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Efficient 3D real-time adaptive
AUV sampling of a river
plume front
Martin Outzen Berild1*, Yaolin Ge1, Jo Eidsvik1,
Geir-Arne Fuglstad1 and Ingrid Ellingsen2

1Department of Mathematical Sciences, Norwegian University of Science and Technology,
Trondheim, Norway, 2Fisheries and New Biomarine Industry, SINTEF Ocean, Trondheim, Norway
The coastal environment faces multiple challenges due to climate change and

human activities. Sustainable marine resource management necessitates

knowledge, and development of efficient ocean sampling approaches is

increasingly important for understanding the ocean processes. Currents,

winds, and freshwater runoff make ocean variables such as salinity very

heterogeneous, and standard statistical models can be unreasonable for

describing such complex environments. We employ a class of Gaussian

Markov random fields that learns complex spatial dependencies and

variability from numerical ocean model data. The suggested model further

benefits from fast computations using sparse matrices, and this facilitates

real-time model updating and adaptive sampling routines on an autonomous

underwater vehicle. To justify our approach, we compare its performance in a

simulation experiment with a similar approach using a more standard

statistical model. We show that our suggested modeling framework

outperforms the current state of the art for modeling such spatial fields.

Then, the approach is tested in a field experiment using two autonomous

underwater vehicles for characterizing the three-dimensional fresh-/

saltwater front in the sea outside Trondheim, Norway. One vehicle is

running an adaptive path planning algorithm while the other runs a

preprogrammed path. The objective of adaptive sampling is to reduce the

variance of the excursion set to classify freshwater and more saline fjord water

masses. Results show that the adaptive strategy conducts effective sampling

of the frontal region of the river plume.
KEYWORDS

adaptive sampling, ocean modeling, autonomous underwater vehicle, Gaussian random
field, stochastic partial differential equations, surrogate model
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1 Introduction

Human activities and pollution are heavily impacting the

world’s oceans (Halpern et al., 2008). Anthropogenic climate

change and local intrusion from industries can lead to

fundamentally altered ocean ecosystems, challenging species

distributions, loss in biodiversity, incidence of disease, and more

(Hoegh-Guldberg and Bruno, 2010; Doney et al., 2012). The

changes in ecosystem structure further influence important

services such as carbon sequestration, oxygen production, and

nutrient food chains. In order to achieve a more sustainable

utilization of marine resources and services, we need to enhance

our insight. Developing smart technologies for efficient monitoring

of the ocean can provide information that enables us to identify

adverse effects and guide development of countermeasures, and it

can hence be vital in saving or maintaining local ecosystems.

Commonly used ocean observation technologies are buoys,

drifters, satellites, unmanned surface vehicles, Argo floats,

underwater gliders, cabled seafloor observatories, autonomous

underwater vehicles (AUVs), hadal landers, or some coupled

system of these technologies (see, e.g., Lin and Yang (2020) for an

overview). Ocean monitoring systems are advancing from simple

and static single sensors systems to dynamic and multisensor

systems that can cover a large spectrum of temporal and spatial

scales. With the drive in artificial intelligence and robotic systems,

there is also a development toward intelligent sampling systems

where observations of various kinds are gathered and processed

where and when it is considered valuable.

With the improved affordability and functionality of AUVs, the

research literature has seen many advances lately; Zhang et al.

(2012; 2013) used deterministic algorithms to map coastal

temperature upwellings; Das et al. (2015) demonstrated AUV

mission planning for informative plankton sampling; Fossum
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et al. (2018) monitored large temperature gradients by adaptively

choosing surveys paths that substantially reduce the uncertainty in

the statistical temperature model; Fossum et al. (2019) conducted a

3D AUV survey for chlorophyll-a mapping; Mo-Bjørkelund et al.

(2020) employed hexagonal grids for equilateral survey paths to

adaptively explore large temperature gradients; Foss et al. (2022)

used a 2D spatiotemporal model onboard an AUV to supervise

mining waste seafill; Fonseca et al. (2023) compared satellite

imagery and adaptive AUV sampling results for predicting algal

blooms. These examples from recent research activity have

advanced the field of ocean monitoring with AUVs by going from

planar (sea-surface) fields to volumetric fields, in the combination

of various data sources, or by presenting a novel algorithm for

adaptive exploration.

Considering the vastness of our ocean, it is extremely difficult to

obtain sufficient data to cover the full range of scale and resolution

desired. Instead, one must rely on a combination of different data

sources and sophisticated modeling tools. To fill in the gaps

effectively, one can further proactively plan targeted and high-

precision sampling campaigns that will improve predictions and

support decision-making. At its core, these tasks relate to statistical

methods that can combine various data sources for prediction and

for evaluating data sampling designs to optimize further data-

gathering efforts.

In this work, we combine the fields of oceanography, statistics, and

robotics to effectively monitor freshwater frontal regions of river outlets

in three dimensions (north, east, depth) using AUVs. Specifically, we

conduct sampling in the Nidelva River running into the fjord outside

Trondheim, Norway (see Figure 1). The freshwater coming from the

river is mixing slowly with the more saline fjord waters, which can

cause a sharp gradient between the different water masses.

