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Introduction: The declaration of the end of the Public Health Emergency for 
COVID-19 on May 11th, 2023, has shifted the global focus led by WHO and 
CDC towards monitoring the evolution of SARS-CoV-2. Augmenting these 
international endeavors with local initiatives becomes crucial to not only track 
the emergence of new variants but also to understand their spread. We present 
a cost-effective digital PCR-based pooled sample testing methodology tailored 
for early variant surveillance.

Methods: Using 1200 retrospective SARS-CoV-2 positive samples,  
either negative or positive for Delta or Omicron, we assessed the  
sensitivity and specificity of our detection strategy employing commercial 
TaqMan variant probes in a 1:9 ratio of variant-positive to variant-negative 
samples.

Results: The study achieved 100% sensitivity and 99% specificity in 10-sample 
pools, with an Area Under the Curve (AUC) exceeding 0.998 in ROC curves, 
using distinct commercial TaqMan variant probes.

Discussion: The employment of two separate TaqMan probes for both 
Delta and Omicron establishes dual validation routes, emphasizing the 
method’s robustness. Although we used known samples to model realistic 
emergence scenarios of the Delta and Omicron variants, our main objective 
is to demonstrate the versatility of this strategy to identify future variant 
appearances. The utilization of two divergent variants and distinct probes 
for each confirms the method’s independence from specific variants and 
probes. This flexibility ensures it can be tailored to recognize any subsequent 
variant emergence, given the availability of its sequence and a specific 
probe. Consequently, our approach stands as a robust tool for tracking and 
managing any new variant outbreak, reinforcing our global readiness against 
possible future SARS-CoV-2 waves.
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Introduction

The dynamic nature of COVID-19 pandemic is characterized by 
the emergence and succession of severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) variants, categorized as variants of 
concern (VOCs), variants of interest (VOIs), and, more recently, 
variants being monitored (VBM) (1–5).

As of this writing, the World Health Organization (WHO) 
recognizes Omicron (B.1.1.529 and descendant lineages) as the only 
VOC, while the Alpha (B1.1.7), Beta (B.1.351), Gamma (P1), and 
Delta (B.1.617.2) are considered VBM (1). The declaration of the end 
of the Public Health Emergency for COVID-19 on May 11th, 2023, 
has shifted the global focus led by WHO and CDC towards monitoring 
the evolution of SARS-CoV-2.

Traditional methods for tracking variants of SARS-CoV-2, such as 
Next-Generation Sequencing (NGS), provide definitive identification 
of mutations. NGS would be the method of choice when one seeks to 
monitor the emergence of new variants with unknown sequences. 
However, in the event of a wave of a new VOC, the timeliness of NGS 
falls short of the immediate demands for treatment decisions and for 
the surveillance required in the face of a quickly spreading virus (6, 7). 
Furthermore, the cost and infrastructure required for NGS are 
substantial, limiting its reach to countries with the necessary resources. 
In this context, more accessible and rapid methods would be needed. 
One such alternative is RT-PCR genotyping panels, which have enabled 
the quick identification of circulating SARS-CoV-2 variants (8, 9). 
However, these strategies primarily rely on individual testing, thereby 
escalating the time, labor, and costs involved.

Droplet digital PCR (ddPCR), an increasingly popular method 
for nucleic acid detection and quantification, offers an alternative 
approach (10–12). This technique compartmentalizes DNA 
molecules into thousands of droplets, amplifying them 
simultaneously, leading to several advantages, including decreased 
inhibitor concentration, increased relative sample concentration, 
and improved accuracy. The benefits of ddPCR have led to its 
widespread adoption in clinical research for the diagnosis of various 
diseases (13–16). Within our ddPCR process, two TaqMan probes 
with different fluorophores are utilized for amplification. These 
probes only differ in the sequence corresponding to the mutation 
of the variant under study. The probe with the HEX-fluorophore 
typically hybridizes specifically to the wild-type (WT) sequence, 
while the probe with the FAM fluorophore is specific for the 
sequence carrying the point mutation of interest. Our current 
digital PCR technology, featuring two channels of detection, 
supports the use of multiple probes, as evidenced in several studies 
(17, 18). Effective multiplexing is achieved by employing the same 
fluorophore for various probes, with distinct signal differentiation 
accomplished by adjusting the concentration of each probe. This 
allows for the separation of signal clusters in a two-dimensional 
plot, enhancing the versatility of digital PCR. Our system is 

