

Aging increases pro-inflammatory macrophages. Nie et al.

identified elevated hyperactivated (M1-type) macrophages and

heightened cytokine secretion in elderly human testes (58).

Mouse research supported these findings, revealing three

macrophage subpopulations. Subpopulation 3 (senescence-

specific) increased significantly in aged mice, showing a

hyperactivated state and inflammation-related gene expression.

Aging enriched genes related to subpopulations 1 and 2, linked to

type I interferon secretion and Toll-like receptor 4 signaling (16).
3.3 Effect of immuno-senescence on
HPG axis

Alterations in peripheral blood immune cells during

immunosenescence significantly contribute to heightened

proinflammatory status in men. This senescent inflammatory state

profoundly impacts the HPG axis function (59). The aging process of

the hypothalamus is intricately linked to the activation of the NF-KB

signaling pathway. The activation of the NF-KB signaling pathway

exerts an impact on the functionality of Gonadotropin-Releasing

Hormone (GnRH) neurons, impeding GnRH gene transcription

and culminating in an anomalous release of GnRH within the

hypothalamus (60). Studies have identified an augmented presence
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of pro-inflammatory cytokines, particularly IL-6, in the pituitary tissue

of aging mice. This inflammatory condition markedly hinders the

tissue repair mechanisms of pituitary stem cells (61). Aging notably

expands pro-inflammatory testicular macrophages, increasing pro-

inflammatory cytokine secretion and gene expression. This

macrophage shift significantly influences the testicular inflammatory

microenvironment during aging (62). Systemic and localized

inflammation may exacerbate Leydig cellular aging, leading to

mitochondrial dysfunction and inhibition of autophagy (Figure 1).
4 Cellular senescence

Cellular senescence is characterized by the cessation of cell

proliferation and functionality under specific circumstances,

accompanied by distinct alterations in morphology, physiology,

and molecular attributes (63). This intricate biological phenomenon

is intricately linked to the typical progression of organisms, the

aging trajectory, and the onset of various diseases.
4.1 Basic change of senescent Leydig cells

The pioneering work of Hayflick and Moorhead unveiled

senescent cells’ inability to undergo customary cell division as

essential for cell cycles (64). Subsequent investigations have

encompassed telomere length and telomerase function as principal

determinants contributing to cell cycle arrest (65, 66). Morphological
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and structural changes often characterize senescent cells, manifesting

as an enlarged, flattened morphology and irregular organelles (67).

SA-bGal serves as a widely employed biomarker, offering insights

into the extent of cellular senescence to some extent, although not

serving as an obligatory indicator (68). Simultaneously, the

expression of specific cell cycle inhibitory proteins, notably p16 and

p21, experiences significant upregulation in senescent cells (69). Jin

et al. employed transmission electronmicroscopy to detect find fewer,

disorganized mitochondria in senescent Leydig cells (70). Jeong et al.

observed pronounced elevation in SA-bgal levels, along with

heightened expressions of p16, p19, and p21, in aging Leydig

cells (71).
4.2 SASP in senescent Leydig cells

SASP is crucial in cellular aging, where senescent cells release

various molecules affecting the microenvironment and nearby cells

(72). Persistent SASP can trigger inflammation and age-related

disorders (73–75).

4.2.1 Activation of NF-KB pathways
The NF-KB signaling pathway is pivotal in immune responses,

inflammation, proliferation, and apoptosis (76). Activation

pathways typically involve cell surface receptors, viral infections,

bacterial components, and cytokines (77). NF-KB translocates from

cytoplasm to nucleus, binding SASP-related gene promoters,

inducing transcription (78). Furthermore, NF-KB can indirectly
FIGURE 1

Diagram illustrating the influence of immune senescence-induced inflammaging on testosterone synthesis in Leydig cells. Aging profoundly affects
peripheral blood immune cells, inducing notable alterations in T cells, NK cells, dendritic cells, monocytes, and macrophages. This shift leads to an
elevated presence of pro-inflammatory immune cells and an excessive production of pro-inflammatory cytokines, subsequently influencing the
regular functionality of the hypothalamic-pituitary-gonadal (HPG) axis via the circulatory system. Testicular macrophages, under the influence of
senescence, transition towards the M1 subtype (hyperactivated), characterized by heightened secretion of abundant pro-inflammatory factors. These
factors are then released through paracrine signaling, directly impacting the functionality of Leydig cells.
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enhance the expression of the transcription factor C/EBPb,
subsequently facilitating direct regulation of SASP gene

expression by C/EBPb (79, 80). Within Leydig cells, Tao Shang

and colleagues demonstrated significant activation of the NF-KB

signaling pathway (81). Upon exposure to inflammatory induction,

mouse Leydig progenitor cells and the TM3 cell line exhibited a

substantial increase in the levels of pro-inflammatory cytokines in

the cell culture supernatants.
4.2.2 Activation of MAPK pathways
TheMAPK signaling pathway, including ERK1/2, JNK, and P38