At our availability, we have output from a complex numerical

ocean model Slagstad and McClimans (2005), henceforth referred
FIGURE 1

Map of the operational area in the fjord outside Trondheim, Norway. The location of Trondheim is indicated by the red circle on the map of
Scandinavia in the top left corner. We have 3D numerical ocean model data at a high lateral and depth resolution in these coastal waters. The blue
square just north of the Nidelva River outlet indicates the boundaries of the autonomous underwater vehicle mission in a map view. The operation
domain extends from the sea surface to 5-m depth.
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to as SINMOD. Along with many other physical oceanography

variables, SINMOD outputs salinity at every grid node in a dense

spatial (3D) and temporal grid. Even though this model carries

much physical insight, the salinity output can be systematically

biased, and we will calibrate and update the salinity by deploying an

AUV. In this way, the SINMOD data are used to form a prior model

for the salinity trends and variations at the time of the AUV

deployment. We fit a Gaussian process prior as a surrogate model

to the numerical ocean model SINMOD. This surrogate model has

the advantage that it can be updated onboard the AUV, and it can

hence assimilate in-situ data efficiently. Moreover, this surrogate

model enables fast evaluation of various AUV sampling designs in

real time whereas it is maneuvering in the water. Fossum et al.

(2021) used similar methods to fit a surrogate model from

SINMOD, but only in 2D space. Ge et al. (2023) used a 3D

Gaussian surrogate prior model, but only for a small-size grid

and assuming a much simpler spatial dependency structure.

This paper brings together many elements, and the novelty lies

in a more realistic description of spatial correlations with a complex

model learned from SINMOD data (Berild and Fuglstad, 2023). The

approach is made computationally feasible through modern

techniques using a 3D Gaussian random fields with a Markov

property, and this enables adaptive AUV sampling based on the

new surrogate model in a large-size 3D waypoint graph used during

AUV deployments. Additionally, we
Fron
• fit the more realistic 3D statistical model to 3D numerical

ocean data, and develop a fast algorithm for updating this

model onboard an AUV during field deployment,

• develop methods for adaptive path-planning in the context

of 3D space with the more realistic model onboard

the AUV,

• show through a simulation study, based on SINMOD, that

the more realistic statistical model allows an AUV to sample

and map the ocean domain better than with a standard

statistical model,

• run two AUVs simultaneously in the ocean and show that

the combination of an intelligent adaptive survey design

and the more realistic model outperforms a standard pre-

scripted AUV sampling plan.
In Section 2, we describe the numerical ocean model and its

statistical surrogate model. In Section 3, we present the data

assimilation part and our approach for adaptive AUV sampling

designs. In Section 4, we study properties of the suggested methods

in a simulation study. In Section 5, we show results of deployments

with one adaptive AUV mission and one preprogrammed mission.

In Section 6, we conclude and point to future work.
2 Prior model for salinity

Consider a three-dimensional ocean domain D ⊆  R3, where x

(s) represents the salinity field at a specific location s =  (latitude,

longitude, depth)T     ∈  D. The salinity in this ocean domain

exhibits both spatial and temporal variations. However, we focus
tiers in Marine Science 03
on short-term AUV deployments and simplify our analysis by

excluding temporal effects.
2.1 Numerical ocean model

An approximation of the salinity field is achieved using the

complex numerical ocean model SINMOD, developed by SINTEF

ocean (Slagstad and McClimans, 2005). SINMOD is a three-

dimensional model based on the primitive equations, solved using

finite difference methods on a regular grid with horizontal cell sizes

of 20 km × 20 km, which are nested in several steps down to 32m ×

32m for the bay outside Trondheim. The model employs varying

vertical resolutions, allowing for higher resolution near the dynamic

surface and more uniform resolution in deeper waters. Atmospheric

forces (obtained from forecasts available at https://www.met.no),

freshwater outflows (data from HBV model (Beldring et al., 2003)

provided by the Norwegian Water Resources and Energy

Directorate (NVE)), and tides (https://www.tpxo.net/) drive the

model. SINMOD offers numerical simulations of multiple ocean

variables, including temperature and currents as well as salinity. It is

a multipurpose tool that has been used for instance in the prediction

of Arctic ocean primary production by leveraging physical–

biological coupling (Slagstad et al., 2015; Vernet et al., 2021), in

quantifying the effects of the aquaculture structures for large-scale

cages by specifying and incorporating drag parameters in SINMOD

(Broch et al., 2020), and coupled with the particle dispersion of

waste from fish farming (Broch et al., 2017), oil production

(Nepstad et al., 2022), or mine tailings (Berget et al., 2018;

Nepstad et al., 2020; Berget et al., 2023). For a more

comprehensive explanation of the SINMOD methodology,

readers are directed to Slagstad and McClimans (2005).