designed with primers and probes that amplify a specific fragment 
size, typically between 60 to 100 base pairs. Thus, the size of the 
target marker does not affect the intensity of fluorescence in our 
assays. Rather, the fluorescence intensity within a positive droplet 
is predominantly influenced by the concentration of primers and 
probes used in the reaction. A higher concentration of these 
components generally results in stronger fluorescence signals, 
which is a crucial aspect for multiplexing applications. Therefore, 
by varying the concentrations of different probes, we can effectively 
multiplex without compromising the accuracy and efficiency of 
the assay.

In keeping with advancements in the field, newer versions of 
ddPCR technology now allow up to six channels to be  read, 
significantly enhancing the analytical capabilities of ddPCR. This 
advancement enables the quantification of up to 12 targets in a single 
well, representing a substantial increase in throughput and efficiency 
for complex analyses, further broadening its application in research 
and diagnostics.

Following amplification, the fluorescence of each droplet is read, 
and the concentrations of mutant and WT molecules are determined 
using a Poisson distribution (19).

The utilization of pooling assays in diagnostic PCR offers 
significant advantages, including reduced costs, increased testing 
capacity, and shorter turnaround times, as multiple samples can 
be simultaneously analyzed in a single assay, providing an efficient and 
cost-effective approach to detect and monitor pathogens in diagnostics 
assays (20–22).

In this paper, we present a systematic variant detection approach 
that we evaluated on a total of 1,200 retrospective samples collected 
between August 2021 and May 2022 using commercially TaqMan 
variant probes. We analyzed the Delta and Omicron variants in pools 
of 10 SARS-CoV-2 positive samples, achieving a sensitivity of 100% 
and a specificity of 99% compared to individual samples.

During the initial phase of the Delta variant’s emergence, 
we evaluated our platform using a double-entry chart combinatorial 
pool-testing strategy on 41 SARS-CoV-2 positive samples. This 
approach efficiently reduced the number of samples needing ddPCR 
testing from 41 to 13. Upon identifying positive intersections of 
rows and columns, we performed individual RT-PCR tests on the 
intersecting samples and were able to detect all three that carried 
the Delta variant. This led to notable savings in both reagents 
and time.

While our study focused on known, retrospective samples and 
targeted SARS-CoV-2 variants that may no longer be relevant for current 
testing, this was a necessary step to fine-tune the method. The true intent 
behind this work is to ensure that, in the future, this methodology can 
be applied to monitor the circulation of any newly emerging variant. The 
ddPCR pooling strategy is especially effective for detecting these SARS-
CoV-2 variants when they first begin to circulate and their incidence is 
very low, allowing for pooled testing. In this landscape, both NGS and 
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ddPCR techniques can complement each other. While NGS stands out in 
the identification of new mutations, ddPCR excels in tracking their 
distribution, making it an invaluable tool for rapid response to any rapidly 
evolving pathogens with pandemic potential.

Materials and methods

Sample collection

Nasopharyngeal samples were collected between August 2021 and 
May 2022, mixed with 2 mL saline solution and stored at 4°C until 
extraction. In Biosafety Level 2 containment, the virus was inactivated 
and then extracted automatically using the Applied Biosystems™ 
MagMAX™ kit and the Thermo Scientific™ KingFisher™ 
purification system.

Individual RT-qPCR test

RT-qPCR was performed in the clinical laboratory to detect the 
presence of SARS-CoV-2 RNA with the PerkinElmer SARS-CoV-2 
RT-qPCR Reagent kit®, following manufacturer instructions. 
We received de-identified positive samples with a code. SARS-CoV-2 
positive samples were genotyped by RT-PCR to detect the variants of 
concern (Delta and Omicron). For that, probes P681H.CCT.CAT, 
L452R.CTG.CGG, Q954H.CAA.CAT and P681R.CCT.CGT 
(ThermoFisher Scientific®) and CoV_B1429_L452R (Biorad®) were 
used. At the time of assay, the spike protein mutation P681R was used 
to identify and distinguish the Delta variant and L452R was specific for 
Delta and Epsilon. On the other hand, Q954H was specific for Omicron 
while P681H was specific for Omicron and Alpha variants.