MAPK, is pivotal in cell processes like proliferation, differentiation,

apoptosis, and inflammation (82, 83). Adam Freund et al. suggested

P38MAPK’s autonomous role in SASP, enhancing NF-KB’s

transcriptional activity for SASP activation (84). Simultaneously,

P38MAPK exerts an indirect influence by potentiating the

activation of transcription factors such as ATF2, AP-1, and

CREB1 (85, 86). Consequently, these activated transcription

factors interplay in the regulation of SASP. P38MAPK activation

was found in aging Leydig cells, while ERK1/2 or JNK activation

wasn’t prominent (87). This suppresses key testosterone synthesis

molecules expression in Leydig cells, ultimately reducing serum

testosterone levels.

The components of SASP secreted by senescent Leydig cells can

exert paracrine effects on neighboring cells (88). It is noteworthy

that the C/EBPb, ATF2, AP-1, and CREB1 molecules belong to the

family of basic leucine zipper transcription factors (89). Indeed,

these molecules are intricately involved in the regulation of SASP

(90). Importantly, within Leydig cells, they assume a pivotal role in

orchestrating testosterone synthesis pathways (91, 92).
5 Mitochondrial dysfunction

Leydig cellular senescence is closely linked with mitochondrial

dysfunction. Aging induces oxidative stress in cells, thereby

influencing the expression levels of crucial molecules involved in

testosterone synthesis on the mitochondria. This, in turn, initiates

processes such as apoptosis and necroptosis, culminating in

mitochondrial dysfunction.
5.1 Role of mitochondria in
testosterone synthesis

Mitochondria, vital intracellular organelles, play a crucial role in

testosterone synthesis within Leydig cells. Firstly, they are central to

generating ATP, the essential energy substrate required for

testosterone synthesis (93). Secondly, mitochondria are integral to

the intricate signaling cascade governing testosterone synthesis, as

key molecules like StAR and CYP11A1 localize within these

organelles (94–96). Additionally, mitochondria regulate oxidative

stress and apoptosis in Leydig cells, highlighting their multifaceted

involvement (97, 98).
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5.2 Mitochondrial dysfunction in senescent
Leydig cells

Mitochondrial dysfunction significantly contributes to impaired

testosterone synthesis in senescent Leydig cells (99). The expression

of StAR on the outer mitochondrial membrane of senescent Leydig

cells shows a notable reduction (100), leading to structural

perturbations in Leydig cell mitochondria and subsequent

impairment of mitochondrial oxidative respiratory chain function

(101). Dysfunctional mitochondria in Leydig cells can lead to reduced

ATP synthesis and an accumulation of intracellular ROS (102).

Excess ROS triggers the activation of inflammatory vesicles,

initiating cellular pyroptosis (103). This process involves the

NLRP3 inflammasome, where NF-KB activation, in response to

inflammatory stimuli, amplifies the transcription of inflammasome-

related genes (104). NLRP3 activation recruits the adaptor molecule

ASC, initiating caspase-1 activation. Caspase-1 cleaves pro-IL-1b into
IL-1b and pro-IL-18 into IL-18, resulting in their secretion and

subsequent apoptosis (105). In response to inflammatory stimuli,

Leydig cells exhibit increased intracellular NLRP3 and ASC

expression, caspase-1 cleavage, conversion of IL-1b and IL-18,

apoptosis activation, and reduced expression of testosterone-

synthesizing molecules (106). Collectively, these changes

culminated in the inhibition of testosterone synthesis.
6 Autophagy deficiency

6.1 Role of autophagy in Leydig cells

Autophagy, an intrinsic catabolic process, maintains intracellular

stability by degrading impaired cellular components (107). Eukaryotic

cells primarily classify autophagy into three major types:

macroautophagy, microautophagy, and chaperone-mediated

autophagy (108). Given its specificity toward organelles and cellular

contents, autophagy further subdivides into types such as mitophagy,

ER-phagy, and lipophagy (109–111). In Leydig cells, autophagy

regulates oxidative stress, cholesterol uptake, apoptosis, and

pyroptosis, influencing testosterone synthesis capacity (106, 112–114).
6.2 Autophagy deficiency and its
consequences in Leydig cells

Mitochondria exhibit dynamic behavior within the cell,

continuously undergoing fusion and division processes (115). The

occurrence of mitophagy is intricately linked to the processes of

mitochondrial fusion and division. Mitochondrial fission stimulates

the expression of pre-mitochondrial fission proteins, thereby

triggering a corresponding alteration in the extent of mitophagy

(116). Recent research on Leydig cells highlighted elevated N6-

methyladenosine (m6A) levels in primary Leydig cells from

senescent mice. This m6A increase impedes intracellular

autophagy, influencing testosterone synthesis functionality (117).

