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With the development of deep learning, synthetic aperture radar (SAR) ship

detection and recognition based on deep learning have gained widespread

application and advancement. However, there are still challenging issues,

manifesting in two primary facets: firstly, the imaging mechanism of SAR results

in significant noise interference, making it di�cult to separate background

noise from ship target features in complex backgrounds such as ports and

urban areas; secondly, the heterogeneous scales of ship target features result

in the susceptibility of smaller targets to information loss, rendering them

elusive to detection. In this article, we propose a context-aware one-stage

ship detection network that exhibits heightened sensitivity to scale variations

and robust resistance to noise interference. Then we introduce a Local feature

refinement module (LFRM), which utilizes multiple receptive fields of di�erent

sizes to extract localmulti-scale information, followed by a two-branch channel-

wise attention approach to obtain local cross-channel interactions. To minimize

the e�ect of a complex background on the target, we design the global context

aggregation module (GCAM) to enhance the feature representation of the target

and suppress the interference of noise by acquiring long-range dependencies.

Finally, we validate the e�ectiveness of our method on three publicly available

SAR ship detection datasets, SAR-Ship-Dataset, high-resolution SAR images

dataset (HRSID), and SAR ship detection dataset (SSDD). The experimental results

show that our method is more competitive, with AP50s of 96.3, 93.3, and 96.2%

on the three publicly available datasets, respectively.

KEYWORDS

ship detection, synthetic aperture radar (SAR), channel-wise attention, context-aware,

aggregation

1 Introduction

SAR is an active microwave imaging sensor, which can obtain high-resolution radar

images under low visibility weather conditions, and it is widely used in the field of ship

monitoring (Yang et al., 2018), geological exploration (Ghosh et al., 2021), and climate

forecasting (Mateus et al., 2012). Distinguished from other remote sensing modalities, SAR

stands out due to its ability to operate day and night, under all weather conditions, and its

high resolution. So it makes SAR a crucial tool for object detection andmarine monitoring.

Recently, scholars have shown significant interest in utilizing SAR for ship detection in

ports and on the open sea, and its applications have proven vital in both military and

civilian domains.

Frontiers inNeurorobotics 01 frontiersin.org

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2024.1293992
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2024.1293992&domain=pdf&date_stamp=2024-01-16
mailto:yueck0928@nuaa.edu.cn
mailto:19b921033@stu.hit.edu.cn
https://doi.org/10.3389/fnbot.2024.1293992
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnbot.2024.1293992/full
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Li et al. 10.3389/fnbot.2024.1293992

In the past decades, a series of traditional SAR ship detection

methods have emerged as the research related to SAR imaging

technology and surface ship detection has been continuously

and vigorously developed. The most representative types of

traditional methods, such as the global threshold-based method

that determines a global threshold through statistical decision-

making and then searches for bright spot targets in the whole

SAR image (Eldhuset, 1996), adaptive threshold methods that

utilize the statistical distribution of sea clutter to determine an

adaptive threshold with a constant false alarm probability (Rohling,

1983) and generalized likelihood ratio methods that take into

account the distributional properties of both the background

clutter and the ship’s target (Iervolino and Guida, 2017). However,

these traditional methods are based on interpretable theoretical

justifications and well-established a priori knowledge to analyze

ship features in SAR images, relying on manual feature extraction.

When facing complex backgrounds and SAR images with a

small proportion of target pixel values, the use of manually

predefined features proves challenging in extracting effective target

information and eliminating background noise interference. This

results in a high false negative rate in target detection, preventing

the accurate identification of ship targets. With the development

of convolutional neural network (CNN) and the emergence of

extensive SAR image ship detection datasets, such as SAR-Ship-

Dataset (Wang et al., 2019), HRSID (Wei et al., 2020), and SSDD

(Li et al., 2017), which has led to the rapid development of remote

sensing image-based SAR target detection techniques for ships,

especially in the feature extraction of targets.

Initially, driven by a substantial quantity of publicly SAR

ship datasets, several deep learning-based multi-target detectors

were directly used in SAR ship detection tasks. Such as two-stage

detectors, region extraction-based convolutional neural networks

(RCNN; Girshick et al., 2014), FastRCNN (Girshick, 2015) and the

FasterRCNN, which is representative (Ren et al., 2015). Another

example is single-stage detectors such as RetinaNet (Lin et al.,

2017a), SSD (Liu et al., 2016), CenterNet (Zhou et al., 2019), and

YOLO series (Redmon et al., 2016; Redmon and Farhadi, 2017,

2018). The above algorithms can automatically mine the effective

features of the target and no longer rely on manual extraction,

but they are ineffective, those who were initially designed for use

as a general-purpose object detector in visible light. Subsequently,

many scholars began to consider the design of deep networks for

the task of ship target detection in SAR images. For example, Ma

et al. (2022) proposed a ship target detection method based on

attention mechanism and key point estimation. The method uses

residual link and hierarchical features to extract multi-scale targets,

then uses an attention mechanism to focus on target features and

detect key points to solve the dense arrangement problem. As for

multi-scale problem, Zhang et al. (2022) expanded the scope of

image perception region by acquiring multiple scale slices with

different region sizes. In addition, they addressed the issue of

false positives by calculating the distinctiveness between targets

and background, and by employing a multi-ensemble reasoning

mechanism to merge confidence scores from multiple bounding

boxes, which enhanced the extraction of target features.

Quad-FPN (Zhang et al., 2021a) sequentially concatenated

four distinct feature pyramid network (FPN; Lin et al., 2017b),

progressively enhancing detection performance. Yang et al. (2021)

FIGURE 1

Examples of SAR images with complex backgrounds and di�erent

scales in the SAR ship dataset. The blue boxed lines show ships of

di�erent scale sizes, and the red boxed lines show the complex

background noise interference that their ships may be subjected to

around them.

designed the Coordinate Attention Module (CoAM), embedding

positional information into channels, thereby enhancing sensitivity

to spatial details and strengthening the localization of ship targets.