In the current paper, we are only using the salinity outputs from

SINMOD. Figure 2 shows an example of SINMOD salinity data and

an excursion set (salinity ≤25.4 g/kg) separating water masses into

freshwater/saltwater in the fjord outside Trondheim. We notice that

the river plume has lower salinity than the surrounding brackish

water. There are very low salinity levels (around 5 g/kg–10 g/kg) in

the river outlet, whereas the salinity increases further out in the

fjord (around 31 g/kg). The temporal resolution of the SINMOD

numerical model used for these simulations is 10 min. Salinity is

measured in grams salinity per kilogram water (g/kg), which is

dimensionless and equal to ‰ and sometimes referred to as the

practical salinity unit (PSU).
2.2 Surrogate model with spatially
varying anisotropy

In-situ salinity observations made with an AUV are assumed to

be more accurate than the forecast provided by SINMOD. However,

an AUV measurement only characterizes the salinity at the specific

location where the measurement was taken, whereas a model like

SINMOD or similar is required to extrapolate variables in space and

time. For onboard computing, SINMOD is however too

computationally intensive, and it is challenging to assimilate AUV
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observations in real time with a full-fledged numerical ocean model.

Instead, a surrogate model can be trained from the numerical

model. It forms an approximate representation of the underlying

physical model and is highly applicable for different tasks that

require fast updating. Statistical models with spatial effects have

shown very suitable for such a task (Gramacy, 2020), and we

employ a particular statistical surrogate model for the numerical

ocean model salinity data here.

We use the spatial statistical model presented in Berild and

Fuglstad (2023), where the 3D salinity field is modeled as a

Gaussian Markov random field (GMRF) that allows sparse matrix

computations and realistic modeling via spatial variability in the

directional dependencies and the variance components. This model

is an extension of Lindgren et al. (2011) and Fuglstad et al. (2015).

Assuming that the 3D discretization of the domain D ⊆  R3

consists of n1×n2×n3 grid cells, the salinity field, x(s), is represented
by a vector of concatenated field values of size n = n1n2n3. In the

application, we have n1 = 50, n2 = 45, n3 = 6 with 32 × 32 m2 lateral

resolution and 1-m depth resolution. The vector x of salinity values

is modeled by a Gaussian distribution, i.e.,

x ∼ N n(m,S),        S = Q−1 : (1)

Here, the ∼ symbol means “distributed according to,” and N n

(m,S) refers to the n-variate Gaussian (or normal) distribution with

mean vector µ and covariance matrix S, where its inverse, namely,

the precision matrix, is denoted Q.

There is much flexibility in choosing the mean vector and

covariance matrix in Equation (1), and the Gaussian distribution

can hence form quite realistic surrogate models. The mean vector µ
of the salinity field captures the spatial trends of the field, which in

our case entails fresher water near the river gradually getting more

saline going out in the fjord. To form a realistic covariance

structure, the idea of Berild and Fuglstad (2023) is to form a

random process for u = x−µ via differential operators and

Gaussian noise forming a stochastic partial differential equation

(SPDE) as

(k 2(s) −∇ ·H(s)∇ )u(s) = W(s) : (2)
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Here, s is a location in the domain of interest D ⊆  R3 , u(s) is
the spatially varying deviation from the trend, and and W(s) is a

Gaussian white noise process (with zero mean and statistically

independent values), where as k (s)  =  k (s;  q)  >  0 and H

(s)  =  H(s;  q)  >  0 as differentiable are model components

controlled by parameters q that regulate the variability and

dependency within the process.

Equation (2) is solved locally for the zero-mean random field u

(s) using numerical integration and differentiation on a

discretization of the domain of interest D. The solution is u  ∼
 N n(0,  Q

−1), where the precision matrix Q  =  Q(q) inherits the

sparsity of the differential operators in Equation (2), and it

describes the Markov structure in the GMRF model. This

structure is very important for our purposes because it enables

fast matrix factorization and matrix-vector computations. Hence,

the GMRF formulation means that we can update the model

onboard the AUV. It is also used in the sampling design

evaluations. Without this sparsity, the Gaussian surrogate model

could not scale up the magnitude of the ocean mass in 3D (Berild

and Fuglstad, 2023).

A detailed description of the model is provided in the

Supplementary Material.
2.3 Parameter estimation for salinity field

In order to estimate the parameters and components of the

statistical GMRF model for salinity, we utilize numerical ocean

model data from SINMOD as the training dataset. These data are

denoted as y(si, tj), where si  ∈  D represents the location of cell i ∈
[1,…,n] at time tj for SINMOD realization j = 1,…,T. The surrogate

data model is then

y(si)  ∼  N (x(si),  s
2
S ),         i  =  1,   :   :   :  ,  n,  

where s 2
S is an unstructured noise variance of the

SINMOD dataset.

We estimate a location-dependent mean μ(si) of the GMRF

using the empirical average across all replicates tj as:
A B

FIGURE 2

Salinity simulation (A) and corresponding freshwater excursion (B) from the numerical ocean model SINMOD for 08/09/2022.
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m̂ (si) =
1
To

T

j=1
y(si, tj), ∀si ∈ D : (3)

We compute an estimate q̂ of the covariance parameters of the

GMRF by maximizing the likelihood function L(q), given residual

data from an autoregressive model fitted to the SINMOD data [see

Supplementary Material and (Berild and Fuglstad, 2023)]. In

Sections 4 and 5, the covariance parameters of the models are

estimated using a dataset from the SINMOD model, which spans

144 timesteps over the course of 1 day with a temporal resolution of

10 min. This dataset includes observations for all locations within

the spatial field at each timestep. Optimizing the likelihood of this

rather sophisticated covariance model is not straightforward, but it

gets less difficult with more data and this also improves the accuracy

of estimates. Berild and Fuglstad (2023) suggest that at least 10

timesteps of the whole field should be used to find reasonable

parameter values for such a flexible model.