Reduced autophagy induces redox imbalance in Leydig cells,
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accumulating intracellular ROS (114). Dysregulated ROS levels

disturb mitochondrial fusion equilibrium, impacting autophagy.

Yi et al. attributed cadmium-induced apoptosis in Leydig cells to

mitochondrial fragmentation, causing impaired function and

elevated superoxide and ROS levels, inhibiting mitochondrial

autophagy (118). Diminished autophagy in Leydig cells also links

to pyroptosis initiation. Inflammatory stimuli reduce autophagy,

activating cellular inflammasome and initiating pyroptosis

(106) (Figure 2).
7 Possible therapeutic strategies

The established clinical intervention for LOH is testosterone

replacement therapy (TRT). Nevertheless, TRT is accompanied by

unavoidable side effects (119). We present various alternative

interventions, different from TRT, capable of ameliorating LOH

symptoms by mitigating inflammaging (Table 1).
7.1 Physical exercise

Physical exercise emerges as a natural and comprehensive

approach to health management, demonstrating a visible impact on

clinical symptoms associated with various diseases (120). In the

context of LOH, engagement in suitable physical exercise holds the

potential to alleviate systemic inflammation, enhance cellular

antioxidant stress capacity, and elevate testosterone levels in
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TABLE 1 Interventions targets inflammaging of LOH.

Mechanisms Interventions References

Physical
exercise

alleviate systemic
inflammation,
enhance cellular
antioxidant stress
capacity, and
elevate
testosterone levels

Aerobic exercise
and
weight training

(123–125)

Anti-
inflammation
Antioxidant
Interventions

Diminishes cellular
oxidative stress
alleviates
inflammation

Adrenomedullin
SS-31

(126–129,
133–135)

Cell
Transplantation

Facilitates
testicular structural
restoration
ameliorates
testicular
senescence

Leydig cell
transplantation
Leydig stem cell
transplantation
stem
cell transplantation

(140–142)

Traditional
Chinese
Medicine and
Its Extract

mimics sex
hormones
Enhance the
expression of
molecules
associated with
testosterone
synthesis
Diminishes cellular
oxidative stress
alleviates
inflammation

Yangjing Capsules
Icariin
Polygonatum
sibiricum
polysaccharides
Ginseng saponin
Ashwagandha

(143–145, 152)
FIGURE 2

Illustrates the schematic depiction of senescence-induced alterations in Leydig cells. Leydig cell senescence manifests a spectrum of modifications,
encompassing cell cycle arrest, the emergence of senescence-associated secretory phenotypes (SASP), mitochondrial dysfunction, and autophagy
deficiency. These alterations also play a crucial role in the development of testicular inflammaging, leading to substantial inhibition of Leydig cell function.
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patients. In a randomized controlled trial involving individuals aged

45-75, participation in interval aerobic exercise at an intensity

reaching 90% of the maximum heart rate three times a week

yielded a substantial reduction in the circulating levels of C-reactive

protein and TNF-a in the study participants (121). Several clinical

trials have substantiated that older individuals participating in regular

physical exercise manifest heightened levels of antioxidant capacity

markers in their blood, including glutathione peroxidase, total nitrite/

nitrate, and total oxyradical scavenging capacity, in comparison to

their sedentary counterparts (122). Moreover, moderate-intensity

aerobic exercise has demonstrated a noteworthy capacity to

substantially elevate testosterone levels in elderly men (123).
7.2 Anti-inflammation and
antioxidant interventions

Adrenomedullin (ADM), a peptide hormone synthesized

primarily in the adrenal medulla, has a broader presence,

including the testes (124, 125). ADM exerts potent protective

effect in inflammatory contexts (126). Rat primary Leydig cells

synthesize ADM and express its receptors, suggesting its autocrine

and paracrine roles in safeguarding testosterone production (127).