Then, they designed the receptive field increased module (RFIM),

which employs multiple parallel convolutions to construct a spatial

pyramid structure, to acquire multi-scale target information.

However, in practical applications, numerous challenging

issues exist, as illustrated in Figure 1. On one hand, due to

the coherent imaging principles in SAR images, adjacent pixel

values undergo random variations, leading to speckle noise in the

image. In scenarios such as coastal ports, islands, and regions

with sea clutter, SAR ship images may struggle to extract valid

information, resulting in instances of both missed detections and

false positives. On the other hand, the multiscaling problem poses

another challenge. The varying resolutions andmorphological sizes

of ship targets necessitate higher demands for multiscale feature

extraction from the network model, given that the pixel range

occupied by ship targets can vary from a few to several hundred.

Firstly, to address the issue of significant scale variations in

ship targets, we designed a LFRM, which improves upon atrous

spatial pyramid pooling (ASPP; Chen et al., 2017). Apart from the

first layer, a residual link is employed for each atrous convolution

layer to receive and fuse the output from the previous layer,

concatenating it with the current layer’s output. This effectively

integrates information from different scales. Finally, by combining

a dual-branch channel attention mechanism using global average

pooling (GAP) and global max pooling (GMP), we achieve local

cross-channel interactions. The overall network architecture of

our proposed method employs a multi-level design with multiple
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detection heads to detect targets of different sizes, making it more

suitable for multiscale targets.

Secondly, to mitigate the impact of noise from a complex

background on the target, we introduce the GCAM, which expands

the network’s sensory domain by adaptively weighting features

in different spaces. It leverages estimation-based long-range

dependencies to obtain global semantic features, concentrating on

the target’s intrinsic characteristics to weaken background noise

interference. Finally, we sequentially link and embed these two

modules into the Feature Pyramid Network (FPN; Lin et al., 2017b)

structure with a backbone network, enabling multi-level, wide-

angle perception of context. The main contributions of this paper

are as follows:

• We propose a context-aware SAR image ship detection

and recognition network (CANet) that effectively detects

multiscale targets through both bottom-up and top-down

pathways, equipped with multiple detection heads.

• A Local Feature Refinement Module (LFRM) is designed

to acquire target features of varying receptive field sizes,

enabling local cross-channel interactions to enhance the

model’s performance.

• We introduce a GCAM to capture long-range dependencies,

perceive global context, strengthen target representation, and

suppress noise.

• To validate the effectiveness of our approach, extensive

experiments were conducted on several authoritative SAR

ship detection datasets, including SAR-Ship-Dataset (Wang

et al., 2019), HRSID (Wei et al., 2020), and SSDD

(Li et al., 2017). Our method demonstrated outstanding

performance with detection accuracies reaching 96.3, 93.3,

and 96.2%, respectively.

2 Related work

SAR image ship target detection methods are mainly

categorized into traditional methods and deep learning-based

methods. The former defines ship target features manually, and

then search for feature-matched ship targets in SAR images

based on the predefined features, which can be categorized into

three main groups: based on transform domain (Schwegmann

et al., 2016), threshold-based algorithms (Renga et al., 2018) and

statistical feature distribution algorithms (Wang et al., 2013).

Within, the most representative one is the constant false alarm-

based (CFAR-based) method. It is based on the statistical model

of sea clutter, which is affected by the ocean area, the wind field

conditions of the ocean, and the radar backscattering intensity

varies in different wind field regions, thus forming a more complex

clutter edge environment at the junction of different regions.

Therefore, it is challenging to establish an accurate statistical

model for a wide range of complex sea clutter. In addition, clutter

modeling often requires complex mathematical theory support

and time-consuming manual involvement, which also reduces the

flexibility of the model and makes it difficult to effectively detect

ship targets.

In recent years, convolutional neural networks (CNNS) have

made great achievements in the field of natural image object

detection, and their detection performance has been significantly

improved compared with traditional methods. At present, natural

image object detection methods based on deep learning are mainly

divided into two categories: single-level object detectors and two-

level object detectors. Girshick et al. (2014) proposed the first two-

stage target detection model, R-CNN, which employs a traditional

selective search algorithm to generate about 2,000 candidate frames,

which are then fed into the CNN to extract features and categorize

the candidate frames, and finally obtain the detection results.

Subsequently, inspired by SPPNet (He et al., 2015), Fast R-CNN

(Girshick, 2015) was proposed to solve the problem of slow

detection speed of RCNN, which extracts the ROI features on

the network feature map to avoid the repeated computation of

features. It improved the detection speed. They used the Fully

Connected (FC) layer instead of the original SVM classifier to

further improve the classification performance. Ren et al. (2015),

who proposed the faster FasterRCNN, designed the RPN network

to replace the traditional candidate region generation algorithm

selective search (Uijlings et al., 2013), which uses the convolutional

network to extract the features and generate the position of the pre-

selected frame. It reduces the time burden caused by the selective

search algorithm and can almost reach the standard of real-time

detection. More recently, faster R-CNN (Ren et al., 2015) is still the

mainstream representative of two-stage detectors, and its mature

design scheme has been widely used by numerous scholars.

