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Addressing the challenge of household loads and the concentrated power
consumption of electric vehicles during periods of low electricity prices is
critical to mitigate impacts on the utility grid. In this study, we propose a
multi-objective particle swarm algorithm-based optimal scheduling method
for household microgrids. A household microgrid optimization model is
formulated, taking into account time-sharing tariffs and users’ travel patterns
with electric vehicles. The model focuses on optimizing daily household
electricity costs and minimizing grid-side energy supply variances. Specifically,
the mathematical model incorporates the actual input and output power of each
distributed energy source within the microgrid as optimization variables.
Furthermore, it integrates an analysis of capacity variations for energy storage
batteries and electric vehicle batteries. Through arithmetic simulation within the
Pareto optimal solution set, the model identifies the optimal solution that
effectively mitigates fluctuations in energy input and output on the utility side.
Simulation results confirm the effectiveness of this strategy in reducing daily
household electricity costs. The proposed optimization approach not only
improves the overall quality of electricity consumption but also demonstrates
its economic and practical feasibility, highlighting its potential for broader
application and impact.
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1 Introduction

The increasing demand for household electricity and energy consumption issues in
recent years has led to the emergence of distributed renewable energy sources (Li et al.,
2023a). With advancements in science and technology, home microgrid management
systems utilizing distributed energy sources like photovoltaic power generation and
battery storage are gaining increasing attention from consumers (Jiang and Fei, 2015).
With the increasing popularity of electric vehicles and the continuous development of
battery technology, the rise in electric vehicle ownership has been driven by the use of
electricity instead of fuel, lower energy consumption costs, and the use of clean energy.
The variability of photovoltaic (PV) power systems and electric vehicle (EV) can affect
grid scheduling and user comfort when connected to home microgrids (Khan et al.,
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2017; Lou et al., 2021). Energy storage batteries have the
capability to mitigate PV fluctuations and enhance home
energy reliability (Liu et al., 2015; Zhang et al., 2018).
Combining renewable energy sources, such as hydropower (Xu
et al., 2023; Zhu et al., 2023), with electric vehicles and battery
storage not only enables internal consumption of distributed
energy (Jin et al., 2023) but also enhances the utilization of
distributed energy while reducing the cost of daily household
electricity consumption (Yang et al., 2022a; Li et al., 2023b).

Within the energy management domain, home microgrids are
gaining prominence as essential elements of distributed energy
frameworks (Zhou et al., 2023). These microgrids bolster both
flexibility and efficiency in energy consumption, introducing
complexities and advantages through the integration of multi-
objective optimization tactics. Utilizing diverse energy sources
alongside Energy Storage Systems (ESS), home microgrids play a
critical role in harmonizing and refining energy use, especially as
renewable energy adoption surges (Yang et al., 2023). Yang et al.
(2022b) present the first study dedicated to solving SCUC problems.
They introduce a sophisticated data-driven SCUC expert system that
relies on an enhanced sequence-to-sequence (E-Seq2Seq) model. This
system is tailored to handle intricate mapping samples within dynamic,
multi-sequence environments. It meticulously considers numerous
input factors that impact SCUC decision-making, guaranteeing
remarkable versatility, heightened solution accuracy, and eminent
efficiency compared to traditional methods.

The essence of multi-objective optimization in home microgrid
design and operation cannot be understated. It transcends the
singular objective of cost reduction, encompassing variables like
renewable energy source fluctuations and user comfort in energy
consumption. This optimization strategy adeptly manages multiple,
sometimes conflicting goals: cutting electricity costs, curbing
environmental footprints, and ensuring grid resilience while
maintaining household power continuity.

Intelligent scheduling within this framework strikes a delicate
balance between cost-efficiency and reliable supply. Consider, for
example, scenarios where solar panels produce excess energy on
sunny days; multi-objective optimization algorithms facilitate
decisions on immediate usage or future storage. Likewise, during
renewable energy supply shortages, these algorithms can
dynamically adjust loads, curbing wastage and ensuring sustained
power via intelligent storage solutions.

As technology evolves, the role of home microgrids in shaping
energy management becomes increasingly pivotal. The deployment of
multi-objective optimization not only bolsters the economic and
ecological viability of energy infrastructures but also furnishes
households with more dependable and efficient energy alternatives. A
burgeoning community of researchers is fervently exploring innovative
optimization paradigms, driving home microgrid advancements and
steering energy landscapes towards sustainability and intelligence.

The landscape of research on homemicrogrid system optimization
is expansive, encompassing both domestic and international
perspectives (Yang et al., 2022c). Li and Yang (2019) proposes a
strategy for optimizing home renewable energy, which involves
using dual battery packs based on time-of-day tariffs. This strategy
aims to reduce the impact of the uncertainty of renewable energy
sources on energy scheduling through the two-battery storage system,
while also aiming to reduce the cost of electricity, albeit without

considering battery lifespan implications. Ben Slama (2021) proposes
an integrated homemicrogridmanagement system that utilizes vehicle-
to-home (V2H) technology. This system orchestrates energy demand
by scheduling automated devices but overlooks potential system
impacts from electric vehicle usage. Zheng and Huang (2021)
proposed a home energy management system utilizing a power
router to connect distributed energy sources, the grid (Li et al.,
2022), and home loads. This system addresses scheduling issues
arising from renewable energy sources, enhances energy utilization,
and ensures system reliability.

