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There is as much lack of clarity concerning what “critical thinking” involves, even 
among those charged with teaching it, as there is consensus that we need more 
emphasis on it in both academia and society. There is an apparent need to think 
critically about critical thinking, an exercise that might be  called meta-critical 
thinking. It involves emphasizing a practice in terms of which “critical thinking” is 
helpfully carried out and clarifying one or more of the concepts in terms of which 
“critical thinking” is usually defined. The practice is distinction making and the 
concept that of evidence. Science advances by constructing models that explain 
real-world processes. Once multiple potential models have been distinguished, 
there remains the task of identifying which models match the real-world process 
better than others. Since statistical inference has in large part to do with showing 
how data provide support, i.e., furnish evidence, that the model/hypothesis is more 
or less likely while still uncertain, we turn to it to help make the concept more 
precise and thereby useful. In fact, two of the leading methodological paradigms—
Bayesian and likelihood—can be taken to provide answers to the questions of the 
extent to which as well as how data provide evidence for conclusions. Examining 
these answers in some detail is a highly promising way to make progress. We do 
so by way of the analysis of three well-known statistical paradoxes—the Lottery, 
the Old Evidence, and Humphreys’—and the identification of distinctions on the 
basis of which their plausible resolutions depend. These distinctions, among 
others between belief and evidence and different concepts of probability, in turn 
have more general applications. They are applied here to two highly contested 
public policy issues—the efficacy of COVID vaccinations and the fossil fuel cause 
of climate change. Our aim is to provide some tools, they might be called “healthy 
habits of mind,” with which to assess statistical arguments, in particular with 
respect to the nature and extent of the evidence they furnish, and to illustrate 
their use in well-defined ways.
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1 Introduction

“I do not feel obliged to believe that the same God who has endowed us with sense, reason, and 
intellect has intended us to forgo their use” Galileo—Letter to the Grand Duchess Christina.
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It has been said:

While there is general agreement that critical thinking is 
important, there is less consensus, and often lack of clarity, about 
what exactly constitutes critical thinking. For example, in a 
California study, only 19 percent of faculty could give a clear 
explanation of critical thinking even though the vast majority (89 
percent) indicated that they emphasize it (Stassen et al., 2011).

The problem is 2-fold. On the one hand, the conventional 
treatment of critical thinking is general not specific, often suggests a 
perspective or frame of mind, and does not provide a set of skills, still 
less a handy set of tools with which to exercise them or criteria for 
their application.1 On the other hand, it is not usually made clear what 
the aim or outcome of critical thinking is (Schmaltz et al., 2017).

1.1 Why is the ability to think critically to 
be prized?

To provide still another definition of “critical thinking” at this 
point would be of little use. We are better advised to focus on the 
concepts in terms of which it is most often characterized, an exercise 
in what might be called meta-critical thinking. This sort of second-
order reflection applies equally to the conduct of one’s own research, 
the evaluation of scientific results published by others, and the settling 
of public policy and other issues of general concern in which such 
studies often play a large role. As the previous sentence indicates, 
scientific inference occurs at multiple levels. Scientists are individuals 
and learn on a personal level. Science, on the other hand, is a collective 
activity. Learning in Science, writ large, is a massively collective 
activity involving communication (much of which is indirect) among 
every scientist living, every scientist who has ever lived, and everything 
they have ever written. Different levels may require different inferential 
tools (for a discussion of public versus private epistemology see Taper 
and Ponciano, 2016).

1 In 1990, for a typical example, “The American Philosophical Association 

convened an authoritative panel of 46 noted experts on the subject to produce 

a definitive account of the concept. It resulted in the production of the landmark 

Delphi Report. This led to the following definition of critical thinking: 

(Davies, 2015).

We understand critical thinking to be purposeful, self-regulatory judgment 

which results in interpretation, analysis, evaluation and inference as well as 

explanation of the evidential, conceptual, methodological, criteriological, or 

contextual considerations upon which that judgment was based. Critical 

thinking is essential as a tool of inquiry. Critical thinking is a pervasive and 

self-rectifying, human phenomenon. The ideal critical thinker is habitually 

inquisitive, well-informed, honest in facing personal biases, prudent in making 

judgments, willing to consider, clear about issues, orderly in complex matters, 

diligent in seeking relevant information, reasonable in selection of criteria, 

focused on inquiry and persistent in seeking results which are as precise as 

the subject and circumstances of inquiry permit (Davies, 2015).

But this sort of vague “definition,” common in the literature, is of little help. 

What is it, for example, to be “prudent” in making judgments?

Slogans like “make only evidence-based claims” are everywhere 
in the critical thinking literature and to the best of our knowledge are 
left largely undefined and vague.2 Since statistical inference has to do 
in large part with showing how data provide support, i.e., evidence, 
for more or less likely conclusions, we are well advised to turn to it to 
make the concept more precise and thereby useful. As will be shown, 
the leading inferential methodologies in statistics3 can be taken to 
provide answers to the questions: to what extent and how data provide 
evidence to support conclusions? The fact that statistical inferences are 
commonly made in all of the sciences underlines the importance of 
examining these methodologies in some detail.

Too often the case is made for a particular claim that has far 
spreading public policy implications on the basis of an alleged 
“consensus of experts,” without any attempt to indicate the reasoning 
on the basis of which these claims are made.4 It is the ability of citizens 
to appreciate in general terms how central scientific claims are tested 
and come to be accepted that is a fundamental feature of democratic 
societies and should be a cornerstone of all STEM education.5 This is 
all the more important at a time when the general acceptance or 
rejection of these conclusions has increasingly been politicized.6 It 

2 The widely cited work of the psychologist Stephen Landowsky is typical. 

In (2020), for example, he urges us to “re-store the pursuit of evidence-based 

truth as a consensual feature of democratic societies” without indicating what 

evidence-based truth involves or how it is to be  recognized, apparent 

presuppositions of its restoration.

3 There are three leading inferential approaches in science: classical 

frequentist error statistics, Bayesian statistics, and likelihood/evidential statistics. 

Descriptions of and comparisons between them can be found in Barnett (1999), 

Lewin-Koh and Taper (2004), and Taper and Ponciano (2016). Since the contrast 

between their approaches better serves the points we want to make in this 

paper, we have centered the discussion on the second and third. Dennis et al. 

(2019) is a paper that contrasts the efficacy of classical error statistics with that 

of evidential statistics.

4 To gather expert-based judgments on an issue is the so-called “Delphi 

Technique” pioneered by the Rand Corporation in the 1950s (see Dalkey and 

Helmer, 1963) and “used internationally to investigate a wide variety of issues” 

(Niederberger and Spranger, 2020, p. 1). The technique was used to produce 

the Delphi Report quoted in footnote 1. It is also much criticized. In intervention 

research in health sciences, for example, surveys of experts are considered 

subordinate to evidence-based methods because they do not take account 

of reliable findings on observed cause-effect relationships (see Bodedeker and 

Backhaus, 2010) and cannot be  assigned to any specific methodological 

paradigm (Niederberger and Springar, 2020, and the variety of sources 

they cite).

5 Although the many studies on which Landowsky draws are for the most 

part statistical in character, his emphasis is on what is true and false, not on 

what is more or less likely. Although the social media and political contexts 

he signals out should often be ignored, we are not told in any direct way how 

to recognize what is false. Instead, we are apparently to trust the published 

studies that identify misinformation and suspect any claim that is advanced 

with a great deal of surrounding “noise.”

6 This is not to mention the vast extent to which commercial advertising 

incorporates and depends for its effectiveness on consumer surveys, product 

comparisons, and at least alleged scientific studies. Without any tools in hand 

with which to assess their reliability, we are left to accept or reject them at 

face value.
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should not be surprising as a result that there is a growing lack of 
confidence in science on the part of the general public and a 
corresponding distrust of “experts” and “elites,” a key ingredient in 
populist politics.7

For example, although more than 99.9% of published studies 
agree that climate change is due more to human activities than 
natural conditions (Lynas et al., 2021),8 recent polling indicates that 
no more than 64% of the general population agrees (Saad et  al., 
2021).9 Similarly, although the Pfizer-BioTech and Moderna vaccines 
were shown to be  more than 95% effective against the original 
coronavirus strain in Phase 3 clinical trials and continued to be so at 
the same rate against SARS-CoV-2 variants through 2021, only 55% 
of Americans polled agree that vaccination is “extremely or very 
effective” at limiting coronavirus spread (Kennedy et al., 2022). Of 
course, both climate change and the coronavirus have become deeply 
partisan political issues, with elected officials offering and 
occasionally institutionalizing their own uninformed takes. We will 
return to these examples of human-caused climate change or the 
effectiveness of COVID vaccines in more detail later. Not surprisingly, 
a recent Gallup Poll reports a long-term decrease of confidence in the 
scientific community from 70% in 1975 to 64% in 2021 (Boyle, 2022). 
The reasons for this decline are undoubtedly manifold, but it is clear 
that in part the decline is due to perceptions by the public of bias on 
the part of scientists. Many Pew poll responders indicated they did 
not believe that scientists had the public’s best interest at heart 
(Kennedy et al., 2022). Other Pew research shows that 35% of the 
American population think the scientific method can be used to 
produce “any result a researcher wants” (Funk, 2020). Our aim is to 
provide and illustrate some general but very useful ways of assessing 
the statistical arguments on which the “consensus of experts” 
(genuine as well as Self-proclaimed) among other sources of statistical 
claims is assumed to rest, in particular with respect to the nature and 
extent of the evidence they should be expected to furnish. The end 
product is a list of “healthy habits of mind” to use whenever 
confronted with such arguments and the main question asked 
concerns their evidential force.

1.2 The purposes of paradoxes

The task is clear: to think critically about statistical inference, 
identify distinctions that both aid in doing so and have more general 
application, and in the process develop helpful “habits of mind” to use 
when confronted with statistical claims and the arguments on which 
they are based. How to proceed? One traditionally productive way to 
do so is by way of reflecting on paradoxes, conclusions that seem 
absurd and are on occasion self-contradictory, but are entailed by 
premises that are plausible if not also obvious. Short of being willing 

7 As Niederberger and Spranger (2020) put it, “From a sociological perspective, 

these techniques raise questions about their validity, the dominance of possible 

thought collectives, and the reproduction of possible power structures” (see 

also Scheele, 2002).

8 An examination of a randomized 3,000 paper subset of 88,125 English-

language climate change papers.

9 A figure in line with the Pew Research Center and other recognized polling 

organizations.

to grant on reflection that the conclusion is not so absurd after all or 
finding Zen comfort in perplexity, there are two ways as a matter of 
logic to unravel paradoxes, either reject one of the premises or show 
that the paradoxical conclusion does not follow from them. To these 
two, we add a useful third; disarm the paradox by showing that it rests 
on an equivocation:

List 1: Methods of unraveling paradoxes

 I Show that at least one of the premises required for its derivation 
is false, in which case the derivation is not sound, i.e., though 
the argument is valid the conclusion is not necessarily true.

 II Show that an argument of the same form can have true 
premises and a false conclusion, in which case the argument is 
not valid.

 III Disarm the paradox by showing that it rests on an equivocation, 
that is, amalgamates two concepts that should be kept distinct 
or demonstrates that two traditionally distinct concepts should 
be assimilated so as to distinguish both of them from a third.

The third way of unraveling paradoxes, by drawing a new 
distinction (sometimes after undermining an old), has often proved 
the most fruitful. That is, the critical and creative thinking involved in 
disarming paradoxes has historically cleared a path to progress (see 
Box 1 for two classic examples).