Figure 3 shows the prior mean (Equation (3)), the prior variance

of the n-variate Gaussian distribution x, and the corresponding

spatial correlation of the marked location. The mean salinity clearly

increases going north in the fjord, away from the river outlet. The

salinity variance is larger near the river. For the correlation, we

notice non-circular contours indicative of anisotropy. Here, the

correlation appears to be stronger in the directions where salinity is

expected to be similar to that of the reference location.
3 Adaptive AUV sampling

We now delve into our approach for adaptive AUV exploration.

One part of this involves continuous updates of the GMRF

surrogate model through onboard data assimilation of the in-situ
Frontiers in Marine Science 05
AUV salinity data. Another part is the strategic planning of the next

AUV sampling locations.
3.1 Conditioning to AUV data

Assume that the AUV gathers in-situ data at m locations or

design points d  =  d1,   :   :   :  ,  dm, where dj  ∈  D. In practice,

these locations form an AUV design (a trajectory). Data y(dj), j  =
 1,   :   :   :  ,  m, are noisy measurements of the salinity x(dj) at the
location dj where they are made. We organize the data in a length-m

vector y, and we allocate these observations to the correct grid

locations by using a sizem �  n selection matrix A. This matrix has

a single 1 entry in each row, and otherwise only 0 entries. With this

structure, it selects the m indices in the length-n vector x of

discretized salinity field variables in Equation (1). The

measurement model is then

y  =  Ax  +  ϵ,  ϵ  ∼  Nm(0,  s
2
auvIm) :

Here, the variance s 2
auv of the independent additive noise terms

aggregates the AUV positioning error and measurement noise. This

variance parameter is specified from existing AUV data.

The conditional model for salinity x, given measurements y, is
Gaussian distributed with an updated precision matrix

QC = Q + ATA=s 2
auv, (4)

and conditional mean

µC =  µ  +  Q−1
C AT(y  −  Aµ) =s 2

auv : (5)

With the sparse precision matrices, the updating in Equations

(4, 5) can be computed very fast.
A B C

FIGURE 3

Prior expectation (A), the variance of the process model (B), and the spatial correlation of the location highlighted (C). The N-arrow is the
cardinal north.
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Given a series of observations collected with the AUV along a

straight line from the river plume and straight north, we calculate

the conditional precision matrix and mean using Equations (4) and

(5) of the model estimated in Section 2.3. Using the precision, we

calculate the inverse diagonal (the conditional variance of the field),

and from this the correlation about a location in space. We

demonstrate the effect of data conditioning using a visualization

of the conditional expectation, conditional variance, and

conditional correlation given a series of updates, which are shown

in Figures 4-6, respectively. Figure 4 indicates that the river water is

going further north than anticipated in the prior mean. In Figure 5,

we see that the variance is reduced where the AUV has visited, and

as a consequence, the correlation range shown in Figure 6 gets

lower. Dense data sampling tends to reduce the spatial correlation.
3.2 Excursion sets and plume
mapping criterion

One goal of the AUV sampling is to improve the

characterization of the plume front defined in our case as the

zone separating fresh river waters and more saline fjord waters.

Following Fossum et al. (2021) and Ge et al. (2023), we use the

uncertainty in the random set of excursions below a salinity

threshold ℓ to distinguish river and fjord water. The excursion set

is defined by

ES  =   s ∈ D :  x(s) < ‘f g :
The associated excursion probability (EP) and the Bernoulli

variance (BV) is

EP(s)  = P(x(s) < ‘),     BV(s)  =  EP(s)½1  −  EP(s)�         s ∈ D :
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The BV is near 0 at locations where the EP is near 0 or 1,

whereas it is at its maximum value 0.25 at locations, which have EP

equal to 0.5.

When AUV salinity data y are available, we get a conditional

GMRF and conditional EPs and BVs. Effective AUV sampling

designs get salinity data that can pull these EPs closer to 0 or 1,

and in doing so, one reduces the uncertainty of the river plume

front. Conditional on salinity data y = yd according to design d  ∈
 D. The conditional EPs and BVs are

P(x(s) <  ‘ yd),       P(x(s) <  ‘j jyd)½1  − P(x(s) <  ‘ yd)� :j
Design plans must be made before the data yd is revealed, and

we take the expectation over the data when calculating the most

effective design. Focusing on improved spatial mapping of the river

plume front, it is natural to integrate the objective criterion over all

locations in the domain. The expected integrated Bernoulli variance

(EIBV) of a design d is then defined by

EIBVd(m,Q) =
Z
D
EydfP(x(s) < ‘jyd)½1 − P(x(s) < ‘jyd)�gds : (6)

For the GMRF surrogate model specified by mean µ and

precision Q, the EIBV for a design d has a closed form involving

sums of bivariate cumulative distribution functions F2 for the

Gaussian distribution. In this expression, the design is here

involved via a one-entry structure of the selection matrix A = Ad.