Han et al. (2021), Merrington et al. (2022) describes a home
microgrid system that integrates domestic dwellings and distributed
energy sources. While validated through simulations, the model lacks
insights into load-to-grid fluctuations during periods of economical
electricity prices. Sun et al. (2019) delved into the optimization of EV
predictive control to counteract EV-related uncertainties in home
microgrid operations. Although their approach showcases
effectiveness via numerical examples, research on electricity price
fluctuations remains limited. Fouladfar et al. (2021) championed the
integration of electric vehicles in home microgrids to bolster user
demand response. Their study highlighted enhanced microgrid
demand response performance through differential evolution (DE)
methods. Elkazaz et al. (2020) effectively reduces energy costs and
power losses by predicting household energy consumption and
forecasting photovoltaic power generation. It also verifies the
feasibility of this method when combined with simulation.

Wang et al. (2016) employed an innovative small-habitat
evolutionary multi-objective immune algorithm (IA) to optimize
distributed power sources within microgrids. However, certain
intricacies like electric vehicle charging/discharge indexes and
microgrid energy storage devices were overlooked. Ding et al. (2016)
utilized a classical genetic algorithm (GA) to navigate specific dynamic
scheduling challenges. While their study offered valuable insights into
equipment capacity and power generation costs, it lacked considerations
for advanced microgrid configurations and electric vehicle impacts. Qin
et al. (2023) formulated a coordinated optimal schedulingmodel tailored
for active distribution networks, addressing diverse objectives like
dispatch cost and load curve variance within a multi-energy system
framework (Ma et al., 2022). Nonetheless, traditional PSO algorithms
utilized in their model posed challenges related to convergence and real-
time scheduling demands (Yang et al., 2022d). Overall, while these
studies contribute significantly to the field of home microgrid
optimization, each presents its unique set of insights and limitations,
underscoring the evolving nature of research in this domain.

In the present study, we advance the existing research landscape by
introducing a multi-objective optimal dispatch frameworkmeticulously
crafted for residential microgrids. This model intricately weaves
together PV power systems, energy storage batteries, and electric
vehicles (EVs). Embracing time-of-day tariffs as its foundational
pillar, our innovative methodology strives not merely for economic
efficiency but also for steadfast grid reliability (Li et al., 2023c).

Harnessing the prowess of the multi-objective particle swarm
optimization algorithm (celebrated for its robust search capabilities
and swift optimization prowess) we seamlessly integrate the mobility
patterns of EV users with diverse distributed energy resources (Li
et al., 2020). This harmonization decisively attenuates the disparities
between peak and off-peak loads on the grid, setting the stage for a
more balanced energy ecosystem. Our primary objective pivots on
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mitigating the adverse impacts exerted by household loads and
EVs on grid-centric operations. Through rigorous MATLAB
simulations, serving as our empirical foundation, we scrutinize
the time-of-day transitions between diverse energy resources and
the power demand emanating from residential loads. Our empirical
analyses corroborate the efficacy of the proposed multi-objective
optimization paradigm. Specifically, it substantially curtails the
strain exerted by centralized electricity consumption (stemming
from household loads and EVs) on grid infrastructures.
Moreover, this optimization strategy culminates in noteworthy
reductions in daily electricity expenditures within the residential
microgrid, while concurrently streamlining the scheduling
intricacies of its constituent components.

2 Home microgrid system

2.1 Structure of the home microgrid system

Figure 1 provides an overview of the essential framework of the
home microgrid system investigated in this study. The system
comprises a photovoltaic power generation system, an electric
vehicle, an energy storage battery system, household loads, an
external grid, and an energy dispatch center. When the
distributed energy source is connected to an energy dispatch
center within the system, it collects information about the energy
consumed by household loads, electric vehicles, the charging and
discharging of storage batteries, and the power generated by the
solar power system. This collated information is used to regulate the
power flow between the components within the system, including
the exchange of energy between the distributed source and
household loads.

2.2 Renewable energy system

The output power of a photovoltaic power generation system
is related to solar radiation, which is divided into beam radiation
and diffuse radiation. It is generally calculated using the
modified Hottel equation and the Liu-Jordan equation, as
shown in Eq. 1.

ξ t( ) � τb + τd( )Gon (1)
where τb is solar beam radiation; τd is diffuse solar radiation; and
Gon is other radiation received on a given day of the year.

After obtaining the solar radiation incident on the PV panels, the
output power of the PV power generation system can be calculated
using the following Eq. 2 (Gu et al., 2012):

Ppv t( ) � ξ cos θηmApηp (2)

where Ppv is the electrical energy generated by the PV system; ξ is the
total solar radiation; θ is the angle of incidence calculated based on
the panel; ηm is the efficiency calculated based on the maximum
power tracking point (MTTP);Ap is the area of the PV panel; and ηp
is the efficiency of the PV panel.