2 The discipline of distinction-making

The importance of distinctions underlined, it is worthwhile to 
pause for a moment and reflect briefly on four criteria that in our view 
should be satisfied before making them if distinctions are to play a 
useful role. It will shortly be made clear how these criteria apply and 
why they are useful.

List 2: Useful distinction criteria

 I Should make a difference, i.e., no genuine difference, no 
distinction.10

 II Should be clear: There must be some hallmark or feature on the 
basis of which the distinction can be made.

 III Should be  insightful: Adequate distinctions should serve to 
unify or explain facts and ideas in a new and interesting way.

 IV Should be applicable to more topics of concern than the paradox 
at hand, i.e., must not be ad hoc.

2.1 Paradoxically useful distinctions

Now to the nub of the narrative. A failure to recognize a few 
critical distinctions is at the heart of a great deal of misunderstanding 
in statistics. This is to say that terms with very different meanings are 
often used interchangeably, that is the terms are equivocated. The 

10 Among the myriad examples of how this traditional distinction is made 

and applied, see Doezma and Hauswald (2002).
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result, as we  will go on to demonstrate, is the source of 
misunderstandings and mistakes. We outline here five particularly 
important distinctions, which we will use to resolve three statistical 
paradoxes. Becoming aware of these distinctions may not make 
statistics easy, but it will make you aware of when you are entering a 
minefield and should keep you safer when the time comes.

The rest of this article depends heavily on the distinction between 
probability and likelihood, and the related distinction between 
conditioning on a random variable and conditioning on a fixed value. 
We  understand that readers will come to the article with varying 
degrees of statistical background. To mitigate this discrepancy, 
we have provided two explanations—one on probability, a second on 
likelihood—in Boxes 2 and 3. Since they serve the role of extended 
footnotes, the reader can bypass them and nonetheless follow the 
main line of argument.

2.1.1 Model/hypothesis
The words “hypothesis” and “model” do not have universally 

applied meanings, even in otherwise well-defined scientific contexts. 
Collectively these terms serve two different functions in science and 
statistics. We sort the functions to the terms to best match common 
language dictionary definitions.

A hypothesis,11 at least as we construe it is a statement—often 
verbal, but sometimes mathematical—that can be true or false, at least 
in principle. A scientific hypothesis contains a provisional explanation 
of observed facts “written in such a way that it can be  proven or 
disproven” (Grinnell and Strothers, 1988). A model12 as we use the 
term is a representation of a phenomenon or process that is capable of 
producing surrogate data. Models can be  physical, such as the 
miniature wings the Wright brothers ran through their wind tunnel 
(Wright, 1901), computational (e.g., Gotelli et al., 2009), or analytic 
(e.g., Dennis and Patil, 1984), see Box 3. A foundational scientific 
assumption is that models are almost always approximations (Box, 
1976), and therefore not strictly true.

2.1.2 Kinds of probabilities
Important distinctions often presuppose still more basic 

distinctions if they are to be  made fundamentally clear. It is a 
commonplace in introductions of Bayesian statistics for scientists to 
state that Bayesian statistics uses an interpretation of probability that 
is distinct from the interpretation of probability used by classical 
statistics. For instance, Ellison (1986, Table 1) states that the Bayesian 
interpretation of probability is “The observer’s degree of belief, or the 
organized appraisal in light of the data,” while the frequentist 
interpretation of probability is given as a “Result of an infinite series 
of trials conducted under identical conditions.” This dichotomization 
of probability is at best a heuristic oversimplification. In our 
experience, this restriction to only two definitions of probability 
creates more confusion than it avoids. Two of the named “statistical 

11 Cambridge Dictionary: “an idea or explanation for something that is based 

on known facts but has not yet been proved.”

12 American Heritage Dictionary: “A schematic description or representation 

of something, especially a system or phenomenon, that accounts for its 

properties and is used to study its characteristics.”

paradoxes” that we deconstruct result directly or in part result from 
the failure to distinguish multiple kinds of probability.

This said probability is a very slippery concept. Bell (1945) quotes 
the great philosopher and mathematician Bertrand Russell as saying 
in a 1929 lecture “Probability is the most important concept in modern 
science, especially as nobody has the slightest notion what it means.” For 
the purposes of this paper, we parse probability into four concepts that 
are particularly salient for thinking about inference. For clarity, 
we give each its own individual operator. The kinds of probability 
we consider are propensity, Prp, finite frequency, Prf, deductive, Prd, 
and belief, Prb.13

We observe that in the real world, there is a tendency on the part 
of objects in standard conditions to behave in routine ways. This 
natural tendency of objects and conditions is called their “propensity” 
and has long been characterized as a probability.14 Notationally, 
we designate this form of probability as Prp. The propensity of a coin 
to land heads or tails in a particular flipping experiment is exhibited 
in a sequence of flips. A fair coin might come up heads three times if 
flipped 10 times, 44 times if flipped 100 times 5,075 times if flipped 
10,000 times and 499,669 times if flipped 1,000,000 times.15 The 
relative frequency of the occurrence of objects or events in specified 
populations or conditions is yet another measure of “probability,” and 
we designate it Prf for “finite empirical frequency.” The accuracy of Prf 
as an estimate of the propensity, Prp increases with the sample size. 
We  will see later when working with Humphreys’ paradox that 
propensity is not quite a probability in the strict mathematical sense 
(see Box 2). It is perhaps better to think of it as the probability 
generating tendency of the world.

In science, we should always be concerned with the real world 
and with data. So, what does Prd(D), with D standing for data, 
mean? Well, it actually does not mean anything; only Prd(D;M) has 
meaning. The complete expression, Prd(D;M), indicates the 
frequency with which the data, D, would be generated by the given 
(fixed; see Box 3) model M in an infinite number of trials (see 
Box 2).16 The notation “Prd” indicates that the probability has to do 
with the deductive relationship between models and data and not 
with an agent’s beliefs. What data could be  realized a priori 
depends on the sort of models proposed. The relationship between 
a model and its as yet unrealized data is deductive in the sense that 
M entails the distribution of D for a given specification of M and D.

Let us assume, M1 says that a flipped coin has a probability of 0.7 
to land heads up. Assume further that M2 says that it has probability 
0.6; M3 says that it has probability 0.4; M4 says that it has probability 

13 A note on nomenclature: propensity, finite frequency, and deductive 

probabilities are all often referred to as aleatory probabilities, where aleatory 

refers to probabilities deriving from natural randomness. Belief probabilities 

are often called credal, subjective, epistemic, or even evidential probabilities. 

Our definition of deductive probability subsumes much of what are known as 

classical or logical probabilities.

14 For example, by Peirce (1878).

15 Numbers of heads at the various sample sizes generated by the rbinom 

function in the program R version 4.1.0. If the model is physical or a simulation, 

then Prd(D;M) can be estimated by repeating the experiment (see Box 2) a large 

number of times.

16 If the model is physical or a simulation, then Prd(D;M) can be estimated 

by repeating the experiment (see Box 2) a large number of times.
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0.3; and so on. Before any actual data have been observed, each of these 
models tells us how probable any set of observations would be under 
the model. So, the relationship between models and data distribution 
is completely deductive, i.e., not in the least dependent on an agent’s 
beliefs concerning what is the case.

This brings us finally to belief-based probabilities. These are 
informed by a subjective or psychological understanding of what a 
“probability” measures. Prb(H) is an assessment, on a scale from 0 to 
1 of how much the agent believes a hypothesis H to be true. Notice 

that we  have switched the argument of the probability operator/
function from data to hypothesis. This is in keeping with our 
distinction between hypotheses and models, that only hypotheses can 
be true.17

17 Much of the literature using belief probabilities, particularly in philosophy, 

uses H as the argument.

BOX 1 Two transformative scientific paradoxes

For the benefit of those readers unfamiliar with the analysis of paradoxes, we look briefly at two notable mathematical and physical examples, draw some lessons from them 
as concerns the distinctions they draw, and illustrate the benefits of drawing these distinctions.

Galileo’s paradox of infinity

The first of our examples has to do with a basic mathematical concept, infinity, the second with a basic physical concept, motion. Both were made famous by Galileo.

Galileo was not the first to demonstrate the paradoxical character of infinite sets. Among others, the philosopher Duns Scotus noted in 1302 that although intuitively there are 
half as many even numbers as there are whole numbers, on reflection there are an infinite number of each, i.e., there are as many even numbers as whole numbers. Nevertheless, 
the paradox has come to be associated with Galileo. In his final scientific work, the Dialogues Concerning Two New Sciences Galileo’s spokesperson, Salviati concludes:

So far as I can see we can only infer that the totality of all numbers is infinite, that the number of squares is infinite, and that the number of their roots is infinite; neither 

is the number of squares less than the totality of all the numbers, nor the latter greater than the former; and finally the attributes ‘equal,’ ‘greater,’ and ‘less,’ are not applicable 

to infinite but only to finite quantities (Galileo Galilei, 1638).

Salviati goes on to draw the corollary that “longer” lines do not contain more points than “shorter,” but that each line contains an infinite number. There the matter stood—that 

a set can have multiple proper subsets, all of the same size as the parent set, so long as both sets and subsets are infinite and that infinite sets cannot be compared to one 

another with respect to size—until Georg Cantor in 1874 was able to provide a proof (Cantor, 1874) that at least some (“uncountable”) sets, e.g., the set of real numbers, 

cannot be put into one-to-one correspondence with any of their proper (“countable”) subsets, e.g., the set of rationals. Thus, it is therefore possible, indeed necessary, to say 

of at least some infinite sets that they are equal to, greater than, or less than others. In the process, he drew a finer distinction between different senses of “equal,” “greater,” 

and “less,” and disarmed the paradox that some sets of numbers are apparently smaller than others and at the same time equal in size to them by reformulating and embracing 

the first of its premises.

Galileo’s paradox of motion

A second Galilean paradox has to do with the relativity of motion. It exemplifies a conflict between what we observe and what a theory postulates. The theory in question is 

Copernicus’ revolutionary two-part claim that the earth both revolves around the sun and rotates on its own axis. Galileo wrote Dialogues Concerning Two New Sciences of 1632 to 

defend this theory (and the Euclidean geometry used to expound it, hence his disarming the criticism that longer and shorter lines could not, as against that geometry, contain equal 

and infinite numbers of points) against the criticisms commonly made of it, the majority of which had to do with the fact that the claim flew in the face of observation.

If the earth revolved around the sun, then the 24-h passage from day to night and back again that we observe could only be explained by the earth’s rotating on its axis at a 

notable speed, in which case we would sense the motion internally and observe untethered objects moving west. But when lying in bed at night we do not feel like we are moving 

and during the day we do not see balls tossed in the air invariably land to the west of us. These simple observations would seem to entail that the Copernican hypothesis is false, 

the earth does not rotate on its axis and still less around the sun.

To counter this argument, Galileo’s spokesperson, Salviati, develops a thought experiment.

Shut yourself up with some friend in the main cabin below decks on some large ship, and have with you there some flies, butterflies, and other small flying animals. Have 

a large bowl of water with some fish in it; hang up a bottle that empties drop by drop into a wide vessel beneath it. With the ship standing still, observe carefully how the 

little animals fly with equal speed to all sides of the cabin. The fish swim indifferently in all directions; the drops fall into the vessel beneath; and, in throwing something 

to your friend, you need to throw it no more strongly in one direction than another, the distances being equal; jumping with your feet together, you pass equal spaces in 

every direction. When you have observed all these things carefully (though doubtless when the ship is standing still everything must happen in this way), have the ship 

proceed with any speed you like, so long as the motion is uniform and not fluctuating this way and that. You will discover not the least change in all the effects named, or 

could you tell from any of them whether the ship was moving or standing still (Galileo Galilei, 1632, p. 186).