As more demanding real-time target detection tasks are

proposed, single-stage target detection is developing rapidly. As

the pioneers of single-level target detectors, the YOLO series

(Redmon et al., 2016; Redmon and Farhadi, 2017, 2018), by directly

treating the object detection problem as the regression problem

of the target region position and target category prediction, can

output the positions and categories of target bounding boxes using

only convolutional networks, meeting the requirement of real-time

detection. Subsequently, YOLOv4 (Bochkovskiy et al., 2020) and

YOLOv5 were proposed to achieve a new balance between the

accuracy and speed of this series of algorithms, which were applied

to more detection and recognition tasks. Another improvement of

YOLO, TPH-YOLO (Zhu et al., 2021), to improve the detection

accuracy of tiny targets, a tiny target detection head is added based

on YOLOv5, and a total of four Prediction heads can mitigate the

effects of large changes in the size of the target scale. Meanwhile, it

replaces some convolutional blocks with transformer encoder ones

to capture global information and sufficient background semantic

information. SSD (Liu et al., 2016) and RetinaNet (Lin et al.,

2017a) are two other common single-stage detectors. The former

directly utilizes convolutional layers to extract detection results

from different feature maps. It employs prior boxes with varying

scales and aspect ratios to better match the shapes of targets,

distinguishing it from YOLO, which uses fully connected layers

for detection. While the latter proposes a new loss function that

can be used as a more efficient alternative to previous methods

for dealing with class imbalance. This class imbalance problem is

solved by reshaping the standard cross-entropy loss to reduce the

loss assigned to well-categorized examples.

With the blooming of deep learning in the field of images,

CNN-based ship detection is increasingly subject to becoming

popular. Dense Attention Pyramid Network (DAPN; Cui et al.,

2019) embedded a convolutional block attention module (CBAM)
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into each level of the pyramid structure from the bottom up to

enrich the semantic information on different level scale features

and amplify the significance of features. CBAM is used to fuse

the features at all levels, and the adaptive selection focuses on the

scale features to further strengthen the detection and recognition of

multi-scale targets. Also improved based on FPN (Lin et al., 2017b),

Zhao et al. presented a novel network called attention receptive

pyramid network (ARPN; Zhao et al., 2020), by fine-tuning

the pyramid structure, to generate candidate boxes at different

levels of the pyramid. Then, asymmetric convolution and atrous

convolution are used to obtain convolution features in different

directions to enhance the global context features of the local region.

Then channel attention and space attention are combined to re-

weight the extracted features, improving the significance of the

target features and suppressing the interference of noise, and finally

connect them to each layer of the pyramid laterally. Chaudhary

et al. (2021) tried to directly apply YOLOv3 (Redmon and Farhadi,

2018) to ship detection and achieved some good results. Inspired

by YOLO, Zhang and Zhang (2019) divided the original image

into grid regions, and each grid was independently responsible

for detecting the target in the region. Then, the image features

are extracted through the backbone network for detection. In

particular, backbone networks use separable convolution to reduce

network burden.

PPA-Net (Tang et al., 2023) took into consideration that the

designs of attention mechanisms such as CBAM are tailored

for natural images, overlooking the impact of speckle noise in

SAR images on attention weight generation. The target salience

information is introduced into the attention mechanism to obtain

the attention weight suitable for the SAR image. First, three pooled

operations of different region sizes are constructed to obtain

parallel multi-scale branches, and then activation functions are

used to obtain the final channel attention weights. Meanwhile,

considering the mutual exclusivity between semantic and location

information and avoiding simple feature cascade operations, the

authors use two self-attention weights to adaptively regulate the

fusion feature ratio. To enhance the practical value of SAR

ship detection applications, Zhang et al. (2019) constructed a

lightweight SAR ship detection network based on the depthwise

separable convolution neural network (DS-CNN). They replaced

traditional convolutions with DS-CNN, significantly improving

detection speed with fewer parameters, making it applicable

for real-time detection tasks. Similarly, to improve detection

speed, Lite-yolov5 (Xu et al., 2022a) designed a lightweight stride

module and pruned the model to create a lightweight detector.

To ensure detection accuracy, histogram and clustering methods

were applied to enhance detection performance. Additionally,

there are instance segmentation methods based on SAR ships,

such as the attention interaction and scale enhancement network

(MAI-SE-Net; Zhang and Zhang, 2022a). This method models

long-range dependencies to enhance global perception and

uses feature recombination to generate high-resolution feature

maps, improving the detection capabilities for small targets.

Zhang and Zhang (2022b) employed a dense sampling strategy,

fusing features extracted by FPN at each layer and adding

contextual information to the region of interest (ROI) to enhance

information gain.

To address the issue of multiscale object detection, HyperLi-

Net (Zhang et al., 2020a) utilized five improved internal modules

to enhance the accuracy of multiscale object detection. These

modules include multiple receptive fields, dilated convolution,

attention mechanisms, and a feature pyramid to extract multiscale

contextual information. Xu et al. (2022b) utilized the polarimetric

characteristics of SAR to enhance feature expression and fused

multiscale polarimetric features to obtain scale information. Zhang

and Zhang (2020) proposed a lightweight one-stage SAR ship

detection method, ShipDeNet-20. Because it uses depth-separable

convolution with fewer layers and parameters instead of traditional

convolution, its detection speed and model size are superior to

other detection methods. Meanwhile, to ensure that the detection

accuracy is not lost, features of different depths are fused to

enhance the contextual semantics of features, and feature maps

of the same size are superimposed to improve the expression

ability of features, to improve the detection accuracy. Zhu et al.

(2022) used the gradient density parameter g to construct the loss

function of the network in order to solve the sparse problem of

ship targets unbalanced with positive and negative ship samples. To

prevent positive samples from having a decisive influence on the

global gradient, the weight of the gradient proportion of multiple

samples is neutralized. The author also studies the effect of the

imbalance of feature levels on multi-scale ship detection. In order

to ensure that semantic information is not lost during multi-

layer transmission, the method of horizontal link integration of

multilevel features is adopted to accelerate the flow of information

so that the detailed features and semantic features can achieve

balance, avoiding the semantic information and detailed features

caused by the loss of other resolutions only by focusing on adjacent

resolution information.