The energy storage battery system is modeled using the
KiBaM model, which is commonly utilized in simulating lead-
acid batteries (Jongerden and Haverkort, 2017). In this model,
the power of the storage battery is obtained through the mutual
conversion of available charge and bound charge. When the
storage battery discharges to the outside, the bound charge is
converted into available charge at a certain rate. Meanwhile, the
maximum charging and discharging power of the storage battery
is related to its energy storage state, which is calculated by the
following Eq. 3:

FIGURE 1
Home microgrid system structure diagram.
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Pjmax
ess t( ) � kE1,0,t t( )e−kΔt + E0,t t( )kb 1 − e−kΔt( )

1 − e−kΔt + b kΔt − 1 + e−kΔt( )
Pimax
ess t( ) � −kEess

max t( ) + kE1,0,t t( )e−kΔt + E0,t t( )kb 1 − e−kΔt( )
1 − e−kΔt + b kΔt − 1 + e−kΔt( )

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(3)

Where Pjmax
ess (t) and Pimax

ess (t) are the maximum discharge
power and charging power at the initial time of time period t,
respectively; k is a constant indicating the rate of conversion of
bound charge to usable charge; E1,0,t(t) and E1,0,t(t) are the initial
usable power and the total stored power at time period t,
respectively; b is the ratio of usable charge to the total charge;
and Eess

max(t) is the maximum stored power of the storage battery at
time period t.

Assuming that the electric vehicle is charged in constant power
mode and the power is allowed to vary within a small range when
discharged, the state of charge (SOC) of the battery in the charging
and discharging states of the electric vehicle is calculated as follows
Eqs 4, 5 (Zhang et al., 2016):

SOCev t + 1( ) � SOCev t( ) + Pi
ev t( ) · Δt · η

i
ev

Cev
(4)

SOCev t + 1( ) � SOCev t( ) − Pj
ev t( ) · Δt( )/ η( j

ev · Cev) (5)

Where SOCev(t) is the SOC of EV in time period t; Pi
ev(t) and

Pi
ev(t) are the input and output power of EV in time period t,

respectively; ηiev is the charging efficiency; ηjev is the discharging
efficiency; and Cev is the rated capacity of EV battery.

2.3 Power distribution strategies for home
microgrid systems

The time-of-use (TOU) tariff strategy delineates a dynamic
pricing paradigm, predicated on differential electricity pricing
across distinct demand epochs, namely, peak and off-peak
periods. Notably, operational costs of electricity generation
escalate during peak consumption intervals, rendering electricity
tariffs substantially higher than those during off-peak intervals.
Consequently, households are incentivized to realign their
electricity consumption patterns, optimizing usage during off-
peak periods to capitalize on reduced tariffs, as elucidated in
prior research (Ruan et al., 2012; Sun et al., 2014). However, a
potential repercussion of this strategy is the inadvertent emergence
of elevated consumption peaks during these ostensibly low-cost
periods. As the paradigm of distributed energy resources gains
traction within residential energy frameworks, it underscores the
imperative for users to adeptly navigate the nuances of time-of-use
tariffs (Nan et al., 2018). This necessitates the formulation of astute
strategies delineating optimal electricity procurement and
consumption patterns. Within this context, two scenarios could
be consideration: i) during diurnal intervals when occupants are
absent, the EV remains disengaged from the home microgrid,
mitigating its energy interactions within the system. ii)
Conversely, upon the user’s nocturnal return, inherent
constraints render the EV system ineffectual in electricity
generation, necessitating strategic resource management to ensure

optimal microgrid functionality and user-centric energy
provisioning.

(1) When the EV is away from home during times of low
electricity pricing, there arises a necessity to procure additional
power from the grid. Conversely, during peak electricity price
intervals, precedence is accorded to the utilization of photovoltaic
systems and storage batteries for electricity generation. This strategic
approach ensures the optimal and cost-efficient fulfillment of
household electricity requirements, defined as Eq. 6.

Pbuy t( ) � Pload t( ) − Pj
ess t( ) − Ppv t( ) (6)

where Pbuy(t) is the purchased electricity; Pload(t) is the
electricity required by the household load; Pj

ess(t) is the output
of the storage battery; and Ppv(t) is the electricity generated by
the PV system.

When the power generated by the PV system is adequate for the
household’s energy needs, the storage battery can be linked to the PV
system for recharging. The relationship between them is shown in Eq. 7.

Pi
ess t( ) � Ppv t( ) − Pload t( ) (7)

where Pi
ess(t) is the input electrical energy of the storage battery.

If the PV system can supply power to the household loads and there
is still surplus power after charging the storage battery, the excess power
is sold to the grid. The sold power can be calculated using Eq. 8.

Psold t( ) � Ppv t( ) − Pload − Pi
ess t( ) (8)

where Psold(t) is the portion of electrical energy sold to the grid.
(2) When the EV is at home and the PV system is no longer

supplying power, it is necessary to buy the missing load power from
the grid at a low electricity price and charge the EV simultaneously.
The size of the buy power can be determined using Eq. 9.

Pbuy t( ) � Pload t( ) + Pi
ev t( ) − Pj

ess t( ) (9)

where Pi
ev(t) is the electrical energy input to the electric vehicle.

During peak electricity prices, the home energy system relies
primarily on electric vehicles and storage batteries for energy.
Therefore, the buy power at this time is represented by Eq. 10.

Pbuy t( ) � Pload t( ) − Pj
ess t( ) − Pj

ev t( ) (10)

where Pj
ev(t) is the electrical energy output of the electric vehicle.