The paradox—the apparent contradiction between theory and observation, to wit, between motion and rest, is explained away by showing that there is no principled way to 

distinguish between them so long as the motion is uniform.
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BOX 2 A précis of probability

Probability is a word whose meaning seems clear until you start to think about it. Then things get very fuzzy. If you look that term up, you will often find a definition like  this 

one copied from an educational website: “Probability is simply how likely something is to happen”. This seems helpful but is not. If you look the word up in an English dictionary 

you will see that probable is defined as likely; and likely is defined as probable. In statistics, the terms probability and likelihood while intimately related, like the face and 

backside of a coin, mean very different things.

Terminology

Experiment

An experiment is a repeatable procedure with clearly defined possible outcomes. If there are more than one possible outcomes, and which will occur is uncertain, then the 

procedure is a random experiment. Flipping a coin is an experiment. The procedure is repeatable and has the uncertain defined outcomes of heads (H) or tails (T). A single 

iteration of the procedure is often called a trial.

Sample space

The sample space of an experiment is the set of all possible outcomes of the experiment. Outcomes should be thought of as primitive in that only one outcome can occur at a 

time. The sample space for the coin flip experiment is the set {H, T}. The sample space is often denoted by the symbol S.

Probability

Somethings/objects/sets/outcomes can be said to have a probability if for each object, a weight can be assigned following three rules: (1) all weights are greater than 0. (2) The 

weight of the union of two outcomes is equal to the sum of the weights of each outcome. And (3) The sum of the weights for all outcomes equals 1. Weights defined this way 

are called probabilities (Kolmogorov, 1956). If the outcomes are not categorical but are instead continuous an outcome point technically has a probability density, which only 

becomes a probability, in strict notation, when integrated over an interval or region and the sums are replaced by integrals. Note that more than just the mathematical definition 

of probabilities will be needed for these weights to be scientifically useful. In coin flip sample-space, we might say either based on a deductive assumption or based on experience 

with many repetitions that each of the outcomes {H} and {T} has a probability of ½.

Event

An event is a defined outcome or set of outcomes or set of other events The set of all possible events is generally designated as Ω. Technical choices in how Ω is constructed 

lead to different kinds of probability. The probability of an event is the sum of the probabilities of the outcomes that comprise it. If the experiment is to flip a coin twice, your 

sample space is the set {(H,H), (H,T), (T,H),(T,T)}. Each of these outcomes have probabilities of ¼. If an event, E1, is defined as a two-tuple having one head and one tail, then 

the event is the set {(H,T), (T,H)}. The probability of this event is ¼ + ¼ = ½. Note that an outcome might be a member of more than one event. For instance, if E2 is defined as 

all tuples containing at least 1 tail then E2 = {(H,T),(T,H),(T,T)}, and the outcome (T,H) is a member of both E1 and E2. Because of this overlap, the probability of E3 = (E1,E2) is 

not the sum of the probability of E1 and the probability of E2, but needs to be adjusted so the probability of any outcomes on which they overlap is not counted twice.

Random draw

A random draw selects one outcome from the sample-space. Which outcome will be selected is not determined or known before the draw. In an infinite series of draws, each 

possible outcome will occur in proportion to its probability. This property is a consequence of a mathematical theorem known as the Law of Large Numbers and forms one of 

the ways of defining probability for scientific applications.

Random variable

A random variable is a function that maps the collection of all events of an experiment to a set on numerical values, which can be integers, real, imaginary, or complex numbers. 

The function can be applied to any of the elements of the sample-space deterministically. The function only becomes a random variable if it is applied to a random draw from 

the sample-space. Random variables are generally denoted by italic uppercase roman letters such as X or Y. A random variable applied to a random draw returns a realization 

of the random variable, often called observation. Realizations/observations are generally designated an italic lower-case letter corresponding to the random variable such as x 

or y. The notation for probability is usually Pr(X = x). This is read as the probability that the random variable X takes on the value x. Often for the notation is shortened to Pr(x). 

This is compact but suppresses the information that probabilities are functions of random variables. It is critical to recognize that realizations/observations are no longer random. 

Two example random variables definitions are: (1) let X be a random variable that maps outcomes of the double coin flip experiment to the count of the number of its tails. X 

can have the values 0, 1, or 2. (1) Let Y be the random variable that maps outcomes to the presence or absence of tails. Y has the values 0 or 1.

Marginal probability

The marginal probability for a given value of a random variable is the probability that a random draw from the experiment will be mapped by the random variable to that 

particular value. Following rule 2 from the definition of probability, the marginal probability will be the sum of the probabilities of all the outcomes that map to the value.

Marginal distribution of X

X value 0 1 2

Mapping outcomes (H,H) (H,T) (T,H) (T, T)

Probability 1/4 1/2 1/4
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Marginal distribution of Y

Y value 0 1

Mapping outcomes (H,H) (H,T) (T,H) (T,T)

Probability 1/4 3/4

Joint probability

The joint probability distribution of two (or more) random variables is the set of all possible combinations of the values of the random variables with probabilities that are given 

by the sum of all outcomes that map to the particular combinations. Because the joint probability is a probability, the sum of the probabilities of all possible combinations 

must be 1.

Joint distribution of X& Y

Y value↓\ X value→ 0 1 2

0 (H,H) 1/4 0 0

1 0 (H,T) (T,H) 1/2 (T,T) 1/4

Probability conditioned on a random variable

Because different events can share outcomes, knowing the value of one random variable can strongly influence your assessment of the probabilities for other random variables. 

This new probability is written verbosely as Pr(X = x|Y = y) and read as the probability that the unknown value of variable X will be x given that Y has been observed to have a 

value of y.

Continuing the coin tossing example, if y is observed to be 0 then the only possible outcome is (H,H) and the realized value of X must also be 0. Therefore Pr(X = 0|Y = 0) = 1, 

Pr(X = 1|Y = 0) = 0, and Pr(X = 2|Y = 0) = 0. If y is observed to be 1, the outcomes that can map to 1 are (H,T), (T,H), and (T,T). The conditional distribution of X is very different. 

The universe of possible outcomes is smaller than the sample-space but the conditional probabilities still need to sum to 1. The conditional probabilities can be calculated by 

dividing the joint probabilies of X and Y, Pr(X = x, Y = y), by the marginal probabilities of Y, Pr(Y = y). Note that Pr(X|Y) is generally not equal to Pr(Y|X). In our double coin 

flip experiment, Pr(X = 2|Y = 1) =2/3, but Pr(Y = 1|X = 2) = 1.

Bayes’ rule

An interesting and useful fact about conditional probabilities is that they are invertable: If you have two random variables, say X and Y, if you know both marginal probabilities 

and one conditional probability then you can calculate the other conditional probability. That is:
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Y X X
Y

Y X
X Y Y

X
)Pr

Pr Pr
Pr

, )Pr
Pr Pr

Pr
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|
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These formulae seem abstract, but can be understood in terms of the simple geometry of the portioning of the sample space by random events/variables.

FIGURE B2.1: A geometric interpretation of Bayes’ rule. The probability space is the set of all squares, primitive outcomes, which here all have equal probabilities. The event 

X is the 15 squares with red tint. The event Y is the five squares with blue tint. The intersection of X and Y, X Y∩ , are the two primitive observations that are in both X and 

Y. Having both red and blue tints these observations appear as purple.
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2.1.3 Conditioning on either fixed values or 
random variables

When we  introduced deductive probability in section 2.1.2, 
we noted that the operator “;” should read as “given.” Another reading 
of “;” is “conditional on.” There is another operator in probability and 
statistics, the operator “|,” that is also read as either “given” or 
“conditional on.” The distinction between these two operators is that 
“;” indicates conditioning on a fixed value, while “|” indicates 
conditioning on a known realization of a random variable. 
Conditioning on a fixed value behaves fundamentally differently from 
conditioning on a random variable. While conditioning on a random 
variable partitions a predefined sample space (see Box 3), conditioning 
on a fixed value essentially creates a new space—redefining the 
probabilities of the primitive outcomes and sometimes even 
determining the number of outcomes (see Box 3).

2.1.4 Probability/likelihood
Although deeply related and the terms often used interchangeably, 

probability and likelihood are not the same thing. The first thing to 
note about this pairing of terms is that the probability being considered 
is of the deductive kind. Deductive probability is the frequency with 
which a mechanism will generate events. Likelihood is a measure of 
the support provided by data for a particular mechanism. This 
becomes a little bit clearer if one inspects the mathematical definition 

of likelihood: L M D D Md; ;� �� � �Pr  (Fisher, 1921). This is read as 
“the likelihood of the model given the data is proportional to the 
deductive probability of the data given the model.”

On the left-hand-side, the argument of the likelihood function is 
the model, M (conditional on data D). On the right-hand-side, the 
argument of the probability function is the data, D (conditional on 
model M). This change of argument means that the likelihood is about 
the model while the probability is about the data. Boxes 1 and 2 
demonstrate more fully the distinctions between likelihood 
and probability.

2.1.5 Confirmation/evidence
Words like “confirmation” and “evidence” and slogans like “make 

only evidence-based or well-confirmed claims” are everywhere in the 
critical thinking literature, and to the best of our knowledge largely left 
undefined and interchangeable. In his clear and helpful overview of the 
topic, Critical Thinking (Haber, 2020),18 Jonathan Haber uses the word 

18 Haber, like so many others, associates critical thinking to a large, although 

not complete, extent with the types of reasoning characteristic of Western 

science, one reason for taking a closer look at the structure of scientific, hence 

statistical inferences.

In the entire sample space there are 60 squares each having a probability of occurring of 1/60. Two of those observations are both X and Y so Pr(X&Y) = 2/60. If you told that 

your event is an X, then the universe of possible observations has been reduced from 60 to 15. In this smaller sample space, the probability of your event also being Y is now 

two chances out of 15 or 0.133.

What makes Bayes’ rule seem confusing when represented algebraically as opposed to geometrically is that the numerators of equations (a) and (b) above are written differently 

but represent the same value, the joint probability of X and Y:

 
Pr Pr Pr Pr Pr & .Y X X X Y Y X Y| |� � � � � � � � � � � �

The correlation between random variables is defined as:
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Plugging in basic formulae for the variances and co-variances of random variables (following Conover, 1980, pages 38 and 39), an inter-class correlation coefficient for categorical 

events over a sample space can be written as:
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Remembering that Pr(X & Y) = Pr(Y|X) Pr(X) and with some algebraic manipulation, Bayes’ rule can be rewritten as:
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Where −
g V XY  is the geometric mean of the variances of X and Y, i.e., the denominator of a correlation.

In Figure B2.1, the primitive outcomes are represented as squares, but this is just for convenience so that the probabilities represented by events can be calculated by counting. 

If the underlying sample space is continuous, the event polygons simply become closed curves with the probability of an event (or the random variable mapping to an event) 

represented by the enclosed area. Events are always categorical. This follows from the set definition of an event. Primitive outcomes are either in the event or they are not. 