To mitigate the impact of background noise on the target,

the Balance Scene Learning Mechanism (BSLM; Zhang et al.,

2020b) employs a generative adversarial network (GAN) to

extract complex scene information from SAR. This is followed

by a clustering method to differentiate between nearshore and

offshore backgrounds, thus enhancing the background. Similar

balancing strategies are employed in various methods (Zhang et al.,

2020c, 2021b). Additionally, some approaches utilize pixel-level

processing to reduce background noise. Sun et al. (2023) used

superpixels to reduce the impact of noise on the target. Firstly, the

image is segmented by pixel blocks of different sizes to obtain target

features of different sizes and image understanding of different

semantic levels. After that, the surrounding contrast feature region

is dynamically selected by dividing the size of the superpixel so

that the smaller superpixel can have a larger contrast region while

the larger superpixel can choose the features around itself for

comparison. Finally, the superpixel features at different levels are

fused for detection. Previous studies focused on extracting the

features of ship targets in the spatial domain, but Li et al. (2021)

believed that the spatial features of ship targets could not meet

the requirements of high-precision detection, so they used the

frequency domain to make up for the shortcomings in the spatial

domain. Like most methods, the multi-scale spatial information

of the ship target space domain is obtained through hierarchical

learning, and then the invariance features of the target in the

frequency domain are obtained by using the Fourier transform
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in polar coordinates. Finally, the features in the two-dimensional

domains are compactically fused to obtain the multi-dimensional

representation of the target features. In order to better adapt to the

differences brought by SAR images collected by different sensors,

Zhao et al. (2022) proposed an adaptive learning strategy based

on the adversarial domain. Considering the different polarization

modes and scattering intensity of SAR images, in order to realize

the alignment of instance-level objects and pixel-level features

between different domains (different sensor images), the concept of

entropy is introduced as a feature weight coefficient to distinguish

regions with different entropy. Since the entropy of the uniform

region in SAR images is lower than that of the non-uniform

region, adding entropy-based adversarial domain adaptive learning

to different layers of the backbone network can effectively deal with

the relationship between entropy and different receptive fields so

that different domains can be aligned at the feature level as much

as possible. At the same time, assigning different weights to regions

with different entropy can help to distinguish the alignment results

better. With the aim of distinguishing different instance-level target

characteristics and make better alignment, the domain alignment

compensation loss is constructed. In order to extract more precise

feature information so that more uniquely representative example

features can be accessed, the result of the highest score in the

clustering is used to calculate the weight of the class. Zhou et al.

(2023) added an edge semantic branch to solve problems such

as confusion in edge detection caused by overlapping targets and

used convolution of deeper and larger convolution kerns to expand

the learning of context edge semantics and decouple the learned

rich features, which is conducive to accurate localization of ship

targets and prediction of detection frames. In addition, considering

that the size of the receptive field extracted by CNN is limited,

it is impossible to analyze the context from a global perspective.

Therefore, a transformer framework is introduced to acquire global

context features by using a multi-head attention mechanism, thus

enhancing the remote analysis capability and achieving better

detection and recognition effects for large-scale targets.

3 Context-Aware Network

In this section, we detail the overall architecture of the network

and some other design-specific concepts and corresponding

examples. The overall architecture of our approach is shown in

Figure 2. Specifically, features are first extracted initially using

CSPDarkNet53 as the backbone network. For the backbone

network, our input goes through two convolutional layers to

downsample the data to 1/4 of the input, where the activation

function used in the convolutional layer is chosen to be the SiLU

function. The SiLU function has a smoother curve as it approaches

0, controlling the output structure between 0 and 1 and achieving

better results than ReLU in some applications. Then, the feature

extractionmethod of YOLOv5 was adopted to obtain three effective

feature layers with different resolutions and channel numbers

through multiple C3 modules, and the three feature layers were

input into the FPN network structure composed of LFRM and

GCAM in series in parallel. The C3 module consists of three

standard convolutional layers as well as multiple CSP Bottlenecks.

The CSP Bottleneck mainly uses a residual structure, with one 1X1

convolution and one 3X3 convolution in the trunk, after which the

residuals are left untouched and the inputs and outputs of the trunk

are directly combined. The C3 module uses the CSPNet (Wang C.

Y. et al., 2020) network structure, which still employs the residuals.

We capture multi-scale features through LFRM to better adapt

to different scales of ship object information, thus obtaining a more

representative feature map. Then, the long-range dependencies

are captured by GCAM to enhance the feature representation of

the target and suppress the interference of noise. The following

subsections present detailed information.

3.1 LFRM

Since ship targets in SAR images in real applications may have

different scales, some ships may be very large while others may

be relatively small, making the detection process complicated. To

address this problem, we designed the LFRM module as shown in

Figure 3. The deep features x = {x1 . . . . . . xi} obtained from the

backbone network are computed in parallel by a 1×1 convolutional

layer and three atrous convolutions with rates of 3, 6, and 12 to

obtain convolutional features on multiple scales.

bi = Atrous(xi)

ci = Conv1x1(xi)

After that, the feature maps bi of each layer except the first one

is sequentially fused with the featuremaps bi−1 of the previous layer

and activated by convolution to obtain new feature maps b́i, which

allows each layer to obtain a diversity of resceptive fields.

b́i = Conv(bi)

To better fuse the different scales of information, the four

obtained feature maps are finally superimposed in the channel

dimension using the Concat operation and then fed into the

convolutional layer to obtain a new multi-scale feature map si.

si = Conv
(

Concat
(

b́i, ci

))

For the purpose of enhancing the generalization ability of the

network, we improve ECA-Net (Wang Q. et al., 2020) by learning

the correlation between channels and adaptively adjusting the

weights of the channels to improve the performance of the network.