In order to determine the input and output ranges of the
storage battery and the state of charge (SOC) of the battery, the
following calculations will be performed for the battery at each
interval as shown in Eqs 11–13:

Pin
ess t( ) � εess SOCess

max − SOCess t( )( )/Δt (11)
Pout
ess t( ) � εess SOCess t( ) − SOCess

min( )/Δt (12)

Sess t + Δt( ) � Sess t( ) + Pi
ess t( ) · ξ iess − Pj

ess t( )/ξjess( )Δt
ξessmax

(13)

where Pin
ess(t) is the input power limit of the battery; Pout

ess (t) is the
output power limit of the battery; εess is the capacity of the battery;
ξiess is the charging efficiency of the battery; ξjess is the discharging
efficiency of the battery; SOCess(t) is the real-time capacity of the
battery; SOCess

max is the maximum SOC limit of the battery; SOCess
min

is the minimum SOC limit of the battery.
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3 Multi-objective optimization model
for home microgrids

3.1 Objective function

3.1.1 Objective function 1: minimization of
electricity consumption costs

In the home microgrid system analyzed within this study, the
primary objective function revolves around minimizing the
electricity costs. Given the presence of time-of-use tariffs, the
paramount goal is to curtail electricity expenses, thereby
enhancing the economic viability for users. This cost
computation incorporates both the maintenance expenditures
related to distributed energy components and the net daily
expenditure attributed to household energy consumption.
Mathematically, the objective function for minimizing electricity
costs is represented in formula (14) as:

f1 � min COE( ) � Costu + Costw (14)

Here COE represents the cost of electricity; Costu is the
maintenance cost of distributed energy components; Costw
denotes the cost of electricity exchanged with the grid.

The electricity cost for the system is derived from the difference
between the expenditures associated with maintaining the
distributed energy equipment and the revenue generated, such as
from the sale of electricity. Consequently, Costu is computed by
multiplying the maintenance, replacement, and conservation costs
of distributed energy resources with their respective unit quantities.
It is essential to distinguish between maintenance and replacement
costs: maintenance costs pertain to the periodic upkeep of
equipment at each time interval t, whereas replacement costs are
incurred when components require substitution while the system
remains operational. Additionally, protective costs emerge when
equipment approaches the end of its operational lifecycle. Thus, the
comprehensive cost structure for the system is articulated in Eq. 15:

Costu � Xpv Vm
pv + Vr

pv + Vs
pv( ) +Xess Vm

ess + Vr
ess + Vs

ess( )
+Xev Vm

ev + Vr
ev + Vs

ev( ) (15)

Here:

• X represents the respective unit quantities.
• pv denotes the photovoltaic power generation system.
• Vm

pv signifies the maintenance cost for the PV system,
encompassing periodic upkeep and service expenses.

• Vr
pv stands for the replacement cost of PV modules, accounting
for necessary upgrades to sustain efficiency amidst evolving
technology and market dynamics.

• Vs
pv represents safety and insurance expenditures vital for the
reliable operation of the PV system.

• ess refers to the energy storage system, mirroring the PV
system’s cost structure with its own maintenance,
replacement, and protective costs.

• ev designates an electric vehicle, with its associated costs
segmented into maintenance, replacement, and protective facets.

Additionally, a pivotal metric for the energy storage battery’s
lifecycle is its capacity degradation. When the battery’s capacity

diminishes to 80% of its initial value, it is deemed to have reached its
lifecycle’s conclusion. This capacity degradation is quantified by the
Depth of Discharge (DOD) of the battery, defined in formula (16):

DODess t( ) � 1 − SOCess t( ) (16)

Here DODess denotes the depth of discharge of the battery.
The capacity degradation of the battery posts each operational

cycle is determined employing the rain flow algorithm, represented
in Eq. 17:

Vess β( ) � 20

33000 · e−0.06576·DODess β( ) + 3277
(17)

Where Vess is the degree of capacity degradation for the battery;
β denotes the entire lifespan cycle of the battery.

Within this framework, the battery’s lifecycle termination is
defined when its capacity diminishes to 20%.

The net cost of exchanging electricity with the grid Costw can be
calculated from the total cost of electricity used by the household
and the cost of electricity purchased and sold. This can be
determined using the following formula (18):

Costw � ∑H

t�1TOU t( ) · Pbuy t( ) −∑H

t�1FTT t( ) · Psold t( ) (18)

where H indicates the total number of hours within a given day;
TOU(t) represents the electricity purchasing price from the grid at
time t; and FTT(t) stands for the electricity selling price to the grid
at time t.

3.1.2 Objective function 2: minimizing variability in
grid-side energy supply

When a substantial number of electric vehicles charge during the
grid’s off-peak periods, the methodology of mobile charging can
profoundly influence the grid. Such a scenario might inadvertently
lead to the emergence of a new peak load during typically off-peak
times, potentially disrupting the seamless electricity consumption
experience within households. In light of this challenge, the
formulation of an objective function aimed at minimizing grid-
side supply variance is advocated as the second focal point of this
study. Moreover, integrating distributed energy sources into the
household grid is posited as a strategy to attenuate these unexpected
load fluctuations.

By prioritizing the reduction of real-time energy exchange
variability between the utility grid and the household, there’s an
opportunity to amplify the contribution of distributed energy supply
within the home microgrid framework. This strategic shift not only
bolsters the incorporation of renewable energy sources but also
refines the load profile, diminishing network losses. Consequently,
this optimization approach elevates the overall quality and reliability
of household electricity consumption.

It is worth noting that prioritizing the minimization of grid-side
supply variance as an objective function, as opposed to merely
focusing on reducing network losses, offers distinct advantages.
Specifically, this approach obviates the need for iterative
computations, resulting in expedited computational times. Such
efficiency is pivotal for addressing the nuanced load power
allocation challenges delineated in this research.