Consequently, the recasting of Bayes’ rule in terms of correlation holds regardless if the underlying sample space is discrete or continuous.
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BOX 3 A précis of likelihood

Parametric statistical models

Models describe features of the world. A statistical or stochastic model includes randomness among the features that it describes. A parameter is a numeric value or vector of 

values that controls the behavior of a model. Perhaps the most familiar statistical model in the world is the normal, or Gaussian, probability distributrion model:

 

( ) ( )µ
µ σ µ

σ π σ σ

−∞ < < ∞ − = −∞ < < ∞   < < ∞ 

1; ; exp ,
2 2 0

2

2

x
x

N x

Where x represents potential data. ( )µ σ; ;N x is a function of x that returns Prd X x�� �  given the specific values of µ and σ . The parameter µ  is the mean or central 

value of the distribution, while σ  is the standard deviation or spread of the distribution. We saw earlier that Prd x� �  is a shorthand notation for Prd X x�� � . Now we see 

that this itself is a shorthand for Prd X x�� �;� , which itself is a shorthand for ( )θ= = Θ =Pr ; ;X x M md i i , where mi is a specific model and θi  is model i’s parameter or 

parameter vector.

Conditioning on a fixed value

A probability conditioned on a fixed value/ set of conditions/ state should be written as Pr (X; θ). The “;” is used to indicate conditioning instead of “|,” both are read as “given.” 

The fixed value is often called a parameter and is notated here as θ. θ is itself a statistical shorthand for a parameter within the context of a particular model. If multiple models 

are being considered, they should be explicitly noted.

Conditioning on a fixed value behaves fundamentally differently from conditioning on a random variable. While conditioning on a random variable partitions a predefined 

sample space, conditioning on a fixed value essentially creates a new space—redefining the probabilities of the primitive outcomes and sometimes even determining the number 

of outcomes. We develop another example that will make this clear.

Staying strictly within the bounds of the mathematical world of Kolmogorov probability theory, one can view conditioning on a fixed value as equivalent to conditioning on a 

random variable with 0 variability. While this is mathematically correct, and useful when considering hierarchical models, it does not fully capture the time irreversibility of 

propensity in the real world (see Ballantine, 2016).

FIGURE B3.1 A small pachinko game. The figure diagrams a device for a very small pachinko game. Balls can be dropped into one of three slots labeled θ1, θ2, and θ3. Balls fall 

straight down until they hit a peg. At this they will fall either to the right or the left with equal probability—unless they are against a wall. In this case they will fall inwardly 

with probability 1. Eventually a ball will enter one of the three bins. These are labeled O1, O2, O3 to indicate outcomes. The slot into which the operator chooses to drop the balls 

determines the outcome probability distribution.

Table B3.1 Lists the outcome probability distributions for input slots θ1, θ2, and θ3.

θ1 θ2 θ3

O1 4/8 2/8 1/8

O2 3/8 4/8 3/8

O3 1/8 2/8 4/8

We leave it to the reader to verify these probabilities as an exercise.
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The outcome probabilities do depend on the values of θ, nevertheless, one cannot use Bayes’ formula to calculate the conditional probabilities of the θ for several reasons. First, 

the θs are not part of the outcome sample space. And second, the θs are fixed and thus do not really have a probability.

Defining likelihood

In formal verbose mathematical notation, the likelihood is defined as: ( ) ( ).; Pr ; ,L x C X xθ θ= =
 
and should be read as “the likelihood of an unknown but fixed parameter, 

θ, given an observed/realized vector of observations, x−  is equal to an unknown constant C times the probability that the random variable X−  takes on the value x−  given the 

parameter θ .”

Likelihoods are not probabilities

The above definition for likelihood was first given by Fisher (1921). In 1921, and for the rest of his life, he was emphatic that likelihood was not a probability. The first thing to notice is 

that on the left-hand/likelihood side the parameter, θ , is the argument while the observed data. x− , is the fixed conditioning value, but that on the right-hand/probability side the 

random value, X x� �� , is the argument while the parameter, θ , is the fixed conditioning value. Thus, we can see from the very structure of the equation that the likelihood is making 

statements about different values of θ  given the data; probability on the other hand is making statements about different values of X given the parameter.

Other distinctions between Likelihood and probability that Fisher (1921) noted are: First, likelihoods violate Kolmogorov’s rule 3. That is an integral or sum over the argument 

( θ ) does not necessarily equal 1, as it would for a probability. Second, Probability densities change as the way the observations are measured are transformed, such as switch 

a measurement from inches to miles. In contrast, however you transform a parameter, such as changing the spread parameter from standard deviation to variance, the likelihood 

remains the same. And third, while probability (or probability density) of a single observation is an interpretable quantity by itself this is not true of the likelihood of a single 

parameter value because of the unknown constant C. As discussed in the next section, likelihoods can only be interpreted in the comparison of parameter values.

The concepts of probability and likelihood are applicable to two mutually exclusive categories of quantities.

We may discuss the probability of occurrence of quantities which can be observed or deduced from observations, in relation to any hypotheses which may be suggested to explain 

these observations. We can know nothing of the probability of hypotheses or hypothetical quantities. On the other hand we may ascertain the likelihood of hypotheses and 

hypothetical quantities by calculation from observations: while to speak of the likelihood (as here defined) of an observable quantity has no meaning (Fisher, 1921).

Fisher felt so strongly about the incommensurability of probability and likelihood as to commit the rhetorical sin of a single sentence paragraph for emphasis. To translate Fisher into 

the language of this paper, “hypothesis,” “hypothetical quantity,” and “observable quantity” should be interpreted, respectively, as “model,” “parameter value,” and “event.”

Another perhaps even more potent argument that likelihoods should not be thought of as the probability of a model was made later by the statistician Barnard.

To speak of the probability of a hypothesis implies the possibility of an exhaustive enumeration of all possible hypotheses, which implies a degree of rigidity foreign to the true 

scientific spirit. We should always a“dmit the possibility that our experimental results may be best accounted for by a hypothesis which never entered our own heads (Barnard, 1949).

How likelihood ratio measures evidence

Because the constant C is unknown a single likelihood value cannot be interpreted by itself. However, if a ratio of likelihoods (or equivalently, a difference of log-likelihoods) 

is formed the constant is eliminated and the ratio is interpretable. For instance, if 

θ

θ
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−

−

;
16.5

;

1

2 xL
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, then one can say that θ1 is 16.5 times as likely as θ2 . The likelihood ratio 

per se does not make a commitment to the truth of either parameter. The likelihood if translated into English is best represented by the subjunctive statement “if the model 

with parameter θ1 were true, then the probability of the observed data, x− , would be this.” Thus, the likelihood ratio measures the relative plausibility of the two fixed values 

(see Jerde et al., 2019 for a discussion of the meaning of different magnitudes of the likelihood ratio). The likelihood ratio can be seen as a judicious quantification of the old 

maxim: where there is smoke there is fire. You could be wrong, because what you think is smoke is actually mist, but comparing the alternatives fire or no fire, if you see smoke, 

the existence of a fire is definitely more reasonable than no fire.

In our pachinko example, if we observe O1, then the likelihood ratio for slot 1 vs. slot 2 is (4/8)/(2/8) = 2. There is a small amount of evidence for slot 1 relative to slot 2. If a 

second ball is dropped and we again observe O1 then our evidence for slot 1 increases to

   
   
    =
   
   
   

4 4
8 8

4
2 2
8 8

. If more balls are dropped and we observe the sequence {O1, O1, O2, 

O1, O2, O3, O1, O1} then the likelihood ratio is 9 and there is moderate evidence for slot 1 relative to slot 2.
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“evidence” at least 30 times without ever attempting to clarify it and 
conflates rather than contrasts it with “confirmation,” as when 
he emphasizes “the need to confirm ideas with evidence.” The way 
these words are generally used clouds rather than clarifies their 
meanings. To clarify their meanings is in the first place to 
distinguish them.

On our construal (see Bandyopadhyay and Brittan, 2006; 
Bandyopadhyay et al., 2016), confirmation and evidence are distinct in so 
much as confirmation fortifies an agent’s belief that a hypothesis is true as 
additional data are gathered, while evidence, on the other hand, consists 
of data more probable on one hypothesis or model than another, or 
equivalently, one hypothesis or model is more likely than another given 
the data (see Box 3). That is to say that confirmation is necessarily unitary 
in that it makes an inference about only one model on the basis of data, 
but that evidence is necessarily comparative giving the relative support for 
two or more models on the basis of data.

Consider first the Bayesian account of confirmation. If two 
random events share a common primitive observation or observations, 
then the value of one event contains information about the other (see 
Box 3). A Bayesian agent is interested in what she believes about the 
truth of hypothesis H conditional on the observation of D. This is 
written as Prb(H|D). The symbol “|” is read as “conditioned on” or 
“given.” For a Bayesian D confirms H just in case an agent’s prior 
degree of belief that H is true is raised by the observation of D. The 
degree to which D confirm H is measured by the extent to which the 
degree of belief has been raised.

A Bayesian updates beliefs by using Bayes’ rule19 (see Box 3) that 
says that the probability of a hypothesis given new data is equal to an 
agent’s belief that the hypothesis was true prior to having such data, 
multiplied by the probability of gathering the data on the assumption 

19 After the 18th century clergyman Thomas Bayes (1702-1761) who first 

derived it from the rules basic of conditional probability (see Box 2). In our 

view, “basic Bayesianism” is at once a theoretical perspective that accords 

special importance to Bayes’ rule in the confirmation and acceptance of 

theories, a particular interpretation of the probabilities in that rule in terms of 

the strength of beliefs that certain hypotheses are true/false, and a description 

of how rational agents both do and should strengthen or weaken their beliefs 

on the basis of accumulating data. Bayes’ “theorem” is just that, a derivation 

from the axioms/rules of probability theory and the definition of conditional 

probability. It takes the form of a methodological paradigm only with a belief-

interpretation of the probability operators within it and its consequent 

application to the strengthening/weakening of beliefs on the part of individual 

agents. There are any number of variants on this basic theme. Good (1971) 

estimated that there are, at a minimum, 46,556 possible interpretations of the 

Bayesian position (to which he added, “more possible interpretations than 

there are statisticians”). We’ve settled for what might be taken as “the core” of 

the Bayesian position explicit in such classic formulations as (De Finetti, 1937), 

without presuming to judge whether it is the “correct” or “true” account of it. 

There are none such. Moreover, as is made explicit in the final section of this 

paper, our position is not that the Bayesian paradigm is “mistaken,” but that 

like the other major statistical paradigms should be understood to apply to the 

solution of some methodological questions (e.g., hypothesis confirmation and 

personal belief adjustment, but not all methodological questions).

that the hypothesis is true, divided by the probability of gathering the 
data averaged over all hypotheses. In symbols,

 
Pr Pr Pr /PrH D H D H D  � � � � � � � � �x

Data confirm a hypothesis just in case the new data increase its 
probability.20 In symbols, D confirm H just in case Pr(H│D) > Pr(H). 
Simply put, the Bayesian21 learns from experience by raising the 
probability that their beliefs are true by gathering new data that are in 
accord with our beliefs (and by lowering the probability if they 
are not).22

20 Prob(H│D) is called the posterior probability of H, Prob(H) the prior 

probability of H, Pr(D│H) the probability of D conditional on H, and Pr(D) the 

expectedness of D. Data confirm a hypothesis when the posterior probability 

is greater than the prior probability. Many Bayesians, even such excellent ones 

as Kass and Raftery (1995) refer to Pr(D|H) as a likelihood. As discussed in Box 

3—it is not a likelihood as defined by Fisher. The likelihood is ∝Pr(D;H). For 

Bayesians H is a random variable so the bar notation is appropriate, but that 

does not make it a likelihood.