Pooling preparation

To confirm that the samples employed for pool creation were 
devoid of the variants under study, we utilized samples collected prior 
to the emergence of these variants. We  designated these samples, 
which tested positive for SARS-CoV-2 but negative for the specific 
variant in study, as “WT-SARS-CoV-2 samples.” The SARS-CoV-2 
sample carrying the mutation in study was designated VARIANT-
SARS-CoV-2 (Va-SARS-CoV-2) sample. For the construction of 
sample pools, we combined one Va-SARS-CoV-2 sample with nine 
WT-SARS-CoV-2 samples.

Primer/probe thermal gradient 
optimization

Optimus pool size and dilution were used as a template to assess 
the optimal annealing temperature of the individual primer/probes. 
The standard ddPCR cycling program was modified by replacing the 
annealing temperature step with a thermal gradient from 55°C to 
60°C for 1 min extension time. These experiments were performed 
with P681H and Q954H from Thermo Fisher Scientific® and L452R 
from Thermo Fisher Scientific® and Biorad®.

Pooled ddPCR test

One-Step RT-ddPCR Advanced Kit for Probes (BioRad) was 
used for RT-ddPCR according to the manufacturer’s 
recommendations. 5,5 μL of pooled samples were added to 16,5 ul 
of master mix with variants/WT primers and probes according to 
the manufacturer’s recommendations. VOCs probes (P681H, 
L452R, Q954H, and P681R) were labeled with carboxyfluorescein 
(FAM), WT probes were labeled with HEX fluorophore. RT-ddPCR 
reactions were set up in 96-well ddPCR plates. Plates were covered 
with a pierceable foil heat seal, sealed using a PX1 PCR Plate Sealer 
(BioRad), mixed by vortexing, and centrifuged before droplet 
generation. Droplet generation was done in the QX200 AUTO DG 
(BioRad), which dispensed droplets into a new 96-well plate. Then, 
plates were heat-sealed with a pierceable foil and thermocycled on 
a C1000 touch thermal cycler (BioRad) as follows: 50°C for 50 min; 
95°C for 10 min; 5 cycles of 94°C for 15 s and 55°C for 50s, 35 cycles 
of 94°C for 10 s and 55°C for 45 s, 98°C for 10 min, followed by a 
25 min hold at 4°C for droplet stabilization. Droplets were then read 
on a QX200 Droplet Reader (BioRad) set up to read FAM and HEX 
channels and analyzed using the QuantaSoft™ Analysis Pro 1.0.596 
software. The software performed the automated droplet count for 
each case, which was then manually reviewed to determine whether 
positive droplets fell outside gating parameters. Besides the cut-off 
determined and according to manufacturer instructions, a 
minimum number of accepted droplets is required to ensure 
optimal detection in the analysis: positive assays must have at least 
6,000 accepted droplets, negative ones must have 10,000 or 
more (23).

Statistical analysis

The overall performance of the new technique was evaluated by 
calculating the area under the Receiver Operator Characteristics 
(ROC) curve and its 95% confidence interval using the method 
described by Hanley and McNeil (24). The best cut-off point was 
selected using the Youden Index (25), with a priority for the test to 
have a 100% sensitivity. The estimates of sensitivity and specificity 
were determined using a 95% confidence interval for previously 
established cut-off values.

Data were processed using R. Among other packages, pROC and 
OptimalCutpoints were utilized.

Analysis of the ddPCR data was performed with QuantaSoft 
analysis software v.1.7.4.0917 (Bio-Rad) to calculate the concentration 
of the targets.