As shown in the lower part of Figure 3, we first perform global

maximum pooling and global average pooling operations on the

feature map xito obtain two global feature descriptors, respectively,

m∈ R
1×1×C, a∈ R

1×1×C, C indicates the number of channels.

m = GAP (x)

a = GMP(x)

The cross-channel information interaction is accomplished

by two one-dimensional convolutions, respectively, and then the

weight coefficients for each channel are calculated by SoftMax

normalization. Where wiis the result of channel interactions, w
j
i

denotes the weights of the channel features, and yi denotes the

neighboring feature channels in a one-dimensional space. K is the
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FIGURE 2

General framework of our method, where LFRM and GCAM are the proposed modules. The input image is first sent to the backbone to extract

features, then passes through the FPN network structure consisting of LFRM and GCAM in series, and finally the detection results are output through

the header. Where BCE loss is used for classification and objectivity and GIoU loss is used for regression.

result computed by the given formula, and i denotes the number of

channels, j∈ R
K .

ωi =





K
∑

j=1

w
j
iy
j
i



 , y
j
i ∈ �K

i

Where the convolutional kernel size K is self-adapted by a

function that allows layers with a larger number of channels to

interact across channels more often. The adaptive convolutional

kernel size is calculated as,

K =

∣

∣

∣

∣

log2(C)

γ
+

b

γ

∣

∣

∣

∣

odd

Which γ = 2 , b = 1, |t|odd is the nearest odd number to t and

C is the number of channel.

Finally, the results of the two different pooling branches

are superimposed according to the channel dimension, and the

weight coefficients for each channel are obtained using SoftMax

normalization, andxi is attentively weighted according to the

channel dimension.

p = σ
(

Concat
(

ḿ, á
))

· x

σ is SoftMax function, · is the element-wise product.

Finally, the multiscale feature s is overlaid with the feature

map p after local cross-channel interaction to obtain the final

LFRM output.

Since using only GAP to extract global features does not capture

the detail information well, GM is added to enhance the grasp of

details, and the two pooling branches complement each other to

enhance the extraction of local semantic features.

3.2 GCAM

To obtain remote dependent features and thus global context

information to enhance the ontological target characteristics and to

remove the interference of complex background noise on the target,

we design the GCAM module as shown in Figure 4, where we

take the multi-scale information obtained from the LFRM module

as an input to obtain the remote context information about the

local features.

As shown in Figure 4, it given the output of the LFRMP =

{P1 . . . . . .Pi } as input, P1∈ R
1×C is the feature vector at pixel

i with C channel. The global context feature f i is obtained by

estimating the relationship between the current pixel and all pixels.

After that, the weight coefficients are matrix multiplied with the

local features to aggregate the contextual information (matrix

multiplication is employed on the weight and local feature to

aggregate contextual information).

fi =

H×W
∑

j=1

en(pi)
∑H×W

m=1 en(pm)
∗ pj

Where n(pi) = Wkpj and n(pm) = Wkpm represent linear

transform matrices, andWk implements the 1× 1 convolution.

With the aim of further extracting the channel dependencies

while reducing the number of parameters and computational

complexity, the acquisition of spatially distant effective features will

be augmented by transformations, so we draw on the Non-local

(Wang et al., 2018) method.

f́ i = θ ∗ SiLU
(

LN
(

φ · fi
))

Both φ and θ are realized by a 1 × 1 convolution. And the

normalization (LN) and SiLU activation layers are added after

the first convolution to improve the generalization of the model.

Finally, the transformed feature f́i is element-wise added to the

multi-scale local features, yielding the GCAM output f̃i which

aggregates global contextual features at each pixel.

f̃i = f́i + pi

The GCAM module selectively acquires distant features for

each pixel based on the correlation between spatially distant pixels,

which enhances the modeling capability of feature representation

and reduces background noise interference. Meanwhile, the

module can be easily inserted into various network models to

obtain global context information.
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FIGURE 3

Illustration of the proposed LFRM. The upper half shows the extraction of multi-scale features using atrous convolution and the lower half shows the

two-branch pooling channel attention mechanism.

FIGURE 4

Illustration of the proposed GCAM.
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4 Experimental results and analysis

In order to fully verify the validity of our proposed methods,

we test them on three authoritative public data sets and compare

themwith several other advanced ones. In addition, to demonstrate

the effectiveness of proposed LFRM and GCAM, we design

ablation experiments to evaluate the validation. Finally, we

provide a comprehensive analysis of the experimental results and

time complexity.

4.1 Training configurations and datasets

All of our experiments are conducted on a GPU workstation

equipped with NVIDIA RTX 3090 with 24 GB of video memory,

and the operating systems are ubuntu21.0, CUDA (10.0) and

cuDNN7.0. The language and framework used to build the model

are python3.7 and pytorch1.1.0, respectively. For achieving fast

convergence during training, with AdamW optimizer, we set the

initial learning rate to 1e-3 and employ a cosine annealing strategy

to adjust. Also, to ensure experimental fairness and consistency,

all the methods involved in the experiments are trained and

validated under the same data benchmark. The batch setting is

16 and the maximum number of iterations is 300 to find the best

model parameters.

The loss function, which used for model training, consists of

classification loss, confidence loss and regression localization loss.

The former two chose the classical Cross Entropy (CE), while the

latter adapts Complete-IoU (CIoU) Loss.

The Cross-Entropy Loss LCE function expression is shown

below, where p (xi) is the probability distribution of the true value,

q (xi)is the probability distribution of the predicted value, and C

denotes the total number of categories.

LCE = −

C
∑

i=1

p (xi) ln
(

q (xi)
)

The CIOU loss LCIOU function expression is shown below,

where ρ2(b, bgt) represents the square of the distance between the

center point of the prediction box and the center point of the

real box. c represents the diagonal length of the smallest outer

rectangle of the two rectangular boxes. α is the parameter used

to do trade-offs, and v is the parameter used to measure aspect

ratio consistency.