The closed-form solution facilitates very fast computations of

multiple sampling designs. The complete derivations of the closed

forms are in the Supplementary Material. See also Fossum et al.

(2021) and Ge et al. (2023). In our approach with the sparse GMRF

model, we use Monte Carlo sampling from the conditional model to

approximate the variance reduction components that are required

in the EIBV (see Supplementary Material).
FIGURE 4

Conditional expectation given AUV measurements along a fixed transect path at a 0.5-m depth.
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3.3 Adaptive AUV sampling algorithm

The AUV cannot navigate to all possible design locations.

Rather, its continued path is constrained by the current location

and the possible maneuvers it can perform. We let P  ⊂  D denote

the possible designs the AUV can choose from, defined by

directions (straight, left, right, up, down) from the current AUV

location. The chosen design is the one that minimizes the EIBV in

Equation (6). This means that

d∗ =  argmaxd∈PEIBVd(µ,  Q) : (7)
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During the AUV operation, this kind of design choice is done at

many time points, and with an updated model that is conditional on

all the data gathered up to this point. In this way, we utilize the benefits

of robotic intelligence to navigate the uncertain ocean plume zone.

We outline a myopic adaptive sampling algorithm in the 3D

domain. This is a sequential selection of waypoints or grid nodes

where the AUV data are sampled and the model updated. The

myopic approach represents a heuristic optimization strategy for

the AUV operation that does not anticipate potential data or

navigation choices beyond the current time. It makes the optimal

choice based on the expected values at the current time alone.
FIGURE 6

Conditional correlation of the marked point given AUV measurements along a fixed transect path at a 0.5-m depth.
FIGURE 5

Conditional variance in the process model given AUV measurements along a fixed transect path at a 0.5-m depth.
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Figure 7A shows the idea of adaptive sampling in a sketch with a

cycle of tasks where one leads to the next. Here, the AUV senses the

salinity, updates its onboard model, and plans where to navigate to,

and then it continues on the next cycle.

Hence, at the planning stage, the computer onboard the AUV

solves Equation (7) to navigate in promising 3D directions

(Figure 7B). To compensate for the time it takes to do the

computation, and to make the system near real time,

asynchronous parallel computing is applied to compensate for the

excessive computing time onboard.

Algorithm 1 shows the main steps of this adaptive AUV

sampling approach. In this algorithm, we use t to indicate

subsequent stages of AUV sampling. At stage t, the updated mean

in the onboard surrogate model
Fron
Initialization: Prior model µC,0 = µ, QC,0 = Q. Set start

location d0. Set t = 1.

while True do

Plan:

Choose design that reduces EIBV the most

dt = arg min EIBVd(µC,t−1,QC,t−1)

d ∈ Pt

Form selection matrix At = A(dt).

Act/sense:

Move according to design dt collecting measurements yt

Model Update:

With the collected measurements, update the GMRF

QC,t =  QC,t−1  +  AT
tAt=s

2
auv

µC,t =  µC,t−1 +  Q−1
C,t  A

T
t(yt   −  AtµC,t−1)=s

2
auv

Set t = t + 1.

end while
Algorithm 1. Myopic EIBV minimizing sampling with a GMRF
surrogate model.
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is denoted µC,t and the updated precision is QC,t. The selection

matrix At = A(dt) is formed based on the most promising design dt
at each stage. This design dt is chosen among several possible

designs Pt   ⊂  D that vary depending on where the AUV is at the

current stage and the operational navigation opportunities it has

according to the grid. In our implementation, the AUV can

continue from its current location to go straight ahead, or turn

left, right, up, or down. It cannot return back to its previous grid

location (Figure 7B). There are natural exceptions at the

grid boundary.
4 Simulation study

In this section, we conduct a simulated experiment to evaluate

the performance of our approach for monitoring the three-

dimensional freshwater plume of the Nidelva River in

Trondheim, Norway. The operational area is outlined in Figure 1.

Specifically, we will compare the effectiveness of the suggested

complex GRF model and a more standard model. The complex

model is discretized with a resolution of 32m x 32m square cells in

the horizontal plane and the standard model with a hexagonal grid

with a lateral neighbor distance of 120 m. Both models have 1-m-

depth increments ranging from 0.5 m to 5.5 m, resulting in a total of

n = 50 × 45 × 6 spatial location for the complex model and 1,098 for

the standard model. This is in line with the capabilities of the AUVs’

onboard computer.