Ethical approval

The study protocol was approved on December 10th, 2020 by the 
Bioethics Committee of Universidad Nacional de Rosario, Facultad de 
Ciencias Médicas (resolution: 3733/2022). Signed informed consent 
was not necessary as de-identified samples of SARS-CoV-2 tests by 
HOSPITAL PROVINCIAL DE ROSARIO were used. This study was 
conducted in accordance with the principles of the 1964 Declaration 
of Helsinki.

https://doi.org/10.3389/fpubh.2023.1340420
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Pacini et al. 10.3389/fpubh.2023.1340420

Frontiers in Public Health 04 frontiersin.org

Results

Assay optimization: pool size and thermal 
gradient

While our previous work demonstrated the ability to detect a 
SARS-CoV-2 positive sample within a 34-sample pool (26), identifying 
specific Va-SARS-CoV-2 sequences among SARS-CoV-2 positive 
samples proves to be more complex. This complexity arises because, in 
the former case, we were seeking a specific sequence within a vast array 
of DNA without similar sequences. In contrast, now we face the added 
challenge of differentiating between the target sequence and the wild-
type sequence, which differ by only a single nucleotide.

In our initial tests, we purposefully mixed one Delta sample 
(with a CT value of 27) with nine WT-SARS-CoV-2 samples. 
We  intentionally chose a sample with a high CT value, which 
holds clinical relevance, to challenge the system’s capability in 
detecting variants at a low concentration (27). Assay conditions 
were then modified for optimization. As depicted in Figures 1A–D 
the dilution of the pool with water (1/2, 1/4, and 1/30) and the 
reduction of the annealing temperature expanded the separation 
between the WT and mutant droplet clouds (Figures 2A,B). This 
increase in the separation of the clouds in a graph was already 
described by the manufacturer (28). The optimal condition was 
found to be  a 1/30 pool dilution in water combined with an 
annealing temperature of 55°C.

Specificity and sensitivity assessment

Recognizing the competitive amplification environment where 
the mutant sequence is outnumbered by the predominance of WT 
sequence, it was crucial to establish conditions enhancing the method’s 
specificity. We assessed the specificity of our method in accordance 
with the guidelines of the European Pharmacopoeia (29). We obtained 

1,000 WT SARS-CoV-2 samples that predate the Delta variants’ 
emergence. These samples were divided into 100 pools for analysis, 
and each pool was examined by ddPCR with the 4 probes named in 
Table 1. Each probe had to be run independently to ascertain their 
distinct cutoff points. The cut-off points were the maximum number 
of positive drops tolerated in a negative sample.

Evaluating the sensitivity of our platform presented a unique 
challenge due to the need to detect a specific variant sequence 
amidst a majority of WT-SARS-CoV-2 samples. To accurately 
measure this sensitivity, we  designed our tests according to the 
guidelines provided by the European Pharmacopoeia (27). Our 
sensitivity analysis was initiated with a Delta SARS-CoV-2 sample 
(CT = 27) combined with nine WT SARS-CoV-2 samples (with CT 
values ranging from 14 to 20). This high-CT Delta sample was 
purposefully chosen to test the system’s capacity to detect a 
low-concentration variant amid a higher-concentration of WT 
SARS-CoV-2 samples. To ensure the robustness of our findings, 
each measurement was repeated six times across four independent 
experiments, resulting in a total of 24 repetitions for each probe. 
This process was conducted separately for each of the two Delta 
variant-specific probes. A similar study design was applied for the 
two probes specific to the Omicron variant. Table 1 presents the 
results. The sensitivity at the best cut-off value was 100% for all 
probes, while the specificity was 100% for the Q954H and L452R 
probes, and 99% for the P681R and P681H probes.

The Receiver Operating Characteristic (ROC) curves were used 
to analyze the specificity and sensitivity of the four different probes 
(Figures 3A–D). Table 1 shows that the areas under the curve (AUC) 
were 1 for the Q954H and L452R probes, and above 0.998 for the 
P681R and P681H probes.

In regards to the P681R and P681H probes, we prioritized having 
100% sensitivity over specificity as we  did not want to miss any 
positive sample. Conversely, if a pool tested false positive, this error 
could be  eliminated by de-pooling and individually testing each 
sample via RT-PCR.