21 Bayesianism has many variations. Some contemporary Bayesians distinguish 

between “actual analysis” and “Bayesian epistemology” and a reviewer of our 

paper has asked us to make both this and the fact that we are doing the latter, 

not the former clear. Here, in part is what we (Brittan and Bandyopadhyay, 

2019) have written about this distinction in the past. Contemporary Bayesianism 

is ostensibly superior to its unacceptably “subjective” original by way of 

restricting allowable priors (see, e.g., Clark, 2005). It is often held to be similarly 

superior to likelihoodism in its apparently unique ability to compute the 

likelihood function in complex statistical inferences from and to hierarchical 

models. These models are very useful, indeed indispensable, in understanding 

the processes underlying complex data. This surmounting of very genuine 

computational problems is undoubtedly an important factor in the popularity 

of these Bayesian methods. But Lele et al. (2007, 2010) recognized that the 

Bayesian computational methods could be used to calculate fully frequentist 

maximum likelihood estimates and their standard errors using an approach 

called “data cloning.” Ponciano et al. (2007) developed an extension to data 

cloning (the data-likelihood ratio of DCLR) that in a similar way affords the 

calculations of likelihood ratios or the differences of information criterion 

values. These are the fundamental tools of evidence, and hence of evidence 

comparing hierarchical models. Thus, the computational advantage enjoyed 

by Bayesian methods is no more than apparent. If one assumes that statistical 

paradigms should (mainly) be compared computationally and conceptually, 

and if in the wake of the work done by Lele and his colleagues there is nothing 

(basically) to choose between the Bayesian and likelihood paradigms 

computationally, then the difference is conceptual, and in this sense 

“philosophical.” In our view, the announcement of philosophy’s irrelevance by 

Clark and others was premature. We thank one of the reviewers for pressing 

us to provide what is otherwise a rather technical argument for the general 

way in which we have framed the contrast between the statistical paradigms.

22 The terms “likelihoodism” and “evidential statistics” are used somewhat 

interchangeably in the literature. It is important to note, however, that the 

likelihood ratio is only an important special case of a more general class of 

measures that constitute the core of evidential statistics. We have chosen the 

ratio of likelihood functions for two reasons: First, it is the most efficient 

evidential function in the sense that we can gather strong evidence for the 
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Evidence on our construal has to do with the relative support 
given by the data for one model over another model independent 
of any beliefs an agent or agents may have. The measure of 
evidence we discuss in this paper is the ratio of likelihoods (see 
Box 3). If some datum is more probable on one model, rather than 
another, i.e., makes one model more likely than another, then if 
gathered is better evidence for the first than for the second. This 
is to say that data constitute evidence only as they are used to 
compare pairs of models. Data constitute evidence for one model 
compared to another just in case the probability of the data on the 
first model is greater than the data’s probability on the second 
model. In symbols, when using the Likelihood ratio as the 
evidence measure:
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One way of marking the distinction between the two concepts is 
to note, following Royall (1997), that confirmation answers the 
question, “given the data, what should we believe and to what degree?” 
while evidence answers the very different question, “do the data 
provide evidence for one model, M1 against an alternative model M2, 
and if so, how much?”

As noted earlier, a foundational scientific assumption is that 
models are almost always approximations. The concept of evidence 
as analyzed in this paper reflects this fact. That is, evidence does not 
necessarily bolster one’s belief that a particular hypothesis/model is 
true or false; it has to do with showing that one hypothesis/model 
is better supported by the available data than another. The second 
distinction follows immediately from the point just made. Evidence 
compares two models while confirmation adjusts belief in a single 
model. Data per se are not evidence except insofar as they serve to 
compare hypotheses, i.e., data constitute evidence only in this sort 
of multi-model context whereas data confirm hypotheses one at 
a time.23

There are at least three key differences between confirmation and 
evidence. First, confirmation is a measure of the degree to which data 
raise (or lower) one’s belief that a hypothesis is true, in this sense is 
agent-dependent, evidence is a measure of the comparative support 
of two (or more) models on the same set of data, and therefore agent- 
and truth-independent. Second, since confirmation is characterized 
in terms of probabilities, its measure must range from 0 to 1. If 
evidence is measured as an arithmetic ratio between likelihoods, its 
numeric value can in principle range between 0 and ∞. If evidence is 
measured as a difference of log-likelihoods its value can range from 
−∞ to ∞. And third, two agents can reasonably disagree about the 

best model with the smallest amount of data and, second the LR brings out 

the essentially comparative feature of evidence in a clear and straightforward 

way. See Lele (2004) for a proof of the first claim and an enlightening discussion 

of evidence functions generally.

23 Or at best when one hypothesis, H1, is the negation of the other, not-H1. 

There is no similar restriction in the case of model comparison, i.e., at least 

two models must be compared but in principle any finite number of models 

may be compared with respect to the same data set.

degree to which a belief is confirmed if their prior probabilities differ, 
but no such disagreement is possible in the case of evidence (which 
is based on nothing more than a logical relation between models 
and data).24

3 Statistical paradoxes

Paradoxes prompt critical thinking in their resolution, in 
particular the way in which their resolution often leads to 
drawing new and significant distinctions. This has been the case 
in the history of both mathematics and physics, as the examples 
of Galileo’s Paradoxes of Infinity and Motion (see Box 1) 
illustrate. However, neither of them is statistical in character. 
From this point on, the discussion will be  focused on some 
statistical paradoxes and on the distinctions that resolve them in 
a very fruitful way.

We discuss three statistical paradoxes. In order to make the 
discussion as clear as possible, in the case of each we first set out the 
paradox, and then identify a distinction that resolves it, finally 
indicate how this distinction in turn serves to resolve some public 
controversies that have an important scientific dimension. In the case 
of the Lottery Paradox, the discussion is extensive and is intended to 
provide a model of critical thinking. In the case of the other two 
statistical paradoxes, the discussion is briefer and intended to 
reinforce points already made.

3.1 Statistical paradox #1: the lottery 
paradox

The lottery paradox was first formulated by Kyburg (1961). 
Suppose a fair lottery with 1,000 tickets. Exactly one ticket will win 
and, since the lottery is fair, each stands an equal chance of doing so. 
Consider the hypothesis, “ticket #1 will not win.” This hypothesis has 
a probability of 0.999. Therefore, we have good reason to believe, and 
in this sense “accept,” the hypothesis. But the same line of reasoning 
applies to all of the other tickets. In which case, we should never accept 
the hypothesis that any one of them will win. But we know, given our 
original supposition that one of them will win.

This paradoxical result is to be avoided, according to Sober (1963), 
by denying that we should ever “accept” a hypothesis. Sober uses the 
lottery paradox to argue for a wholesale rejection of the notion of 
acceptance. But, of course, this is not the only or, we might add, the 
most plausible option.

Sober assumes that a hypothesis is acceptable just in case we have 
very good reason to believe that it is true, i.e., just in case the data 
support or confirm it to a high degree. But the data that only one ticket 
will win in a lottery of 1,000 tickets confirms the hypothesis that the 

24 The Bayes’ factor is a Bayesian analog of evidence. In the simplest case 

where neither model has estimated parameters, then the Bayes’ factor is 

identical to the likelihood ratio. However, if parameters need to be estimated, 

then the Bayes’ factor become highly dependent on the belief based prior 

distributions. See Kass and Raftery (1995) for a detailed treatment of the 

Bayes’ factor.
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first ticket will lose, the second ticket will lose, and so on for all of the 
tickets. But one ticket is sure to win. A highly confirmed hypothesis 
that it will lose is false. Therefore, Sober concludes, we should abandon 
the notion of acceptability, but this, we add, flies in the face of common 
practice as a result. It should be  noted at the outset that lottery 
generalizations and others of the same kind are unusual in this respect 
that their truth does not rest on an inference from sampling data, but 
simply on counting the number of tickets. It can be determined a priori 
that every ticket has the same probability of winning; in a lottery of 
1,000 tickets, the odds of any ticket’s winning are 1/1,000. The point is 
sometimes made that such generalizations are logically not 
empirically true.

This point made, three mistakes in the reasoning regarding the 
Lottery Paradox can be identified. The first mistake is to argue, as 
Sober does, that if one ticket is sure to win, a highly confirmed 
hypothesis that it will lose is false. One should note, however, that 
the probability of a ticket winning is not 0 but 0.001, and the 
probability of a ticket not winning is not 1 but 0.999. So, while one 
may have a good reason for believing that an individual ticket will 
not win, one does not have a good reason for being sure that it will 
not win.

The second mistake in this treatment of the Lottery Paradox is to 
treat the drawing of the different tickets as independent. The events 
are not independent if they were generated by a lottery. If a ticket is 
a winner, then no other ticket can be a winner. If a particular ticket 
is not a winner, then the probability of any other ticket being the 
winner increases because the winning ticket is now one ticket out of 
a pool of tickets whose number has decreased by 1. From these 
simple observations, we  can build an induction that rejects the 
conclusion that there is no reason to believe that any ticket will win 
the lottery.

Say we have purchased all 1,000 lottery tickets and lined them up 
on the edge of a table. We can ask what the probability is that the first 
ticket is not the winner. We know from the rules of this lottery that 
there are 1,000 tickets and 999 of them are not winners, thus from the 
rules of probability (see Box 2) the probability that the first ticket is 
not the winner is 999/1,000. Now let us ask “what is the probability 
that the winning ticket is not in the first two tickets.” This probability 
is the probability the first ticket is not the winner times the probability 
that the second ticket is not the winner (given that first ticket was not 
the winner) that is (999/1,000) (998/999). The probability that the 
winner is not in the first three tickets is the probability that it is not 
in the first two tickets multiplied by an even smaller number 
(997/998).

The multiplier for the ith ticket is (1,000−i)/(1,001−i). The 
multiplier for the 1,000th ticket is 0. Thus, we know to a certainty that 
if these tickets came from a true lottery of 1,000 tickets that the set of 
all tickets will contain the winner.

To round out this critical analysis, we point out that the sense of 
paradox engendered by the lottery paradox is based on an implicit 
equivocation: the statement that “no single ticket is likely to be  a 
winner” is not at all the same as “not one ticket is likely to be a winner.”

In deflating the lottery paradox, we have employed all three 
methods in List 1. First, we  rejected the premise that a low 
probability of something being true is a good reason for believing 
that it is not true. Second, we modified (corrected) a premise on 
how to combine discrete hypotheses into composite hypotheses. 

And third, we have pointed out an equivocation in the statement of 
the lottery paradox.

This way out of the lottery paradox is successful and relatively 
straightforward. The distinction that it draws between “no single 
ticket is likely to be a winner” and “not one ticket is likely to be a 
winner” is both fundamental and widely applicable.25 Moreover, 
failure to make the distinction rests on not taking the prior probability 
of winning or not winning the lottery given the number of tickets 
sold into account, a basic element in any Bayesian calculation of the 
odds of holding the winning ticket. But another equally successful 
way of resolving the Lottery Paradox is perhaps more intuitive and it 
rests on a distinction that is directly relevant to an analysis of the 
concept of evidence.

On Sober’s formulation of the Lottery Paradox, a hypothesis is 
acceptable just in case we have very good reason to believe that it is 
true, i.e., it is well confirmed. We have very good reason to believe of 
every ticket that it will lose. Therefore, the generalization is acceptable. 
But one ticket will win. Paradox. But if every ticket is just as likely to 
be the winner as every other ticket, then there is no evidence that any 
one of them will win or lose. If we  maintain that a hypothesis is 
acceptable only if it is both well confirmed and there is evidence for it, 
then the hypothesis that every ticket will lose is not acceptable. 
Paradox lost.