ADM potentially protects Leydig cells during inflammation by

curbing ROS production, stabilizing mitochondria, inhibiting

MAPK and NF-KB signaling, and enhancing autophagy, which

counters apoptosis and pyroptosis (128, 129). Mitochondria-

targeted antioxidants interact directly with mitochondria to

counteract oxidative stress and damage (130). SS peptides,
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specifically SS-31, have been extensively researched for their

impact on mitochondrial function (131). SS-31 operates at the

cellular level, reducing and neutralizing ROS generation,

effectively mitigating oxidative stress within cells and

mitochondria (132). It plays a critical role in maintaining

mitochondrial membrane integrity, thereby balancing

mitochondrial fusion and fission, vital for cellular energy

metabolism and function (133). Evidence also suggests that SS-31

exhibits anti-inflammatory properties, modulating inflammatory

mediator production and cellular responses to inflammation

(134). Its potential spans various inflammatory and age-related

conditions, including cardiovascular diseases, kidney ailments, and

Alzheimer’s disease (135, 136). Currently, clinical trials for the

therapeutic application of ADM and SS-31 in specific diseases have

progressed to phase II trials (137). Further investigations are

imperative to establish the safety profile of these drugs in clinical

settings and ascertain its efficacy for addressing LOH.
7.3 Cell transplantation

In recent years, cell transplantation has garnered growing

attention as a therapeutic approach for a diverse range of diseases.

Cell transplantation methods employed for addressing LOH

encompass Leydig cell transplantation, Leydig stem cell

transplantation, and stem cell transplantation. Luo et al. conducted

a study that introduced an autofluorescence-based technique for the

isolation and purification of Leydig cells. Subsequently, these isolated

cells were transplanted subcutaneously into denuded mice, resulting
FIGURE 3

Schematic representation depicting the interrelation between inflammaging and late-onset hypogonadotropic hypogonadism (LOH). As aging
progresses, alterations in peripheral blood immune cells, testicular macrophages, and Leydig cells become pronounced, creating a milieu of
widespread and localized inflammation. This state, termed inflammaging, disrupts the intricate process of testosterone synthesis within Leydig cells,
consequently initiating and advancing the development of LOH in aging males.
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in elevated testosterone levels (138). ARORA et al. demonstrated that

the concurrent subcutaneous transplantation of Leydig stem cells,

supporting cells, and myoid cells facilitated the differentiation and

maturation of Leydig cells, leading to the secretion of testosterone

(139). In rats, tail vein injection of bone marrow mesenchymal stem

cells (MSCs) has been observed to elevate serum testosterone levels.

This effect is attributed to the reduction of oxidative stress and

senescence phenotype in Leydig cells (140).
7.4 Traditional medicine

Several herbal remedies from Traditional Chinese Medicine,

aiming to enhance sex hormone levels and male sexual function,

show promise in addressing LOH. Our team developed “Yangjing

Capsules,” demonstrating positive impacts on Leydig cell testosterone

synthesis (141, 142). Complex herbal compositions pose challenges in

pinpointing therapeutic elements and understanding clinical efficacy.

Recent research focuses on individual herbs and extracts, verifying

direct effects on Leydig cell testosterone synthesis. Icariin, from

Epimedium, mimics sex hormones, enhances immunity, and reduces

inflammation (143, 144). Studies confirm icariin stimulates testosterone

synthesis through pathways involving the upregulation of testosterone

synthesis-associated molecules, mitochondrial function preservation,

and other mechanisms (145, 146). Polygonatum sibiricum

polysaccharides, extracted from Polygonatum sibiricum, renowned

for kidney and sexual function enhancement, exhibit antioxidative

and anti-inflammatory effects (147). These polysaccharides safeguard

testosterone synthesis in mice by reducing oxidative stress, preserving

mitochondrial function, and inhibiting apoptosis (148). Additionally, a

range of herbs has been explored for their potential to support and

protect testosterone synthesis (149), warranting comprehensive

investigation across various experimental domains. Ashwagandha,

commonly referred to as Withania somnifera, is an herb extensively

employed in Indian traditional medicine. It holds promise in

ameliorating symptoms associated with LOH through potential

benefits, encompassing stress reduction, antioxidant properties, anti-

inflammatory effects, immune modulation, and facilitation of

testosterone synthesis, among other mechanisms (150–152).
8 Conclusions

In the elderly population, chronic aseptic low-grade inflammation,

referred to as inflammaging, contributes to the emergence and
Frontiers in Endocrinology 08
progression of diverse age-associated conditions. Both systemic and

localized immuno-senescence expose Leydig cells to an inflammatory

milieu. Simultaneously, SASP stemming from Leydig cellular

senescence, along with factors such as mitochondrial dysfunction

and impaired autophagy, amplify the inflammatory response within

Leydig cells. These combined factors culminate in the impairment of

testosterone synthesis function, sparking the onset of LOH (Figure 3).

Notably, investigations concerning the influence of treatments

targeting inflammation and mitochondrial function on LOH remain

limited. This research gap assumes paramount significance in fulfilling

the medical necessities and enhancing the well-being of elderly men,

warranting extensive further exploration and translational efforts.
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