FIGURE 1

Assay optimization: influence of sample dilution on assay performance. A Delta sample (CT  =  27) was combined with nine WT-SARS-CoV-2 samples 
(CT values ranging from 14 to 20). The combined pool was then analyzed by ddPCR with the L452R probe (Catalogue # CVAAAAD). We examined the 
distribution of droplet populations across various dilution conditions with water: (A) undiluted, (B) 1/2 dilution, (C) 1/4 dilution, and (D) 1/30 dilution. 
The diagrams illustrate the variation in droplet distribution under each dilution condition.
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Clinical case study

We had the opportunity to evaluate our platform during the 
emergence of the Delta variant wave from September 17th to 22nd, 
2021. At that time, the incidence of Delta cases in our country was still 
quite low, representing about less than 2% of total cases (30). 
We selected 41 leftover SARS-CoV-2 positive samples from that week 
and applied them to a double-entry chart combinatorial pool-testing 
strategy, also known as matrix or grid testing (20). This approach 
entails testing each sample twice in a grid format, which facilitates the 
cross-matching of results to accurately identify positive samples. The 
methodology is visually represented in Table 2. As the incidence was 
2%, pools were assembled with either six or seven samples each.

Table  2 shows that pools B, E, 5, 6, and 7 returned positive 
results for the Delta variant (light gray). The cells located at the 
intersection of these columns and rows, indicated in dark gray, were 
designated as “putative positive samples.” We  proceeded to 
“deconstruct” these five pools and individually re-tested the six dark 
gray samples using RT-PCR. This process resulted in the 
confirmation of samples 19–509, 19–510, and 22–626 as Delta 
variant positives.

It is important to highlight that this approach effectively reduced 
the number of samples requiring ddPCR testing from 41 down to 13 
(plus an additional 6 samples individually tested by RT-PCR). 
Furthermore, this method ensured each sample was tested twice: once 
in column pools and once in row pools.

FIGURE 2

Assay optimization: impact of thermal gradient on annealing temperature. A Delta sample (CT  =  24) was combined with nine WT-SARS-CoV-2 samples 
(CT values ranging from 14 to 20). This pooled sample was then analyzed by ddPCR with the L452R probe (CoV_B1429_L452R Biorad®). Assays were 
conducted at three different annealing temperatures: 55°C, 58°C, and 60°C. (A) A 2-D plot displaying the distribution of the droplet populations at 
each of the three annealing temperatures. The smooth line represents 60°C, the dashed line represents 58°C, and the purple dotted line represents 
55°C. (B) 1-D plots of the ddPCR reactions at different temperatures, with blue representing positive droplets for the variant, green for the WT, and gray 
for negative droplets.

TABLE 1 Details of sensitivity, specificity, and area under the curve (AUC) for all four probes used for SARS-CoV-2 variant detection.

Variant Amino acid change Cut off number AUC Specificity n =  100 Sensitivity n =  24

Omicron P681H 4,6 0.999 99% 100%

Delta P681R 2,8 0.998 99% 100%

Delta L452R 2,75 1 100% 100%

Omicron Q954H 7,45 1 100% 100%
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We employed this technology briefly. Within just one week, the 
prevalence of the delta variant in our country jumped from 2% to over 
10%. Given this rapid increase and the subsequent high prevalence, 
pooling samples became impractical, as the majority were expected to 
test positive for the variant (30).

Conclusion

Despite the declaration of the end of the Public Health Emergency 
for COVID-19 on May 11th, 2023, national efforts to monitor the 
emergence and spread of new variants continue. While these strategies 
may vary from country to country, they generally involve genomic 
surveillance of a percentage of patients, travelers, and wastewater 
samples (1).