The mathematical representation for minimizing the grid-side
energy variance is delineated in formula (19):
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f2 � 1
H

∑H

t�1 Pgrid t( ) − 1
H

∑H

t�1Pgrid t( )[ ]2 (19)

where Pgrid(t) signifies the power exchanged between the household
and the utility grid over time t.

3.2 Constraint

(1) PV power limitation is shown in formula (20)

0≤Ppv t( )≤Ppv
max (20)

(2) Constraints on energy storage battery input and output are
represented in formula (21)

0≤Pin
ess t( ), Pout

ess t( )≤Pess
max (21)

where Pess
max signifies the maximum output power capacity of the

energy storage battery.

(3) EV battery power limitations are represented as shown in
formula (22)

0≤Pin
ev t( ), Pout

ev t( )≤Pev
max (22)

where Pev
max represents the maximum output power capacity of the

electric vehicle battery.

(4) Energy storage battery SOC constraints are defined by
formula (23)

SOCess
min ≤ SOCess t( )≪ SOCess

max (23)
where SOCess

min and SOCess
max define the minimum and maximum

SOC limits of the energy storage battery, respectively.

(5) EV battery SOC constraints can be found in formula (24)

SOCev
min ≤ SOCev t( )≪ SOCev

max (24)
where SOCev

min and SOCev
max represent the minimum and maximum

SOC limits of the electric vehicle battery, respectively.

(6) System power balance constraints

When the EV is not at home during the day, the output and
purchased electricity from the PV system and storage batteries need to be
sufficient to support the household load. Any excess electricity generated
by the distributed energy sources is used to sell to the municipal grid. In
this scenario, the power of the load adheres to the relationship described
by Eq. 25.

Ppv t( ) + Pj
ess t( ) + Pbuy t( ) − Psold t( ) � Pload t( ) (25)

When the EV is connected to the home energy system as a
distributed energy source at night while it is at home, the power
output from the distributed energy source and the purchased power
need to be sufficient to support the home load simultaneously. Any
excess power generated by the distributed energy source is then sold

to the utility grid. In this scenario, the power of the load aligns with
the conditions set by Eq. 26.

Pess t( ) + Pev t( ) + Pbuy t( ) − Psold t( ) � Pload t( ) (26)

3.3 Optimization process

To address the complex multi-objective optimization challenges
presented in this study, we have harnessed the power of
computational algorithms. Specifically, the Multi-objective
Particle Swarm Optimization (MOPSO) algorithm, implemented
within the MATLAB environment, serves as our chosen tool to
navigate this intricate optimization landscape.

The formulation of our mathematical model for themulti-objective
optimization problem can be succinctly represented in formula (27):

min y � F x( ) � f1 x( ), f2 x( ), f3 x( ),/, fm x( )( )
s.t.

gi x( )≤ 0, i � 1, 2, 3,/, q
hj x( ) � 0, j � 1, 2, 3,/, p
x ∈ xmin, xmax[ ]

⎧⎪⎨⎪⎩
(27)

where X is an n-dimensional decision space, Y is an m-dimensional
target space, and y � (f1(x), f2(x), f3(x),/, fm(x)) is an
m-dimensional target vector; The objective function F(x) defines
m mapping functions from the decision space to the objective
function; gi(x)≤ 0, (i � 1, 2,/, q) and hj(x)≤ 0, (j � 1, 2,/, p)
define the q inequality constraints and P equality constraints of
the multi-objective optimisation problem, respectively; xmin and
xmax are the upper and lower bounds of the vector search.

The Particle Swarm Optimization (PSO) algorithm stands out in
the realm of optimization techniques due to its remarkable
computational efficiency, swift execution pace, and reduced
sensitivity to initial conditions. This method’s prowess has led to the
evolution of the Multi-objective Particle Swarm Optimization
(MOPSO) algorithm, specifically tailored to tackle multi-objective
optimization challenges. A distinguishing feature of MOPSO is its
incorporation of the Pareto sorting mechanism. This mechanism
facilitates the identification of the global optimal solution and paves
the way for capturing the Pareto optimal frontier. However, despite its
merits, MOPSO exhibits a potential pitfall: its rapid convergence rate.
When MOPSO converges swiftly, the exploration scope contracts,
restricting the algorithm’s capacity to discover the global optimal
frontier. Instead, it may inadvertently settle for a local Pareto
optimal frontier, thus compromising the overarching objective of
identifying the best trade-offs across multiple criteria.

To circumvent this limitation, our study introduces a nuanced
enhancement: the incorporation of a probabilistic random mutation
mechanism within the particle swarm evolution dynamics. This
strategic inclusion injects controlled perturbations into the particle
positions, rejuvenating the algorithm’s exploratory prowess and
fortifying its ability to navigate the solution landscape more
comprehensively. Figure 2 delineates the flowchart illustrating the
multi-objective optimal scheduling framework tailored for home
microgrids.

The operational workflow of the enhanced Multi-objective
Particle Swarm Optimization (MOPSO) algorithm is delineated
as follows:
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Step 1: Parameter Initialization:
Initiate the optimization process by initializing four crucial

parameters: particle position(x), velocity (v), initial personal
best (pbest), and global best (gbest). Herein, the gbest

symbolizes the anticipated optimal solution to be discerned
during the optimization journey, while pbest represents the
most optimal solution achieved by an individual particle up
to that instance.