CIoU = IoU − (
ρ2(b, bgt)

c2
+ αυ)

υ =
4

π2
(arctan

wgt

hgt
− arctan

w

h
)2

α =
v

(1− IoU)+ ν

LCIoU = 1− CIoU

The CIOU loss was chosen to normalize the coordinate scales

to take advantage of the IOU and initially address the case where

the IOU is zero.

To more fully evaluate the superiority of our methods, AP50

is used as the main evaluation metric, compared with currently

popular methods. Specifically, PR curve is a curve drawn with

precision P as the vertical coordinate and recall rate R as the

horizontal coordinate. The higher the accuracy of the model, the

higher the recall rate, the better the model performance, and the

larger the area under the PR curve. AP50 Indicates the AP value

when the IoU confidence score is 0.5. In addition, we use accuracy,

recall, and F1 scores for a confidence threshold of 0.4. We also use

FLOPs as an auxiliary evaluation metrics to test the efficiency of the

model. The formula for calculating indicators is as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Fl =
2× Precision× Recall

Precision+ Recall

AP =

∫ 1

0
P(R)dR

4.2 Datasets

We evaluate our proposed methods on several public SAR

ship datasets, including the SAR-Ship-Dataset (Wang et al., 2019),

HRSID (Wei et al., 2020), and SSDD (Li et al., 2017) datasets.

All of these datasets contain real scene images of various complex

scenes ship targets of different sizes and dimensions. The SAR-

Ship-Dataset (Wang et al., 2019) annotated by SAR experts, which

uses 102 SAR images taken by the Gaofen-3 satellite and 108 SAR

images taken by the Sentinel-1 satellite, containing 43,819 slices

and 50,885 ship targets. The pixels in distance and orientation

are 256. Finally, the data set is randomly divided into training

set, verification set, and test set, with an image ratio of 7:2:1.

HRSID (Wei et al., 2020) is a public data set used for the ship

detection, semantic segmentation, and instance segmentation in

high-resolution SAR images. It contains 5,604 high-resolution SAR

ship images and 16,951 ship instances. The construction process

draws on the COCO dataset and includes SAR images of different

resolutions, polarization modes, sea states, sea areas, and ports.

Its spatial resolution is 0.5–3m. We follow the original dataset

paper’s delineation method. For the SSDD (Li et al., 2017) dataset

is obtained by downloading publicly available SAR images from

the Internet and cropping the target area into 1,160 pixels of size

around 500 × 500 and manually labeling the ship target positions.

We select images with image index suffixes 1 and 9 as the test set.

4.3 Results and analysis

4.3.1 SAR-ship-dataset
As shown in Table 1, our algorithms are experimentally

compared with general-purpose object detection methods

including Faster R-CNN (Ren et al., 2015), RetinaNet (Lin et al.,

2017a), CenterNet (Zhou et al., 2019), YOLOv4 (Bochkovskiy et al.,

2020), and YOLOv5, as well as SAR-specific ship detectors DAPN

(Cui et al., 2019), CoAM+RFIM (Yang et al., 2021), and PPA-Net

(Tang et al., 2023) on the SAR ship dataset (Wang et al., 2019).

From the Table 1, it can be observed that our method exhibits
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TABLE 1 Comparison of evaluation metrics of di�erent methods on the

SAR-SHIP dataset.

Method Precision
(%)

Recall
(%)

F1 (%) AP50
(%)

Faster R-CNN (Ren

et al., 2015)

90.3 91.4 90.8 91.0

RetinaNet (Lin et al.,

2017a)

84.5 93.3 88.7 93.8

CenterNet (Zhou et al.,

2019)

84.6 93.5 88.8 95.0

DAPN (Cui et al., 2019) 89.9 90.7 90.3 90.6

YOLOv4 (Bochkovskiy

et al., 2020)

85.7 92.7 89.1 93.2

YOLOv5 93.5 95.0 94.9 95.8

CoAM+RFIM (Yang

et al., 2021)

93.7 95.3 94.5 96.0

PPA-Net (Tang et al.,

2023)

93.5 95.5 94.7 96.1

Our 93.8 96.1 94.4 96.3

The best results are highlighted in bold.

TABLE 2 Comparison of evaluation metrics of di�erent methods on the

HRSID dataset.

Method Precision
(%)

Recall
(%)

F1 (%) AP50
(%)

Faster R-CNN (Ren

et al., 2015)

88.8 77.5 82.8 78.2

RetinaNet (Lin et al.,

2017a)

69.8 83.8 76.2 82.5

CenterNet (Zhou et al.,

2019)

81.8 87.4 84.5 86.3

DAPN (Cui et al., 2019) 88.9 77.6 82.9 79.8

YOLOv4 (Bochkovskiy

et al., 2020)

90.6 84.0 87.2 90.1

YOLOv5 92.4 89.3 91.2 92.9

CoAM+RFIM (Yang

et al., 2021)

92.7 88.1 90.3 92.7

PPA-Net (Tang et al.,

2023)

93.4 89.8 92.1 92.9

Our 93.6 90.4 92.4 93.3

The best results are highlighted in bold.

strong competitiveness. Our approaches achieve precision, recall,

F1, and AP50 accuracy of 93.8, 96.1, 94.4, and 96.3%, respectively.

Regarding AP50 accuracy, it outperforms the two-stage detector

Faster R-CNN (Ren et al., 2015) in general object detection by 5.3%,

and exceeds YOLOv4 (Bochkovskiy et al., 2020) and YOLOv5

(both are single-stage detectors) by 3.1 and 0.5%, respectively.