3.2 Statistical paradox #2: the old evidence 
paradox

The old evidence paradox can be resolved in the same illuminating 
way as the lottery paradox, by making a distinction between the 
probability of the data and the probability of the data given a model. 
It is not a paradox for statistical inference generally, but only for the 
Bayesian account of inference. At the same time, however, its 
resolution helps to reinforce and throw further light on our analysis 
of the evidence concept. The classic formulation of the paradox is due 
to Clark Glymour.26 Before analyzing the paradox, we need to point 
out that the word “evidence” in the name of the paradox is used in 
sense of “data,” or “information,” or simply something that helps 
confirm a hypothesis—not in the model comparison sense we have 
introduced above.

In the actual practice of science, often models come to be accepted 
not because they yield novel predictions that are subsequently verified, 
but because they account more successfully than competing models 

25 Perhaps nowhere more significantly than in courts of law where failure 

to make the distinction has been termed the “prosecutor’s” or “defense 

attorney’s” fallacy, depending on which side invokes it to establish guilt or 

innocence. See Thompson and Schumann (1987). On both sides, it involves 

neglecting the size of the population in calculating the odds of a particular 

result. It might be, for example, that finding a DNA match would be very 

improbable if the accused were innocent, but it does not follow at once that 

it is very improbable that the accused is innocent; if the genetic profile of the 

accused is one of a very large number of similar profiles, then it might well 

be  that the match was no more than random (see Box 2 on conditional 

probabilities).

26 Glymour (1980).
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for observations previously made. Copernicus’ heliocentric theory was 
supported with observations dating back to Ptolemy. The theory of 
universal gravitation was supported by Newton’s derivation of the laws 
of planetary motion that had already been established empirically 
by Kepler.

But Glymour (1980) and others contend that this sort of “old” data 
apparently does not confirm new hypotheses. Glymour argues from the 
fact that in cases of “old” data “the conditional probability of T [i.e., the 
theory or hypothesis] on e [the datum] is therefore the same as the prior 
probability of T” to the conclusion that “e cannot constitute evidence for 
T.” This analysis makes hash of the history of science and of ordinary 
intuition, which is why Glymour dubbed it a paradox.

For clarity, translating this into the notation of this paper: If data D 
are already known when hypothesis H is introduced at time t then 
Pr(D) = 1. Consequently, the probability of D given H, Pr(D│H) must also 
equal 1. Thus, by Bayes’ rule, Pr(H│D) = Pr(H) x 1/1 = Pr(H). That is, the 
posterior probability of H given D is the same as the prior probability of 
H; D does not raise its posterior probability, hence, contrary to practice 
and intuition, does not confirm it.

This analysis fails to take into consideration both the distinction 
between a random variable and a realization of the random variable 
(see Box 2) and the distinction between the probability of an 
observation and the probability of an observation under a model (see 
Box 3). A random variable can be defined “as a variable that takes on 
its numerical values by chance.” A realization is an observation of one 
of those chance values. Part of the philosophical confusion embodied 
in the old evidence problem stems from conflating “knowing or 
observing the data” with “the probability of the data.” More important 
is the misunderstanding of Pr(D│H). This probability is a deductive 
consequence of the model/hypothesis. For this reason, in section 2.1.2, 
we suggested denoting it as Prd(D│H). But regardless of the notation, 
even in a subjective Bayesian analysis, the probability of the data given 
the model cannot be adjusted but must be accepted as a belief based 
on a contingent fact (Lewis, 1980).

It should be clear how the old evidence paradox rests both on a 
failure to distinguish “evidence” from “confirmation” typical of 
philosophical work on the topic of confirmation generally and the 
failure to distinguish Prb(D) (which given observation of D is 1) from 
Prd(D; M) (which is independent of whether the D is observed or 
not). On the generally Bayesian account D is evidence for H if and 
only if Pr(H│D) > Pr(H), where the latter probability is just an ideal 
agent’s current probability distribution. Once this conflation is 
undone, by distinguishing sharply between evidence and 
confirmation, then so too is the paradox. For this conclusion can now 
be seen to be a non-sequitur. “Old” evidence or new, data is data and 
provides fuel for confirmation.27

27 Although some prominent Bayesians, particularly those of an “objectivist” 

orientation, maintain that the air of paradox is illusory. See, for example, 

Rosenkrantz (1983, especially pp. 85-86), Garber (1983) essays a “subjectivist” 

attempt to disarm the problem. See Bandyopadhyay (2002) and Bandyopadhyay 

et al. (2016) for reasons why the Bayesian account of confirmation cannot on 

either of its standard variants, solve the old evidence problem. A variety of 

subsequent Bayesians have maintained that a surrogate for the 

“confirmation”/“evidence” distinction can be made out by tweaking one or 

Perhaps the most celebrated case in the history of science in which 
old data have been used to vindicate a theory concerns the perihelion 
shift (S) of the planet Mercury and the General Theory of Relativity. 
Of the three classical tests of GTR, S is regarded as providing the best 
evidence.28 According to Glymour, however, a Bayesian account fails 
to explain why S should be regarded as evidence for GTR. For Einstein, 
Pr(S) = 1, since S was known to be an anomaly for Newton’s theory 
long before GTR came into being.29 Einstein derived S from 
GTR. Therefore, Pr (S│GTR) ≈ 1. Once again, since the conditional 
probability of GTR given S is the same as the prior probability of GTR, 
it follows that S cannot constitute evidence for GTR. But given the 
crucial importance of S in the acceptance of GTR, this is at the very 
least paradoxical.30

On our Evidentialist account, however, S does constitute evidence, 
indeed, very significant evidence. Consider GTR and Newton’s theory, 
NT, relative to S with different auxiliary assumptions for the two 
theories. Two reasonable background assumptions for GTR are (i) the 
mass of the Earth is small in comparison with that of the Sun, so that 
the Earth can be treated as a test body in the Sun’s gravitational field, 
and (ii) the effects of the other planets on the Earth’s orbit are 
negligible. Let AE represent those assumptions.

For Newton, the auxiliary assumption is that there are no masses 
other than the known planets that could account for the perihelion 
shift. Let AN stand for Newton’s assumption. We  now apply our 
evidential criterion, the Likelihood Ratio, to a comparison of the two 
theories, albeit in a very schematic way. Pr(S│GTR & AE) ≈ 1, 
whereas Pr(S│NT & AN) ≈ 0. The LR between the two theories on 
the data goes approaches infinity, which is to say that S provides a 
very great deal of evidence indeed for GTR and virtually none for 
Newton’s theory.31

another formulations of the “Bayesian” position. To the best of our knowledge, 

none of these efforts has received general acceptance.

28 See Brush (1989), Earman and Janssen, “Einstein’s Explanation of the 

Motion of Mercury’s Perihelion,” in Earman and Janssen (1993) and 

Roseveare (1982).

29 For our purposes, it is not necessary to decide any of the historically 

delicate questions concerning what Einstein knew and when he knew it; what 

he knew or did not know at the time of his discovery of GTR has nothing to 

do, as against Glymour’s Paradox, with the evidential significance of S.

30 As Glymour has shown, the “old evidence” problem continues to haunt 

the Bayesian account of evidence even if the probability of the data is not 

equal to, but close to one. This fact does not bear directly on our resolution, 

however, since it still conflates in a generally Bayesian way the concepts of 

evidence and confirmation that we have argued should be distinguished.

31 It is often held that, whatever the evidential situation, theories once 

accepted are not rejected except insofar as a better theory is available. But our 

way with “evidence” makes precise why this should be the case. Perturbations 

in the orbit of Mercury could not count as evidence against Newton’s theory 

until there was a rival theory on which those perturbations were more likely. 

It is not that we do not want to leave another ship, however much it might 

be sinking, unless another is there to take us on board, but that in the absence 

of a comparison between competing hypotheses, we cannot really know that 

we are sinking. Of course, there was a great deal of evidence for Newton’s 

theory vis-à-vis its Aristotelian and Cartesian rivals.
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Glymour advanced the OEP as the principal reason why he was 
not a Bayesian.32 But it is neither necessary nor advisable to reject 
Bayesianism out of hand, only to assign it its proper roles. These latter 
include among many applications, the estimation of parameters and 
as in this paper, its account of confirmation. A good case can be made 
that a hypothesis or model is scientifically “acceptable” just in case it 
is both well confirmed and supported by strong evidence.33 Evidence 
in itself is not a decision rule, nor is it a confirmation measure. It 
seems perfectly reasonable for a scientist or a community of scientists 
to continue to probe a model evidentially, by compiling more data, or 
by comparing the original model with new models until the 
community is satisfied. Moreover, while the testing of models and the 
measurement of the evidence for and against them are best 
understood in terms of their respective likelihood ratios, the Bayesian 
account of the basis on which to choose the models to test is very 
plausible, having to do as it does with choices made by 
individual scientists.

3.3 Statistical paradox #3: Humphreys’ 
paradox

Humphreys’ paradox (HP) questions the probabilistic nature of 
propensity. Although the statement and analysis of HP was originally 
quite technical its gist can be simply stated. Humphrey (1985) noticed 
that if propensity is considered as a conditional probability, i.e., 
Prp(D|C), where D is some observed event and C is the conditioning 
event, no matter how one twists and turns some contradiction occurs 
(Humphreys, 1985, 2004). The most fundamental of these is a 
violation of time irreversibility. An application of Bayes’ theorem (see 
section 2.1.5 and Boxes 2 and 3) indicates that data (observed after the 
fact) can influence the conditioning event.

The HP has withstood decades of critical analysis.34 The conclusion 
is consistent: Whatever propensity is, it cannot be  expressed as 
Prp(D|C). In section 2.1.3 and in Boxes 2, 3, we distinguished two 
kinds of conditioning that occur in statistics and stochastic processes. 
One can condition on a random variable, or one can condition on a 
fixed effect. Conditioning on a random variable (B) restricts to a 
subset of the sample space that the probability of the event A is being 
calculated over. Likewise conditioning on A restricts to a subset the 
sample space that the probability of B is being calculated over. 
However, if one conditions on a fixed value B, the value of random 
variable A has no effect on the fixed value because it is well fixed. The 
rules of probability that Humphreys (1985) found violated involve 
conditioning on random variables.

Considering propensity as a random distribution conditioned on 
fixed values (i.e., generating conditions or states) dissolves Humphreys’ 
paradox (Ballantine, 2016). When thinking about Humphreys’ 
paradox, it is important to realize that while the propensity is a 
property of the generating conditions, the generating conditions are 
not a property of the propensity. Different generating conditions may 
induce the same propensity.

32 See his “Why I Am Not a Bayesian” in Glymour (1980).

33 See Bandyopadhyay and Brittan (2006).

34 See for example, McCurdy (1996), Douet (2011), and Lyon (2014).

Early 20th-century statisticians, scientists, and philosophers 
took the lesson from Hume that since cause was not knowable it 
should not be studied. Increasingly since the late 20th century 
scientists, statisticians, and philosophers have come to recognize 
that while mechanism may not be knowable, it is a reasonable 
object, and perhaps one of the primary goals of scientific study. 
What is revelatory in this analysis of the HP is the weakness of 
Bayesian methods in the pursuit of mechanism that is propensity. 
Bayesian analysis depends on Bayes’ rule. Which depends on 
conditioning on random variables. Bayes rule is a valid tool when 
conditioning on random variables but not when conditioning on 
fixed conditions (Pearl, 2000; Ballantine, 2016) in the same way 
that Euclid’s theorems hold for objects on a plane, but not 
unmodified for objects on a curved surface. The study of the 
partitioning of sample spaces by random variables is the study of 
correlations, or more generally statistical dependence. In Box 3, 
we show that Bayes’ rule can be written in terms of the correlation 
between random variables, whether discrete, continuous, 
or mixed.