FIGURE 2
Multi-objective optimization scheduling process of home microgrid.

Frontiers in Energy Research frontiersin.org07

Huang et al. 10.3389/fenrg.2023.1354869

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1354869


Step 2: Target Vector Computation:
Compute the target vector after setting the initial pbest for

each particle and determining the overarching gbest for the entire
ensemble. This phase necessitates directing each particle toward
minimizing both electricity cost and load error. To achieve this
objective, ascertain the fitness value for every particle,
encapsulating a composite metric of electricity cost and load
error. Consequently, particles with superior fitness scores
amalgamate to constitute the Pareto front, thereby delineating
the Pareto optimal surface.

Step 3: Particle Position and Velocity Adjustment:
Modify the position(x) and velocity(v) of particles while

concurrently evaluating each particle’s fitness function and
updating its pbest. These iterative adjustments facilitate the
expansion of the search space through position modifications and
expedite exploration via velocity alterations.

Step 4: Periodic Update of Personal Best (pbest):
At regular intervals, recalibrate the pbest of particles by

identifying those in proximity to the gbest, subsequently updating
the gbest to optimize the algorithm’s performance.

Step 5: Selection and Archival of New gbest:
From the established Pareto front, cherry-pick a novel gbest.

Integrate this fresh gbest into an external archival repository. Should
multiple viable gbest candidates emerge, select an optimal solution
from this archival ensemble.

Step 6: Integration of Random Mutation Mechanism:
Embed a stochastic random mutation mechanism within the

algorithmic framework. This introduces nuanced perturbations to
each particle’s position, fortifying the algorithm’s prowess in global
optimization by diversifying the exploration trajectory.

Step 7: Decision-making via Roulette Selection:
Implement a roulette-based decision-making paradigm. This

culminating phase involves either endorsing the prevailing
algorithmic state or triggering termination protocols, thereby
finalizing the optimization loop based on predetermined criteria.

Step 8: Conclusion and Output:
Upon attaining the pre-defined maximum generation threshold,

culminate the iterations. Conclusively, output the gbest solution set,
emblematic of the optimal trade-off achieved between minimizing
electricity cost and mitigating load variability.

4 Case study

4.1 Experimental methods and data
acquisition

To validate the efficacy of the proposed strategy delineated in
this research, an illustrative family residing in East China was chosen
as a representative case for rigorous simulation and subsequent
analysis. For computational tractability and clarity, the simulation
framework employed in this study adopts a concise 1-day scheduling

cycle, meticulously segmented into 24 distinct time intervals. These
simulations were adeptly executed leveraging the computational
prowess of MATLAB.

The empirical foundation for this case study is anchored on the
average daily electricity consumption metrics observed over a span
of 1 month during the summertime in East China. This
comprehensive dataset serves as the foundational bedrock for our
analytical calculations and simulations.

When integrating the electric EVs into the family’s broader
electricity consumption matrix, the resultant load curve is vividly
portrayed in Figure 3. This graphical representation lucidly
elucidates the diurnal distribution of household electricity
consumption, intricately factoring in the demands associated with
EV charging protocols.

Furthermore, a granular analysis of this load curve facilitates
discerning specific temporal peaks in electricity consumption. These
pronounced peaks are intrinsically tethered to the circadian rhythms
and habitual patterns exhibited by household occupants. Notably,
the load profile conspicuously exhibits substantial peaks, surging to
an impressive 6856 W during the evening intervals. This surge
predominantly emanates from the confluence of household
members returning home and initiating the charging protocols
for their EVs, underscoring the significance of such empirical
insights in devising optimized microgrid management strategies.

In this paper, the number of particle swarms is selected to be 80,
the maximum number of iterations is 100, the number of external
archive ensemble size is 100, the learning factor c1 is taken to be 0.1,
c2 is taken to be 0.2, the maximum inertia weight ωmax is 0.8, the
minimum inertia weight ωmax is 0.4, and the variation rate is 0.1.
The parameters of each distributed energy source of the home
microgrid are as follows: the PV generation system operates in
MPPT mode and its maximum output power is 10 kW; the
maximum output power of the energy storage battery is 3 kW,
the rated power is 3.6 kW, and the capacity is 3 kWh; the maximum
output power of the electric vehicle is taken to be 5 kW; the
maximum input power is taken to be 7 kW; and the battery

FIGURE 3
Household daily load curve.
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capacity of the electric vehicle is 30 kWh. Themaintenance costs and
power parameters of distributed energy are shown in Table 1.

The storage batteries incorporated within the system are
multifunctional, providing both charging and discharging capabilities
that synergize seamlesslywith the electric vehicle’s operations. Specifically,
during instances where the photovoltaic power generation system faces
constraints due to factors such as insufficient light, the storage batteries
become instrumental. They supply power to household loads, especially
during peak electricity pricing periods. Conversely, when the distributed
energy sources are unable tomeet the demand and necessitate recharging,
the system strategically dispatches them to the grid during periods
characterized by lower electricity prices. This strategic maneuvering
significantly curtails household electricity expenses. To provide a

comprehensive understanding of the financial dynamics, the time-of-
day tariff structure employed in this study is meticulously delineated in
Table 2. This table enumerates the tariff rates corresponding to distinct
time intervals. For instance: The morning peak period, spanning from
07:00 to 09:00, incurs a tariff of ¥0.679 per kWh. The daytime bracket,
ranging from 11:00 to 17:00, attracts a tariff of ¥0.896 per kWh. During
the nighttimewindow, extending from 23:00 to 05:00, the tariff stands at
¥0.495 per kWh. The delineated time-based tariff structure underscores
a strategic financial approach. It encourages households to leverage
lower-cost charging opportunities during nighttime and off-peak hours.
Conversely, prudent consumption practices during peak hours are
advocated to mitigate overall electricity expenditure.