In addition, in comparison with SAR ship detection method

DAPN (Cui et al., 2019), which primarily focuses on the

scale issue of ship targets but neglects the interference and

impact of noise in small targets within complex backgrounds,

resulting in an AP50 accuracy of 90.6%, significantly lower than

ours and other advanced SAR ship detection methods. Our

approach also outperforms another anchor-free popular algorithm,

TABLE 3 Comparison of evaluation metrics of di�erent methods on SSDD

dataset.

Method Precision
(%)

Recall
(%)

F1 (%) AP50
(%)

Faster R-CNN (Ren

et al., 2015)

90.9 87.6 89.2 88.3

RetinaNet (Lin et al.,

2017a)

81.6 92.3 86.6 89.6

CenterNet (Zhou et al.,

2019)

93.3 94.5 93.9 93.5

DAPN (Cui et al., 2019) 87.6 91.4 89.4 90.1

YOLOv4 (Bochkovskiy

et al., 2020)

93.6 94.0 93.8 96.1

YOLOv5 94.0 92.4 92.7 95.3

CoAM+RFIM (Yang

et al., 2021)

94.4 92.1 93.2 95.6

PPA-Net (Tang et al.,

2023)

94.8 94.5 93.3 96.0

Our 94.2 93.9 94.5 96.2

The best results are highlighted in bold.

CoAM+RFIM (Yang et al., 2021), by 0.3% in the AP50 metric.

Despite the consideration of noise impact and the use of attention

mechanisms to reduce noise effects, the latest SAR ship detection

method PPA-Net (Tang et al., 2023) falls short due to relying solely

on pooling operations to address multi-scale information, leading

to significant information loss.

4.3.2 HRSID
The HRSID dataset exhibits a more complex image background

and includes a greater number of densely packed small ship targets,

posing higher challenges for algorithms and allowing for a better

validation of our method’s effectiveness in complex background

and small target detection. As shown in Table 2, our method

shows an improvement of ∼0.4–15.1% compared to state-of-the-

art methods, benefiting from the proposed LFRM and GCAM.

LFRM first extracts local multiscale information using multiple

differently-sized receptive fields and then employs a dual-branch

channel attention mechanism to facilitate local cross-channel

information interaction between different scale features, alleviating

the detection impact of scale variations.

Furthermore, GCAM, by capturing long-range dependencies,

enhances target feature representation and suppresses noise

interference, enabling effective target detection in SAR ship images

with different complex backgrounds. Even when compared to the

latest SAR ship detection algorithms CoAM+RFIM (Yang et al.,

2021) and PPA-Net (Tang et al., 2023), our method outperforms

them by 0.9, 2.3, 2.1, and 0.2% for Precision (%), Recall (%),

F1 (%), and AP50 (%), respectively. Similarly, across all four

detection accuracy metrics, our method surpasses other general

object detection methods and achieves optimal results. In terms

of AP50 (%), it outperforms Faster R-CNN (Ren et al., 2015),

RetinaNet (Lin et al., 2017a), CenterNet (Zhou et al., 2019),

YOLOv4 (Bochkovskiy et al., 2020), and YOLOv5 by 15.1, 10.8,

13.5, 3.2, and 0.4%, respectively.
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FIGURE 5

We have chosen to compare the detection results of di�erent methods for complex backgrounds and multi-scale targets (especially small targets).

The red box indicates the ground truth, and false alarms and missed detections are circled using yellow and green circles, respectively.

4.3.3 SSDD
As shown in Table 3, the experimental results on this dataset

indicate that our method is competitive, although the Precision

and Recall accuracies are slightly lower than YOLOv4 (Bochkovskiy

et al., 2020), CoAM+RFIM (Yang et al., 2021), and PPA-Net

(Tang et al., 2023). Furthermore, our algorithm outperforms other

classical methods, including Faster R-CNN (Ren et al., 2015),

RetinaNet (Lin et al., 2017a), CenterNet (Zhou et al., 2019), DAPN

(Cui et al., 2019), and YOLOv5. In summary, our method achieves

significant detection accuracy. Additionally, the detection results

on multiple datasets validate the fine generalization capability of

this method.

4.3.4 Visual results
To directly showcase the advanced detection results of our

method, we visualize the detection outcomes on three different

datasets. As illustrated in Figures 5–7, it is evident that our

method performs exceptionally well in both complex background

and various-sized ship targets, surpassing other approaches.
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FIGURE 6

Plot of detection results for selected ships with complex backgrounds from HRSID, SSDD, and SAR-Ship-Dataset datasets for our method.

FIGURE 7

Our approach plots a selection of detection results with small targets and densely arranged ships in the HRSID, SSDD, and SAR-Ship-Dataset datasets.

Specifically, Figure 5 displays the detection results of our method

and other approaches in SAR images with complex backgrounds

and multiple-scale targets. It is noticeable that other methods

exhibit instances of missed detections or false positives, while

ours demonstrates good detection accuracy in both scenarios.

Figure 6 presents the detection results of our method for ships with

complex backgrounds. Figure 7 illustrates the results of detecting

small target ships, consistent with our expectations that the LFRM

module can effectively utilize multiple receptive fields of different

sizes to extract local multiscale information, making the network

more sensitive to small targets.

In summary, the visualization results intuitively reflect that our

proposed method can accurately detect and identify ship targets

in SAR images with complex backgrounds and various target

sizes. Moreover, it demonstrates effective target detection across

different datasets and diverse scenarios, offering better practical

utility. However, our method exhibits some instances of missed

detections and false positives in dense target detection, as shown
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in Figure 5, where our method displays a few missed detections in

SAR images with densely packed ships, marked with green circles.

This is attributed to our method solely considering the influences

of multiscale targets and backgrounds, without accounting for

potential feature overlap and misalignment that may arise when

targets are densely arranged. Our current approach does not

perform feature subdivision for overlapping targets, and we plan

to address this in future work.

TABLE 4 Ablation experiments on the HRSID dataset.