Initially, both models are estimated on the SINMOD data

within the operational area in order to form a prior field. The

standard model is specified using a standard variogram analysis,

resulting in a Matérn covariance with a lateral correlation range of

550 m, a vertical range of 2 m, a prior marginal variance of 1, and a

nugget effect of 0.4 (see Section 2.4 of Cressie (1993) for a

description of this spatial data analysis method). The parameters

of the complex model are estimated through the approach described

in Section 2.3, and detailed in the Supplementary Material and

Berild and Fuglstad (2023). Both models use the empirical average

across all timesteps (replicates) of the SINMOD data, Equation (3),

as its prior expectation.
A B

FIGURE 7

Illustration of the adaptive sampling mechanism. Visualization of the adaptive sampling design (A). The AUV evaluates the potential high-value
locations to determine the next visiting waypoint (B). Red colors represent more interesting next waypoints.
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In order to obtain performance statistics, we ran L = 100

simulated field experiments where the AUV is equipped with

either one of the models estimated above and tasked with

monitoring the salinity field according to Algorithm 1. The AUV

is in this simulation environment exploring a SINMOD dataset

from the 09/11/2022 with an assumed additional Gaussian noise

term with standard deviation 0.12. This noise represents positional

error and measurement error in a real experimental setting.

Moreover, the AUV is set to travel at 1 m/s and each simulated

field experiment is run for T = 25 sequential steps of Algorithm 1,

i.e., visiting 25 spatial locations, where the starting location is kept

the same for each run.

Within the lth simulated experiment and after visiting the tth

location, the following three metrics are calculated: integrated

Bernoulli variance (IBV), root mean squared error (RMSE), and

classification error (CE). Let xl be the ground truth (SINMOD

data) in the lth experiment. Then, we calculate the metrics as

IBVl,t =o
n

i=1
EPl,t(si)1 − EPl,t(si)�,

RMSEl,t =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
½xl(si) − mC,l,t(si)�2

s
,

CEl,t =
1
no

n

i=1
I(El(si) ≠ Ê l,t(si)),       El(si) = I(xl(si) ≤ ‘ Þ;

Ê l,t(si) = I(mC,l,t(si) ≤ ‘),

where I is the indicator function, t ∈ [0,T], where T = 25 indicates

the sequential step, and l  =  1,   :   :   :  ,  L with L = 100 replicate field

experiment. The summary statistics of these metrics from the L

replicated experiments are shown in Figure 8. The solid lines are the

average across all L replicates at time t for each metric, e.g.,

dIBVt =
1
Lo

L

l=1

IBVl,t ,

and similarly the error bars show the empirical standard

deviation at time t across all L replicates as
Frontiers in Marine Science 09
SD(IBVt) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L − 1o
L

l=1

(IBVl,t − dIBVt)
2 :

s

Each display has one of the metrics on the second axis and time

stages on the first axis. For the IBV and CE criteria, the percentage

reduction compared with the starting value is shown since the

models are constructed differently and therefore will also differ

prior to the mission, as can be seen in the middle RMSE display.

The IBV reduction (Figure 8A) indicates the ability of the AUV

to capture the river plume boundary. A lower IBV means that the

AUV is better at sampling the frontal salinity region separating river

and fjord water masses. In this spatial example, the IBV has a

tendency of going down, even though it could increase at some

stages (because data pull probabilities closer to 0.5). The complex

GMRF model clearly achieves lower IBV than the simpler model.

After some stages, the curve for the complex GMRF model declines

rapidly, indicating that the AUV is efficient at exploring the

boundary. This means that incorporating a more realistic

covariance structure helps the AUV choose the best designs and

it tends to move in the right direction.

The RMSE plot (Figure 8B) reflects the similarity between the

ground truth and the updated field. The ground truth is here the

same as what the AUV is sampling, i.e., the SINMOD dataset from

09/11/2022, but without the added noise term. A lower RMSE

means that the AUV is gathering data that helps in predicting the

salinity field. Again, the complex model is performing much better

than the simpler one. For CE (Figure 8C), a lower value means that

the updated model is good at classifying the excursion set associated

with the ground truth. The complex model has CE results that are

declining faster than the simpler model. The complex model

performs better than the standard model due to its versatile

capability and flexibility. However, we do realize that training

such models often requires expert knowledge and it can be a

laborious process to fine-tune the parameters for such a

complex model.

In all displays of Figure 8, we observe larger metric variability

for the complex GMRF model. The underlying reason for this is the

Monte Carlo variance in the EIBV calculation for the GMRF model

(see Section 3.2). With the relatively small sampling size, the Monte

Carlo error is still not negligible and, influenced by this estimate, the
A B C

FIGURE 8

Variation in integrated Bernoulli variance (A), root mean square error (B), and classification error (C) over the 100 replicate runs with the standard
model (blue) and the complex model (orange). The solid lines show the averages, and the vertical error bars show the empirical standard deviations
of the respective metrics.
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directional sampling decision made by the AUV exhibits more

small-scale variability than that of the standard model, which has a

closed-form variance expression. Over many replicates, the

variability in metrics then gets larger for the GMRF model,

especially for the IBV, which relates directly to the AUV

sampling decision criterion.
5 Results of Nidelva mission

The field experiment was executed in the Nidelva River plume

outside Trondheim, Norway, on the 08/09/2022. The duration of

this field deployment spanned 1.5 h. Figure 1 shows the

operational area.
5.1 Experimental setup

For this experiment, two AUVs are deployed. This is intended

to not only increase the amount of data collected but also enable us

to compare the performance of our embedded system under similar

conditions. One of the AUVs was programmed with the adaptive

sampling algorithm, whereas the other was running with a

preprogrammed path plan onboard.