It is natural to assume that the tendency of a model to generate a 
particular sort or set of data represents a causal tendency on the part 
of natural objects represented in the model to have particular 
properties or behavioral patterns. This tendency or “causal power” can 
be both represented and sometimes explained by a corresponding 
model. In our view, a fully objective account of evidence requires that 
we must make this realist assumption and thus take model probabilities 
as modeled propensities. Thus, the distinctions we have drawn among 
the four kinds of probabilities greatly clarify how probability can 
be  used to learn about both pattern and process in science (see 
Figure 1).

Humphreys’ paradox, on the other hand, indicates both that 
propensity needs to be somehow differentiated from other kinds 
of probabilities and that the rules of probability (at least as stated 
by Kolmogorov, 1956) do not quite apply to propensity.

Probabilities, and their partitioning by Bayes’ rule are static (see 
Box 2), but propensities are dynamic. Propensities generate 
probabilities depending on the full set of conditions impinging at a 
given time. This leads us to the realization that the conditions at one 
time probilistically cause the conditions at a second time, which in 
turn probabilistically cause the conditions at a third time.35 
Probability theory by itself cannot elucidate causation because 
probabilities are invertable (see Box 2) and causation is not.

The great geneticist Sewall Wright had the spectacular insight that 
one can predict the correlations among variables that would develop 
under an assumed causal model. Or conversely, one could estimate the 
magnitude of causal effects from observed correlations and an 
assumed schema of causal interactions.

But it would often be desirable to use a method of analysis by 
which the knowledge that we have in regard to causal relations 

35 Here we are making the foundational assumption that cause is real, and 

that time is irreversible, at least on the time scale of humanities existence. This 

is in keeping with the thinking of most modern cosmologists (e.g., Hawking, 

1996), but is certainly not uncontested. If this essay were a medieval map, it 

would be appropriate to mark this position with “here be dragons.”
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may be combined with the knowledge of the degree of relationship 
furnished by the coefficients of correlation. […] In a rough way, 
at least, it is easy to see why these variables are correlated with 
each other. These relations can be represented conveniently in a 
diagram like that in figure r, in which the paths of influence are 
shown by arrows (Wright, 1921).

It is the arrows in path analysis that capture the non-invertibility 
of propensity correctly. Modern descendants of path analysis include 
structural equation modeling (Bollen, 1989) and do-calculus (Pearl, 
2000). Much of both the statistical and the pragmatic scientific 
literature has disparaged all varieties of causal analysis because the 
necessarily assumed causal models cannot be  proved (Denis and 
Legerski, 2006).

But with an evidential analysis models are not proved, disproved 
or confirmed. Alternative models are compared by the degree to 
which they can approximate real data. Alternative causal models can 
be compared to each other and even with non-causal models (Taper 
and Gogan, 2002; Taper et al., 2021).

In summary, the resolution of Humphrey’s paradox is to 
recognize that Humphrey was right. Propensity/cause cannot 
be characterized fully by probability. However, because propensity is 
probability generating it can be inserted into statistical analysis point 
wise and studied using deductive probabilities. The facts that the 
causal models must be assumed a priori and that the models are 
almost surely not true but only approximations do not block 
statistical inference but do suggest the comparative approach of 
evidential statistics may be more fruitful than either Bayesian analysis 
or classical hypothesis testing.36

36 As we pointed out in List 1, item 3, sometimes to make a new distinction 

some older distinctions need to be amalgamated (at least partially). Our analysis 

of Humphreys’ paradox reveals such a juncture. Fisher (1921) was unequivocal 

(and with stated good reasons) that probability and likelihood applied 

incommensurably to different categories of objects (see discussion in Box 3). 

If we follow our causal model interpretation of propensity through, we can 

see that although probability and likelihood are different mathematically (for 

the reasons given in Box 3) they may both apply to the same object. Let us 

assume that the conditions under consideration are something potentially 

4 Distinction making in real science

4.1 COVID

An example of weak confirmation and strong evidence with 
widespread implications has to do with the “base-rate fallacy” which 
infects most people’s uncritical thinking.37 The example has to do with 
the much-circulated claim that vaccines are ineffective in preventing 
COVID-related infection/hospitalization/death. This claim rested on 
correlations between, e.g., COVID-related death rates and 
vaccination status.

The U.S. Centers for Disease Control and Prevention … compared 
data from 28 geographically representative state and local health 
departments that keep track of COVID death rates among people 12 

observable, such as the abundance of the local population of some wild species 

at a given time, Nt. Now consider three time periods 1, 2, and 3. If we observe 

N1, we can predict N2. By predict we mean assign a probability to each possible 

alternative N2. What if we observe N3 but not N2 or N1? Under this set up, N2 

can be thought of as a parameter in the causal model generating N3 so N2 is 

estimated using a likelihood.

37 Attention to which was first drawn by M. Bar-Hillel in her 1975 doctoral 

dissertation, Subjective Judgments of Probability, and then brought to a much 

wider audience in Amos Tversky and Daniel Kahneman’s paper, “Judgment 

under Uncertainty: Heuristics and Biases.” The Tversky and Kahneman paper 

is included in an Appendix to Kahneman’s immensely valuable and very widely 

read book (Kahneman, 2011). It begins with these words: “Many decisions are 

based on beliefs concerning the likelihood of uncertain events…What 

determines such beliefs? How do people assess the probability of an uncertain 

event or the value of an uncertain quantity? This article shows that people rely 

on a limited number of heuristic principles which reduce the complex tasks 

of assessing probabilities and predicting values to…heuristic principles [that] 

are quite useful, but sometimes they lead to severe and systematic errors.” The 

following paragraph makes explicit that the probabilities at stake are subjective, 

i.e., that heuristics are often needed to determine their value and that the 

“errors” to which they sometimes lead constitute significant biases. We will 

identify some of the biases in what follows and put the general point in 

perspective in the fifth section of this paper.

FIGURE 1

Schematic representation for the relationships among kinds of probabilities in a statistical inference. In subjective Bayesian statistics, matching is 
measured by degrees of belief using Bayes formula. In likelihood or evidential statistics, matching is measured through evidence (see Box 3).
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and older in relation to their vaccination status, including whether or 
not they got a booster dose, and age group. Each week in March, on 
average, a reported 644 people in this data set died of COVID. Of 
them, 261 were vaccinated with either just a primary round of shots 
– two doses of an mRNA vaccine or a single dose of Johnson and 
Johnson’s vaccine -or with that primary series and at least one shot of 
a booster (Montañez and Lewis, 2022).

These numbers appear to indicate that roughly 40% of those 
vaccinated died anyway, in which case the shots were not much 
better than marginally effective. What was not taken into account, 
however, was the fact that the vaccinated or boosted population 
was much greater, 127 million, than the unvaccinated, 38 million. 
A much smaller fraction of vaccinated or boosted people are 
likely to die from the disease, but since there are many more of 
them, the total number of deaths among the vaccinated will 
approach and if sufficiently large surpass the number among 
the unvaccinated.

This is an instance of the “base-rate fallacy” neglecting to take 
into account the relative frequency with which a particular property, 
in this case being vaccinated, occurs in a given population, in this 
case living in the United States. Once the fact that a sizable majority 
of the people in this country have been vaccinated is taken into 
account and the relative mortality rates adjusted, it is clear that they 
are much less likely to die from COVID infections. Given that no 
more than 60% of those sampled in a given week survived, the 
effectiveness of vaccination seems weak. But as soon as the number 
of those vaccinated is considered, it is clear that there is ample 
evidence for vaccine effectiveness.

Another way to underline the disparity between the mortality 
rates of the vaccinated and unvaccinated, and to connect the 
importance of the base-rate to the distinction between 
confirmation and evidence,38 is to focus on incidence rates, e.g., the 
number of deaths per 100,000 people per week. Among the 
unvaccinated in March of 2022, it was 1.71, among the vaccinated 
0.22, among the vaccinated and boosted 0.1. That the death rate 
was so low among the unvaccinated led many people to simply 
shrug off the need to visit their pharmacist. But it also entails that 
the degree to which the efficacy of vaccination is confirmed is very 
weak, the result of taking the base-rate into consideration as the 
prior probability in a Bayesian calculation. Note, however, that on 
the basis of their respective incidence rates an unvaccinated person 
is 7.7 times more likely to die than a vaccinated, 17.1 times more 
likely to die than someone who has also received a booster shot.39 
This is, moreover, just what the calculation of evidence reveals, that 
the ratio of mortality rates in the first case is 7.7, in the second 17.1, 
i.e., that the preponderance of evidence supports the efficacy of 

38 Klement and Bandyopadhyay (2021) was the first study, clinical in character, 

to connect the belief/evidence distinction to tests of vaccine effectiveness.

39 More recent figures, gathered by the Centers for Disease Control from 

20 U.S. jurisdictions and adjusted for confounders and for adults ≥65 years (the 

group most at risk of dying from COVID in its variant forms) show similar 

mortality risk ratios between 8.4 (87% effectiveness) and 16.3 (98% effectiveness) 

for those unvaccinated as against those vaccinated + a bivalent booster dose 

see Johnson et al. (2023).

vaccination, especially when boosted. A large number of 
retrospective analyses have calculated that vaccinations make a 
large difference in the real world. For example, Steele et al. (2022) 
calculated that in just the first 10 months after vaccines became 
available about 235,000 lives were saved due to vaccination. This is 
a rather dramatic public policy demonstration of the fact that 
confirmation needs to be distinguished from evidence and that 
evidential considerations are crucial when public policy decisions 
are being made.

4.2 Climate change

In our discussion of the effectiveness of COVID vaccines above, 
we  made clear how assimilating confirmation and evidence is a 
potential source of the base-rate fallacy and in turn how the distinction 
between them makes vivid the strength of the claims for the 
effectiveness of the vaccines. Another example, already mentioned in 
connection with the failure of public opinion to align with scientific 
consensus, concerns the hypothesis that global climate change, 
together with its deep and widespread impact on our planet’s plant and 
animal life, is mainly the result of human activities, burning carbon-
emitting fossil fuel for energy in particular. We discuss this example in 
some detail, not only to underline the importance of the distinction 
between confirmation and evidence to resolving at least some of the 
controversy surrounding it, but also to extend our discussion of 
COVID vaccines by showing how the distinction can be  used to 
demonstrate the difference between correlation and causation. This 
second difference is as critical to critical thinking as the first, and what 
we take to be a more or less general failure to take them seriously in 
dealing with large-scale policy and implementation questions is, at 
least in our view, only too evident. The second example calls for a more 
detailed discussion than did the first. The COVID vaccination 
controversy is, we hope, short-term. The climate change controversy 
has been with us for decades. Coming to terms with the arguments on 
each side involves making more than one distinction.