LFRM GCAM AP50 (%) Runtime (ms)

91.1 9.1

X 92.3 24.3

X 93.0 26.9

X X 93.3 28.1

We validate the effectiveness of each component step by step. It displays the AP50 (%)

and the Runtime (ms). The optimal metrics have been bolded. All scores are expressed in

percentage (%).

TABLE 5 Ablation experiments on the HRSID dataset for the size selection

of the convolutional region K in two-branch channel attention.

The coverage of K AP50 (%) Runtime (ms)

3 93.0 19.7

4 93.3 20.1

5 93.1 20.4

6 92.8 20.9

The bold values indicate the best results.

4.3.5 Ablation study
To evaluate the effectiveness of the components in our

proposed Context-Aware Network, we conduct extensive ablation

experiments on the HRSID (Wei et al., 2020) dataset. For LFRM,

the results are shown in Table 4, where our proposed LFRMmodule

improves the accuracy of AP50 from 91.1 to 92.3% compared

to the benchmark level. As shown in Table 5, consistent with

what we envisioned, LFRM uses multi-level atrous convolution to

extract feature information at different scales hierarchically, and

adopts residual linking to diversify the feature receptive field at

each layer, better fusing the scale features. Combined with the

dual-branch channel attention mechanism to realize local cross-

channel interaction, it can enhance the ability to characterize

the target and efficiently filter complex semantic information.

The ablation experiments also demonstrate that LFRM is not

only sensitive to scale information but also can mitigate complex

background noise.

For GCAM, our proposed GCAM module improves the

accuracy of AP50 from 91.1 to 93.0% compared to the

benchmark level. Essentially, GCAM expands the sensory

domain of the network by adaptively weighting features in

different spaces and suppresses background noise interference

by obtaining global contextual information based on the

estimated long-range dependency. As shown in Figure 8, to

show the effectiveness of our proposed module more directly,

we visualize it by outputting a visual graph of the intermediate

results. Finally, by combining our two modules in series, their

AP50 accuracy can reach 93.3%, which shows that the LFRM

and GCAM can effectively improve the SAR ship detection

performance, and the interaction can further improve our

network performance.

FIGURE 8

Visualization of the outputs of the di�erent modules of the intermediate process tested by our method on the HRSID dataset.
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To mitigate the impact of Batch Size on experimental

results and determine the optimal Batch Size for training, we

conduct ablation experiments with different Batch Size values. The

experimental results are presented in Table 6. Notably, when the

Batch Size reaches 16 and 32, the detection accuracy (AP50) both

achieve the highest value of 93.3%. However, with a Batch Size

of 8, the larger randomness introduced by the smaller Batch Size

makes it challenging to converge, resulting in a lower classification

accuracy of only 92.8%. When the Batch Size exceeds 32, there is

a possibility of encountering local optima, leading to a decrease

in accuracy to 92.9%. We exhaustively explored a range of Batch

Size values in the ablation experiments to identify the most optimal

Batch Size.

4.3.6 The complexity and speed of the network
We conduct a complexity analysis of the model, and the results

are presented in Table 7. Ours has metrics of 28.1, 60.4, and

126.9 for Runtime, Params, and FLOPs, and although it is more

complex to model with some other state-of-the-art methods such

as YOLOv5, CoAM+RFIM (Yang et al., 2021) and PAA-Net (Tang

et al., 2023), our method exhibits outstanding performance on the

SAR-Ship-Dataset (Wang et al., 2019), HRSID (Wei et al., 2020),

and SSDD (Li et al., 2017) datasets, delivering exceptional results

while maintaining acceptable model sizes. The reason for the more

complex model is that we use a more complex backbone network

and GCAM in by calculating the correlation between each pixel

and the other pixels, which imposes some network burden, but our

method achieves a good balance for accuracy and speed.

5 Conclusion

To address the two challenges of various complex background

interferences and multi-scale ship targets in SAR image ship

detection tasks, we propose a context-aware one-stage SAR ship

detection algorithm. To solve the problem of multi-scale ship

target detection, we propose the LFRM module, which uses

dilated convolutions with different ratios to obtain multi-scale

features, and then uses average and maximum global pooling to

interact the extracted information of different scales, enhancing

its representation ability and sensitivity to scale, and achieving

multi-scale ship detection. Furthermore, we also design the GCAM

module to enhance the analysis of global context information

and further suppress the interference of noise from complex

backgrounds on targets. Extensive experiments have demonstrated

that our method outperforms the latest methods in comprehensive

performance. The method proposed in this paper can effectively

cope with the interference of complex background noise and

detect ship targets of different scales. However, there are still some

missed detection issues for densely arranged targets. In future work,

we will pay more attention to the detection of densely arranged

small targets.
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TABLE 6 Ablation experiments were performed on HRSID data sets with

di�erent batch sizes.

Batch size AP50 (%)

8 92.8

16 93.3

24 93.0

32 93.3

36 92.9

The bold values indicate the best results.

TABLE 7 Comparison of Runtime, Params size, and FLOPs for di�erent

models.

Method Runtime
(ms)

Params
(M)

FLOPs
(G)

Faster R-CNN (Ren et al., 2015) 56.1 60.1 181.9

RetinaNet (Lin et al., 2017a) 55.0 55.1 175.4

CenterNet (Zhou et al., 2019) 55.0 20.2 63.3

DAPN (Cui et al., 2019) 74.9 63.8 266.1

YOLOv4 (Bochkovskiy et al., 2020) 22.4 64.3 110.5

YOLOv5 19.7 27.6 60.3

CoAM+RFIM (Yang et al., 2021) 37.3 65.8 123.5

PPA-Net (Tang et al., 2023) 40.2 73,9 144.5

Our 28.1 70.4 126.9

The bold values indicate the best results.
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