LAUV (Light Autonomous Underwater Vehicle) Harald and

LAUV Roald (Figure 9) from the Applied Underwater Robotics

Laboratory at NTNU were employed for this mission. LAUV Roald

was programmed to carry out the adaptive experiment, and LAUV

Harald was programmed to conduct the predesigned plan. To

measure the salinity in the water, LAUVs Harald and Roald use

CTD sensors, or conductivity, temperature, and depth sensors.

Harald uses a SeaBird SBE 49 FastCAT and Roald an AML OEM

SV Xchange. Despite being from different manufacturers, the

specifications from the suppliers indicate that they should have

the same level of precision and accuracy. All the essential scripts

were integrated onboard on the backseat NVIDIA Jetson TX2 CPU.

For hardware and software in the loop testing and the actual
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deployment, we relied on the framework developed by Mo-

Bjørkelund et al. (2020). The onboard implementation of

Algorithm requires Robot Operating Systems (ROS) (Quigley,

2009) and a software bridge to the LAUV, running DUNE

(DUNE: Unified Navigation Environment Pinto et al. (2013))

embedded and communicating over the Inter Module

Communication (IMC) message protocol (LSTS, 2022).

The software bridge between ROS and IMC was adapted from

the Swedish Maritime Robotics Centers implementation of a ROS-

IMC bridge (Bhat et al., 2020) (https://github.com/smarc-project/

imc_ros_bridge) to include messages going from ROS to the vehicle.

In addition, a wrapper for the vehicle IMC messages was used,

facilitating interaction between the adaptive software and the

vehicle. The communication bridge and framework between ROS

and IMC use the same back-seat interface as Pinto et al. (2018), with

IMC messages being transmitted over Transmission Control

Protocol (TCP) (Cerf and Kahn, 1974) between the main CPU

and the auxiliary CPU in the AUV. The adaptive code was running

on the auxiliary CPU in order to preserve the integrity of the main

CPU. For illustration, a flowchart containing the main software

components is presented in Figure 10.

Before conducting the principal deployment, we gained

understanding of the sea conditions via a preliminary survey. We

first launched the pre-survey adaptive mission with a reasonable

threshold based on our belief field and then updated the threshold

to be 25.4 g/kg after observing the updated salinity field from the

pre-survey run.
5.2 Field operation

The AUVs started moving from their starting location around

12:50 a.m. We received the “Mission Complete” message from the

AUVs around 14:15 p.m., which marks the end of the operation.

In Figure 11, the results of the AUV conducting adaptive

sampling are displayed. Here, we plot the AUV path (black) and

the updated posterior mean salinity field over time steps. The AUV
FIGURE 9

LAUV Roald is on expedition with an adaptive sampling algorithm onboard. The AUV is around 2 m long and runs at around 1 m/s. It is doing a 3D
sampling mission at depths ranging from 0.5 m to 5.5 m.
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began near the river mouth and gradually moved toward the frontal

region, occasionally diving to the deeper layers. In total, the AUV

traveled approximately 9.734 km, with a coverage of 6.9% of the

field at 0.5 m, 6.3% at 1.5 m, 1.6% at 2.5 m, and 0.1% at 3.5m. Both

the AUVs were set to travel at 1.5 m/s, but the speed varies widely

because of conditions in the ocean. During the mission, the plume

expanded due to the tidal effect, so the AUV attempted to follow the

front more closely. Interestingly, the AUV did not dive deeper than

2.5 m. This can be attributed to the fact that the water becomes

more homogeneous and saline when it is too deep, and the river

plume tends to stay close to the upper layers. Also, this can be an

effect of the model learning from observation closer to the surface. It

should be noted that the trajectory presented in Figure 11 exhibits a
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seemingly disjointed appearance. This phenomenon arises from the

methodology employed, wherein observed measurements are

allocated to the nearest center of the grid cell corresponding to

their actual spatial location. Furthermore, this disjointedness is

exacerbated by the movement of the AUV across various-depth

layers, which introduces discontinuities in the trajectories within

each layer.

In Figure 12, the salinity prediction results of the AUV’s pre-

planned sampling are displayed. The path was designed to

maximize the sampling coverage and consequently reduce the

variance of the field. The AUV was programmed to move along

the path with a consistent YoYo pattern. This pattern involves the

AUV moving between 0.5 m and 5.5 m repeatedly. The
FIGURE 11

Salinity prediction during the adaptive sampling mission 08/09/2022. The AUV (black) began close to the river mouth and gradually moved toward
the frontal region and dived to deeper layers occasionally.
FIGURE 10

The diagram of the software component in the adaptive sampling system. The main CPU of the AUV is running DUNE (Pinto et al., 2013), whereas
IMC (LSTS, 2022) messages are sent through TCP (Cerf and Kahn, 1974) to a secondary CPU, where the adaptive code and ROS (Quigley, 2009)
are executed.
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preprogrammed path approach ensures a more systematic and

exhaustive coverage of the volume, providing a broader

perspective but lacking the pinpoint accuracy on such a large and

rapidly changing ocean volume. The path the AUV traveled along

was approximately 9.346 km with a coverage of 7.9% at 0.5 m, 8.3%

at 1.5 m, 9.1% at 2.5 m, 8.6% at 3.5 m, 7.9% at 4.5 m, and 7.2% at

5.5 m.