Simply put, the climate change hypothesis is that present and 
accelerating warming trends are human induced (“anthropogenic”). 
A wide spectrum of data raises the posterior probability of the 
hypothesis, in which case they confirm it. Indeed, in the view of 
virtually all climatologists, this probability is very high. The Inter-
governmental Panel on Climate Change contends that most of the 
observed temperature increase since the middle of the 20th century 
has been caused by increasing concentrations of greenhouse gases 
resulting from human activity such as fossil fuel burning and 
deforestation. In part, this is because the reasonable prior belief 
probability that global warming is human induced is very high. It 
is assigned not on the basis of observed relative frequencies so 
much as on the explanatory power of the models linking human 
activity to the “greenhouse effect,” and thence to rising temperatures. 
In part, the posterior probability of the hypothesis is even higher 
because there are so many strong correlations in the data. Not only 
is there a strong hypothesized mechanism for relating greenhouse 
gases to global warming, but also this mechanism has been 
validated in detail by physical chemistry experiments on a micro 
scale, and as already indicated there is a manifold correlation 
history between estimated CO2 levels and estimated 
global temperatures.
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Some climate sceptics question these conclusions. The main skeptical 
lines of argument are that (a) the probability of the data on the alternative 
default (certainly simpler) hypothesis, that past and present warming is 
part of an otherwise “natural” and long-term trend, and therefore not 
“anthropogenic” is just as great, (b) that the data are at least as probable 
on other, very different hypotheses, among which solar radiation and 
volcanic eruption, and (c) that not enough alternative hypotheses have 
been considered to account for the data. That is, among credible climate 
skeptics there is some willingness to concede that burning fossil fuels leads 
to CO2 accumulation in the atmosphere and that carbon dioxide is a 
greenhouse gas that traps heat before it can escape into the atmosphere, 
and that there are some data correlating a rise in surface temperatures 
with CO2 accumulation. But, the skeptics continue, these correlations do 
not “support,” let alone “prove,” the anthropogenic hypothesis because 
they can be equally well accounted for on the default, “natural variation” 
hypothesis or by some specific alternative. But this conclusion rests on a 
conflation of evidence with confirmation and provides a striking reason 
why it is necessary to distinguish the two.

Even the NASA Global Climate Change website under the 
heading “How Do We Know Climate Change is Real?” embeds the 
confusion. The website lists four “takeaways,” the main premises in the 
argument for anthropogenic climate change:

 1 “While Earth’s climate has changed throughout its history, the 
current warming is happening at a rate not seen in the past 
10,000 years.”

 2 “According to the Intergovernmental Panel on Climate Change 
(IPCC), ‘Since systematic scientific assessments began in the 
1970s,’ the influence of human activity on the warming of the 
climate system has evolved from theory to established fact.”

 3 “Scientific information taken from natural sources (such as ice 
cores, rocks, and tree rings) and from modern equipment (like 
satellites and instruments) all show the signs of a changing climate.”

 4 “From global temperature rise to melting ice sheets, the 
evidence of a warming planet abounds.”

But (1) rests on the high correlation between the rates of fossil fuel 
emissions and globally averaged temperature increases and offers no 
further reason for thinking they are causally connected, (2) is an 
argument from authority and, however respected the membership of 
the IPCC, forestalls rather than invites critical thinking on the part of 
the under-informed public, everyone grants that (3) is true, i.e., that 
the climate is indeed changing (when the question is why), and (4) 
once again provides no reason to think that climate change is wholly 
or even significantly caused by human activities.

To be clear, the facts alluded to in (1), (3), and (4). all provide 
excellent reasons for believing that global warming is both real and 
rapid, a high degree of confirmation. But they do not disarm the 
sceptics who insist on evidence for the claim that it is human caused 
as opposed to a natural trend.

Data are evidentially relevant only if they discriminate among 
hypotheses, and such data in the case of human-induced warming are 
rarely mentioned. But they are available.40 There are three isotopes of 

40 What follows draws on the NOAA Global Monitoring Laboratory/Earth 

System Research website under the headings “Isotopes: The Basics” and 

carbon atoms, each with a different mass—carbon-14 (14C) the heaviest, 
carbon-13 (13C), and carbon-12 (12C), the lightest and most common. All 
three are present in CO2 molecules. Their relative proportion in the 
sources and sinks of  CO2 varies. Briefly, “the smaller the [change in the 
percentage of a] 14C value in a measured sample, the fewer 14C atoms in it, 
and the more of its carbon dioxide is from fossil fuel emissions,” therefore 
the percentage of atmospheric CO2 that comes from fossil fuel emissions 
is increasing. In particular, if the CO2 atmosphere comes from the surface 
(and not the depths) of the ocean, then 13CO2 will increase over time. If 
the CO2 comes from fossil fuel burning, then the relative abundance of 
13CO2 to 12CO2 will decrease. Experimental results show that while CO2 
concentration is increasing the 13CO2/12CO2 ratio is decreasing. Because 
a decreasing 13CO2/12CO2 ratio is much more probable under the 
anthropogenic model than the surface water model, the observed 
decrease is evidence for the hypothesis that fossil fuels rather than surface 
water are mainly responsible for rising levels of CO2 in the atmosphere, 
and hence (on the assumption that rising levels of CO2 are a cause of rising 
temperatures) for the anthropogenic hypothesis. Isotopes are often 
described as “fingerprints;” in the case of climate change as commonly in 
court proceedings they provide excellent evidence of the culprit’s identity 
and guilt.

Does critical thinking about climate change require digging into the 
isotopic evidence? Not in general. But here as everywhere it requires at 
least raising the question: are there data on the basis of which we can 
compare the anthropogenic model with one or more of its “natural cause” 
alternatives and determine in a precise way whether it is more likely on 
these data than the others? As noted at the outset, discussions of “critical 
thinking” invariably insist that among other things it is “evidence-based.” 
But “evidence” must be characterized more carefully as we have here 
before it has any real bite, one that is capable of distinguishing generally 
between various models all of which are consistent with or can 
be correlated with the data.

If that distinction is not made, then neither is the case for human-
caused climate change. But of equally great inferential import, neither 
can a distinction be made between correlation and causation. The 
correlation of the data with the predictions of a model, however close, 
does not by itself entail whether the variable identified in the model 
was causally responsible for the occurrence of the data unless other 
variables that might have been responsible for the occurrence of the 
data can be ruled out. This is often put by saying that correlation per 
se does not rule out the possibility of alternative models that explain 
the data better.

5 Context and coda

A major premise of this paper is that while universally lauded, 
“critical thinking” is so generally characterized as to provide little 
direction for those who wish to engage in it. The great American 
philosopher Dewey (1910), sometimes held to be  “the father of 
contemporary critical thinking,” wrote that it entailed “active, 
persistent, and careful consideration of a belief or supposed form of 
knowledge in the light of grounds which support it and further 

“Isotopes: The Data.” Of necessity, we have very much simplified and shortened 

what is in fact a complex story.
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conclusions to which it tends.” “The grounds which support it” may 
be taken as roughly synonymous with “evidence.” Virtually every 
discussion of critical thinking with which we are familiar invokes the 
term and leaves it at that. Our effort here has been to analyze it in 
enough detail to extract some relatively uncomplicated ways in which 
to understand and apply it.

The analysis has two principal components: that evidence best 
understood involves the comparison of two or more models and that 
the most efficient and in our view, intuitive way to compare them is in 
terms of their respective expected likelihood ratios.

A geologist, Chamberlin (1900), introduced the necessity of multiple 
working hypotheses in 1890, in large part to curb a natural tendency to 
“press a theory to make it fit the facts and a pressing of the facts to make 
them fit the theory.” When the theory is our own, we today call this 
“confirmation bias.” Chamberlin (1900) thought that the practice of 
simultaneously entertaining several working hypotheses, “when faithfully 
followed for a sufficient time, it develops a mode of thought of its own 
kind which may be designated the habit of complex thought…” which 
mitigates confirmation bias.

Although the multiple method was and continues to be standard in, 
among other sciences, physics and chemistry—the comparison of the 
GTR with the Newtonian calculation of planetary orbits by way of more 
precise measurements of perturbations in the orbit of Mercury is a 
paradigm example—it was neglected in biology, psychology and other 
more “observational” sciences. With this in mind, the physicist/
biophysicist, Platt, published an article in 1964 on “Strong Inference,” 
reviving and extending Chamberlin’s line of thought. It consisted of 
“applying the following steps to every problem in science…”

 1 Devising alternative hypotheses.
 2 Devising a crucial experiment (or several of them), with 

alternative possible outcomes, each of which will, as nearly as 
possible, exclude one or more of the hypotheses.

 3 Carrying out the experiment so as to get a clean result.

(Recycling the procedure, making subhypotheses or sequential 
hypotheses to refine the possibilities; and so on).

Platt thought that if these steps were rigorously followed, not only 
would bias be curbed but much more “rapid and powerful progress 
would be made” (as in physics).

Although Platt’s article was much celebrated,41 it failed to alter the 
conduct of hypothesis or model testing in biology and the social sciences 
in a mainstream way. In a 2017 article, “Why are we not evaluating 
multiple competing hypotheses in ecology and evolution, Betini et al. 
(2017), found that “Only 21 of 100 randomly selected studies from the 
ecological and evolutionary literature tested more than one hypothesis 
and only eight tested more than two hypotheses.” He and his colleagues 
then went on to list three forms of cognitive bias – confirmation, pattern 
seeking, and belief42—that the multiple hypothesis method would 

41 Both the Chamberlin and Platt articles should be included in every STEM 

Critical Thinking Course syllabus.

42 Confirmation bias, emphasized by Chamberlin and by Tversky and 

Kahneman, is to look for and weight more heavily evidence that supports 

favored ideas. As Francis Bacon put it, “the human understanding when it has 

once adopted an opinion… draws all things else to support and agree with it.” 

eliminate and identify several intellectual and practical barriers that 
discourage scientists from using it more widely. Among other points 
made is that the method not simply encourages but enforces more creative 
thinking in coming up with alternative hypotheses and models.43 In this 
respect, no sharp distinction between “critical” and “creative” thinking 
should be made.

But there is a difficulty with “strong inference” as outlined 
above, viz., that on it “crucial experiments” are possible that lead to 
the “exclusion” of one or more of the hypotheses under 
consideration. This is often but not always the case, and rarely so 
when the hypotheses are statistical in character or their claims 
established on the basis of statistical inferences. In this increasingly 
common sort of case, it is not so much a question of excluding one 
or more hypotheses or models as of weighing the evidence for one 
as against the other(s). This is the second component of our analysis 
of evidence: a way to compare alternative hypotheses that avoids the 
inappropriately binary “accepted”/“excluded.” As the papers cited 
all admit, to this point in time no hypothesis in any science has been 
permanently “accepted” or “included”; rather, we would say, there 
is at any point in time more evidence in support of one than of the 
others. There are a variety of ways in which to measure the 
evidential support of one hypothesis or model as against another. 
For a number of reasons given in the body of this paper, we favor 
likelihood ratios.

Chamberlin and Platt urge several critical-thinking “habits” of 
mind. We recommend that the following be included among them.

List 3: Healthy habits of mind:

 1 Wherever possible test alternative hypotheses/models. It is likely 
that there is a better alternative to the one you have already 
decided to test.

 2 Weigh the evidence for and against hypotheses and models using 
evidence measures such as the likelihood ratio. Remember that 
it is always with respect to particular datasets.

 3 Distinguish evidence and confirmation and recognize the 
different roles that each plays. In the process, abandon uniform 
adherence to one statistical paradigm—Bayesian or 
Likelihoodist, for example. Different problems require different 
paradigms for their solution.

 4 Remember that making an adequate distinction is often the best 
way to think critically about a problem. Let it become a habit.

 5 At least from time to time, ponder a paradox.

Pattern seeking bias is simply the human tendency to find patterns, even when 

there are none to be found. As Bettini et al., point out: “a regression analysis 

on two randomly generated independent variables will indicate a significant 

relationship 5% of the time. The higher the number of independent variables 

the higher the possible combinations that will, just by chance, come out as 

significant. Belief bias has to do with the fact that when faced with a conflict 

between logic and prior knowledge, many of us routinely go with prior 

knowledge. Again Bettini et al.: “Empirical evidence suggests that researchers 

are more likely to find support for an effect that does not exist than to find 

evidence that reject the effect.” The method of multiple hypotheses is intended 

to curb if not eliminate these biases, although they also often forestall use of 

the method.

43 See Taper and Ponciano (2016).
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