4.2 Multi-objective optimization results for
home microgrids

This algorithm produces 34 Pareto-optimal solutions after
100 iterations, and the resulting Pareto-optimal frontier is shown
in Figure 4.

The Pareto frontier, characterized by its smooth and evenly
distributed curves, underscores the algorithm’s aptitude in addressing
multi-objective optimization challenges within this research framework.

TABLE 1 Distributed energy parameters.

Distributed energy Max. Output power/kW Max. Input power/kW Maintenance cost (¥/kWh)

PV 10 0 0.01

ESS 3 2 0.1

EV 5 7 0.02

TABLE 2 Timely electricity price data by household location.

Time Time-sharing
tariff (¥/kWh)

11:00a.m.-22:00p.m. 0.896

00:00p.m.-4:00a.m., 23:00p.m.-24:
00p.m.

0.495

5:00a.m.-10:00a.m. 0.679

FIGURE 4
Pareto frontier calculated by MOPSO.
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A discernible negative correlation emerges between household electricity
expenses and grid-side output variance, accentuating the intricacies of
load management during tariff variations.

The aggregation of electricity consumption during low-cost
periods diminishes household expenses but concurrently
instigates heightened demand on the grid. This behavior could
jeopardize grid stability and reliability, amplifying supply system
burdens and compromising user electricity consumption comfort.
Through meticulous MATLAB-based optimization, these concerns
are alleviated. Specifically, the optimization ensures distributed
energy sources mitigate consumption peaks, regulate grid-side
load fluctuations, and cater to demand-side preferences.

Comparison with Table 3 data reveals a 14% reduction in household
electricity expenses post-optimization. Moreover, grid-side energy supply
variance diminishes by 61.9%, underscoring enhanced grid reliability.
Figure 5 elucidates each energy source’s operational dynamics within the
household microgrid, emphasizing the PV system’s daytime prominence,
battery storage’s peak-demand support, and the EV’s dual role based on its
charge status. The operational model maintains a harmonious balance
among consumption, cost-efficiency, and grid resilience, validating the
optimization framework’s efficacy.

It can be observed that the PV system contributes
significantly during the daytime when solar radiation is
available, the battery storage system provides power during

peak demand periods, and the EV is both a load and possibly
a potential energy source depending on its state of charge.
It is assumed that the owner of the EV leaves home for work
at 8:00 p.m. during the day, and that the EV is connected to the
home microgrid system to start working at 5:00 p.m., while
ensuring that the depth of discharge of the EV does not exceed
80%, thus increasing the lifetime of both the storage battery and the
EV. Figure 5 summarizes the dynamic equilibrium behavior between
energy consumption, cost savings, and grid stability, highlighting the
effectiveness of the optimization model in improving the operational
efficiency of the home microgrid.

5 Discussions

5.1 Changes in household electricity load
capacity before and after optimization

The visual representation in Figure 6 delineates the variations in the
household electricity load before and after optimization efforts. It is
evident that prior to optimization, the electric vehicle in the household
microgrid is in the charging state. The peak periods of home power
consumption are 7:00-8:00 a.m. and 10:00-11:00 p.m., with maximum
power demand reaching 6133W and 6856W, respectively.

TABLE 3 Results of multi-objective optimal scheduling for home microgrid.

Daily household electricity cost/¥ Grid-side energy variance/kW

Pre-optimization 81.1960 5.4606

Post-optimization 69.8295 2.0281

FIGURE 5
Operating power of each energy source after optimal dispatch.
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Additionally, when the EV is disconnected from the home microgrid,
12:00 p.m. becomes another peak period for home power consumption,
with a maximum demand of 2422W.

Following the optimization process, the household load demand
decreases to 4559 W at 7:00, with the storage battery outputting
1.8 kWh. At 12:00, the household load demand decreases to 1693W,
with the PV system outputting 6 kWh. Meanwhile, at 22:00, the
household electricity demand drops to 4450W, while the electric
vehicle battery discharges 2 kWh.

Under the scheduling strategy of the optimization algorithm,
the required electrical energy difference for household loads
during the day is primarily supplied by the photovoltaic
power generation system and the energy storage battery. At
night, when electric vehicles are used as the energy supply
source, the required power difference is mainly supplied by
electric vehicles and energy storage batteries. This reduces the
impact of the grid peak on the utility and alleviates the pressure
on household electricity consumption by effectively optimizing
the scheduling of household flexible loads.

5.2 Changes in storage battery capacity after
optimization

The depicted daily power dynamics of the home’s energy storage
battery, as showcased in Figure 7, elucidate its performance post the
optimization of the home microgrid system. Initially configured at a
60% capacity threshold, the battery’s operational behavior is
meticulously managed through the optimization paradigm.