Although next-generation sequencing remains the primary 
method for detecting and tracing new SARS-CoV-2 variants, there are 
scenarios where its inherent challenges – such as cost, extended 
turnaround times, and the need for specialized personnel – could 
benefit from complementary methodologies (6, 7). Techniques like 
Sanger sequencing and RT-PCR genotyping using single-nucleotide 

polymorphism (SNP) can serve as supplementary tools, providing 
faster and more cost-effective solutions in certain contexts (8, 31, 32). 
Digital PCR is a sophistication of the traditional RT-PCR that has 
higher sensitivity to detect a low copy number mutation (33). 
Additionally, pooling samples with ddPCR offers the significant benefit 
of reducing reagent costs. The extent of these savings is influenced by 
several factors, including the positivity rate, which in turn guides the 
optimal group size, as well as the inherent cost of ddPCR testing. When 
comparing the costs, if ddPCR is approximately twice as expensive as 
RT-PCR, pooling 1,000 samples in groups of 10 with a positivity rate 
of 2% can result in reagent cost reductions of at least 50%.

Our study presents a robust and flexible platform for the detection 
of specific SARS-CoV-2 variants amidst a backdrop of 10 
WT-SARS-CoV-2 samples. We  have successfully adapted and 
optimized our earlier SARS-CoV-2 detection methodology (26) 
leveraging a ddPCR pooling strategy, to identify two different variants, 
Delta and Omicron.

A pivotal strength of our platform lies in its inherent adaptability. 
It is designed to be modifiable with minimal alterations needed to 
detect future emerging variants. Through the strategic selection of two 
distinct TaqMan probes for each variant, we  established two 

FIGURE 3

Sensitivity and specificity assessment. Receiver operating characteristic (ROC) curves are illustrated for the following probes: (A) L452R, (B) Q954H, 
(C) P681R, and (D) P681H. These curves were derived from the analysis of pooled samples consisting of one Va-SARS-CoV-2 sample (CT  =  27) and nine 
WT-SARS-CoV-2 samples (CT values ranging from 14 to 25).

https://doi.org/10.3389/fpubh.2023.1340420
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Pacini et al. 10.3389/fpubh.2023.1340420

Frontiers in Public Health 07 frontiersin.org

independent methods for each variant detection, enhancing the 
reliability and versatility of our platform.

Our platform’s sensitivity and specificity were carefully evaluated 
following the European Pharmacopoeia. We  demonstrated 100% 
sensitivity at the best cut-off value for all probes, with specificity 
ranging from 99% to 100% across the four probes used. The real-world 
efficacy of our platform was validated during the emergence of the 
Delta variant, accurately identifying Delta-positive samples within the 
tested pools.

In conclusion, we have developed a robust, sensitive, and flexible 
platform capable of accurately identifying specific SARS-CoV-2 
variants within predominantly WT-SARS-CoV-2 sample pools. 
Moreover, the underlying principles and techniques of this platform 
hold significant potential for broader applications. It is not only 
adaptable for detecting variants from other viruses beyond SARS-
CoV-2 but also versatile enough to work effectively across various 
sample matrices. Digital PCR’s ability to detect different types of 
viruses, including respiratory pathogens and others like Ebola and 
Dengue, in blood samples, has been validated (34, 35). For instance, 
our work on the detection of SARS-CoV-2 in saliva (26), and the 
effectiveness of digital PCR in other matrices such as urine and feces 
for SARS-CoV-2 (36) and bacteria in blood (34), underlines the 
flexibility of this technology in a variety of diagnostic scenarios.

The adaptability and precision of this platform may thus contribute 
profoundly not only to the current fight against COVID-19, but also to 
future endeavors in viral epidemiology and public health. By simply 
modifying the targeted genetic sequences, our methodology could serve 
as a versatile foundation for rapid response to new viral threats, enhancing 
our capabilities in global health surveillance and response.
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POOL 4 17,669 20,567 18,590 20,599 21,672 22,630

POOL 5 17,670 19,509 18,591 20,600 21,673 22,631

POOL 6 17,671 19,510 18,593 20,601 22,657 22,616

POOL 7 17,672 19,511 18,594 21,674 22,626

Samples that were used for the preparation of 13 pools are shown in this table (numbers in the cells are internal codes of identification of patients used in the hospital). Pools 1–7 were prepared 
with samples described under each line, and pools A-F were prepared with samples described following each column. Considering this distribution and preparation of pools, each sample was 
tested twice, once in pool 1–7 and once in pool A-F. In dark gray we show the “putative positive samples” to be retested by RT-qPCR after finding that pools 5,6,7, B and E were positives by 
ddPCR.
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