Given the unpredictable nature of the location of the freshwater

front, it is virtually impossible to preplan precise sampling paths.

The shifts and movements of the plume demand a real-time

responsive approach like adaptive sampling. This is also evident

when comparing Figures 11, 12. On the other hand, if a broad

overview of the ocean volume is the goal, then a preplanned design

likely is useful to ensure a systematic coverage of the region, leaving

minimal gaps in the data collection. Also, note that diving 1 m is

significantly more time efficient than moving 32 m in the horizontal

plane for the AUV, this can be viewed by the coverage in each layer

by two missions. The fixed path mission has good coverage within

each layer whereas the adaptive mission mostly considers the top

two layers. Because of this, it could be interesting in future work to

consider adaptive sampling in only the horizontal plane and to

always move in a YoYo pattern.
5.3 SINMOD and AUV data comparison

Even though salinity is only one state variable in SINMOD, it is

useful and interesting to compare the AUV salinity measurements

with the predictions made by SINMOD, as it will give information

on the overall performance of the hydrodynamic model. Using all

the data collecting by both AUVs, we compare the location-specific

observations made by the AUVs with the associated SINMOD

predictions for this day.

As illustrated in Figure 13, there is a clear inclination of

SINMOD to overpredict salinity values. This trend is evident as a

majority of the AUV measurements are situated below the zero

error line (dotted line). In shallow water regions, both SINMOD

and the AUV measurements exhibited high salinity variability,
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which is reasonable considering the freshwater influx from the

river and local disturbances. For deeper waters, the salinity is higher

for both models and more concentrated, with a bias around 3.5 g/kg

between the SINMOD predictions and AUV measurements. The

highest measured salinity value by the AUV was 28.0 g/kg, whereas

the highest value from SINMOD was 31.5 g/kg, further confirming

that the numerical model overestimates salinity both for the water

in the river plume and in the brackish layer in the fjord.

While this discrepancy between SINMOD and the actual

salinity field is evident, this will not impact the learning of the

covariance structure, which captures the spatial correlation and

variability within the data and is independent of any systematic bias.

That said, the observed overestimation in SINMOD does set a prior

expectation in our model that is skewed slightly high and will

initially impact the adaptive sampling algorithm.
6 Conclusions

In this study, we have presented an approach for effective 3D

(north, east, depth) sampling of salinity in a river plume front,

employing a realistic and flexible spatial covariance model running

onboard an AUV in real time. Results of a deployment in the

Trondheim fjord demonstrate that prior inputs from the SINMOD

numerical ocean model are effectively calibrated with the in-situ

AUV measurements. In a mission focusing on mapping the frontal

region, the AUV adapts naturally to the updated situation and zig-

zags near the plume front to improve its spatial characteristics.

Moreover, it is evident that the adaptive approach holds a distinct

advantage over the preplanned method when it comes to accurately

monitoring dynamic zones like the river plume front.

In Section 2.3, we estimate our surrogate model with the prior

mean and covariance structure, which in the visualization both

appear reasonable and are well-suited for the domain of interest.

Furthermore, as detailed in Section 4, the surrogate model

consistently outperformed a standard benchmark model across

several key performance metrics. Lastly, in Section 5.2, we present

the results of the field mission. Figure 11 depicts the AUV’s
FIGURE 12

Salinity prediction during the fixed path mission on 08/09/2022. The AUV (black) aims to cover the spatial domain.
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predictions throughout the adaptive sampling mission, which we

interpret as indicative of reasonable adaptive sampling behavior

under the given conditions. The surrogate model, while promising

in these results, does necessitate further refinement to fully realize

its potential in this context. Firstly, refining its parameterization

slightly to simplify the likelihood surface can potentially improve

the optimization process significantly. Furthermore, estimating the

covariance structure to innovations constructed from the SINMOD

data, as described in Berild and Fuglstad (2023), is not guaranteed to

be accurate in removing the temporal effect in the data, thus making

it challenging to ascertain if the final structure is only capturing the

spatial effect.

The prior models used in this work included 3D space with no

temporal variation. A natural extension is to include temporal

variation in the prior, which could be done in a Gaussian

framework assuming known advection and diffusion (Foss et al.,

2022). However, more research is required to develop realistic

space–time models for frontal regions, such as that associated

with river plumes, while maintaining the computational efficiency

required to conduct expansive field surveying as considered in this

study. Lastly, our exploration was confined to a near-sighted

myopic sampling scheme. Future avenues might explore more

sophisticated strategies (Bai et al., 2021), using longer sampling

horizons where one can look ahead and anticipate the information

gained by traversing longer distances with the AUV while also

accounting for operational constraints.

In closing, it is important to highlight that while our study is

centered on separating ocean masses of low (freshwater plume) and
Frontiers in Marine Science 13
high (brackish water) salinity concentrations, we believe that this

approach transfers well to other applications in physical or biological

oceanography, such as polar melting water, high chlorophyll

concentrations, oxygen or carbon content, or pollution detection.
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