During daylight hours, when ambient light levels are conducive, the
PV power generation system orchestrates a dual function: recharging
the storage battery while simultaneously fulfilling the energy

requirements of the household loads. This synergy ensures that
surplus energy harnessed during optimal light conditions is
efficiently stored for subsequent utilization, enhancing overall system
sustainability and reducing dependency on external grid resources.

Conversely, during nocturnal hours when solar irradiance
wanes, rendering the PV system less effective, the storage battery
seamlessly transitions into its role as a micro-power hub. It
continues to serve the home microgrid system, supplying
requisite power and ensuring uninterrupted energy provisioning
to critical household functionalities.

FIGURE 6
Changes of household load curve before and after optimization.

FIGURE 7
Changes of home energy storage battery capacity.
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5.3 Changes in battery capacity of EV after
optimization

Figure 8 delineates the transformation in the EV battery
capacity, initialized at a 60% threshold, throughout the optimized
operational scenario. The graph offers insights into the nuanced
interplay between the EV’s battery state and the overarching home
microgrid system dynamics.

During daylight intervals, the PV system takes on the pivotal
role of recharging the EV’s battery while it remains stationed at
home. This solar-powered charging mechanism not only capitalizes
on renewable energy sources but also primes the EV for subsequent
commutes, optimizing its operational efficiency.

However, upon the owner’s departure for work, the EV transitions
out of the homemicrogrid’s operational ambit, marking a divergence in
its energy dynamics until its return. Upon reconnecting to the home
microgrid during nocturnal hours, an intriguing pattern emerges: the
EV’s power consumption registers a reduction of approximately 10%
compared to its off-grid operational metrics.

A salient feature of the optimized strategy manifests when electricity
tariffs oscillate. During periods of elevated electricity prices, the EV pivots
from being a passive consumer to an active energy contributor. It
seamlessly integrates into the home microgrid ecosystem, channeling
its stored energy to power essential household loads. This strategic shift
not only curtails reliance on the power grid during peak demand cycles
but also amplifies the system’s resilience by diversifying energy sources.

5.4 Changes in grid-side power supply
before and after optimization

Figure 9 delineates the alterations in grid-side energy supply pre
and post-optimization. The graphical representation vividly illustrates
that prior to optimization, the period characterized by the lowest tariffs
aligns with the household’s peak electricity consumption window,
registering an average consumption close to 5 kW. Such a pattern

induces erratic fluctuations in grid energy supply, consequently
compromising the quality of household electricity supply.

Conversely, with the implementation of the optimized scheduling
management strategy, the average energy draw during peak tariff hours
diminishes substantially to around 2 kW. Leveraging the capabilities of
the PV power generation system and the storage battery, surplus
electricity is channeled back to the grid at strategic intervals, notably
at 14:00 and 18:00, facilitating efficient energy reclamation.

Furthermore, the integration of EV into the household
microgrid system proves advantageous. They play a pivotal role
in attenuating the household’s reliance on the grid during low-tariff
periods, thereby augmenting electricity consumption comfort while
curtailing costs. A comparative analysis of grid-side energy supply
pre and post-optimization underscores the efficacy of this strategy in
peak shaving and valley filling. Remarkably, the daily grid-side
electricity consumption within the home microgrid system post-
optimization is halved compared to its pre-optimized counterpart.

This optimized approach not only amplifies the efficacy of distributed
renewable energy utilization and curtails electricity consumption costs but
also refines the grid-side energy supply curve. The resultant benefits
include bolstered security and stability in grid operations, culminating in
an enhanced quality of household electricity consumption.

6 Conclusion

In this study, we have introduced a sophisticated multi-objective
optimization framework tailored explicitly for home microgrids.
The primary objectives encapsulated within this model are the
minimization of electricity consumption costs and the mitigation
of grid-side variances. By focusing on enhancing centralized
electricity consumption within home microgrids, our model
encapsulates an intricate strategy that meticulously integrates
each distributed energy source with household loads.

A pivotal aspect of our model revolves around considering daily
electricity demands juxtaposed against time-of-day tariffs and user

FIGURE 8
Changes of electric vehicle battery capacity.

FIGURE 9
Changes of grid-side energy supply power before and after
optimization.
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comfort preferences. Through rigorous examination, we delineated
the transformative impact of this optimization strategy on both the
components of the home microgrid and the overarching grid-side
power supply dynamics. Empirical validations affirm the salient
effectiveness and guiding prowess of our proposed methodology.

The computational framework leverages theMulti-Objective Particle
Swarm Optimization (MOPSO) algorithm, calibrated meticulously with
constraints that synchronize distributed energy source power limitations
with corresponding battery charging and discharging paradigms. Our
analytical assessments, rooted in the arithmetic examples, elucidate that
the delineated strategy yields tangible reductions in daily household
electricity consumption expenditures.

Furthermore, judicious allocation strategies for distributed
energy sources within the household microgrid not only fortify
grid-side operational reliability but also optimize energy utilization
metrics. This approach synergistically augments the quality and
efficiency of household electricity consumption profiles.

While our research framework unveils promising outcomes, it is
imperative to acknowledge its current limitations, notably the
limited spectrum of integrated distributed energy models and
nascent explorations into home load forecasting. Future research
trajectories could encompass the integration of diversified
distributed energy systems, such as wind power generation.
Concurrently, an expanded research ambit focusing on refining
home load forecasting methodologies would augment the model’s
predictive robustness and real-world applicability.
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