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Abstract. Aerial images resulting from unmanned aerial vehicle (UAV) are widely used to estimate tree 

height. The filtering method is required to distinguish between ground and off-ground point clouds to 

generate a canopy height model. However, the filtering method is not always perfect since UAV data cannot 

penetrate canopies into the forest floor. The release of iPhone/iPad devices with built-in LiDAR sensors 

enables the more affordable use of LiDAR for forestry study, including the measurement of local topography 

below forest stands. This study investigates to what extent iPhone/iPad LiDAR can improve the accuracy of 

canopy height model from the UAV. The integration of UAV and iPhone/iPad LiDAR data managed to 

increase the accuracy of tree height model with a mean absolute error (MAE) of 2.188 m, compared to UAV 

data (MAE = 2.446 m). This preliminary study showed the potential of combining UAV and iPhone/iPad 

LiDAR data for estimating tree height.

1 Introduction 

Three-dimensional arrangement of individual trees 

within a forest has a significant impact on ecosystem 

functions as well as nutrients, water, and carbon cycles 

[1]. Tree height has been widely used to describe tree 

volume, biomass, and carbon stock, which are important 

for forest management [2,3].  

Traditionally, tree height is measured using tangent 

method by means of survey tools that can quantity 

angles, such as clinometer [4]. The more recent 

terrestrial method employs laser rangefinders to directly 

measure tree height using laser technology [5]. 

However, this conventional approach takes intensive 

labour and time and is limited when implemented in 

dense and tall canopy forests [4,6,7]. 

The use of photogrammetry technique from aerial 

photos taken by unmanned aerial vehicles (UAVs) to 

calculate tree height has been commonly used these 

years [8,9]. UAV image captured the height of surface; 

thus, to obtain information on tree height commonly 

called canopy height model, the terrain conditions need 

to be eliminated using filtering method [10,11]. Despite 

filtering method implemented, in some cases, an 

inaccurate canopy height model may occur since aerial 

image cannot penetrate canopies. 

Light detection and ranging (LiDAR) sensor has the 

ability to penetrate the gaps within tree crowns and 

capture the middle part of stands and even the forest 

floor [12,13]. Nonetheless, the use of LiDAR 

technology is costly in current. Alternatively, a low-cost 

Hand-held Laser Scanning (HLS) has been introduced 

by Apple in 2020 by releasing iPhone and iPad products 

with a built-in LiDAR sensor [14]. Although the 
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measurement range is far below traditional LiDAR 

sensor (maximum distance of 5 m), iPhone/iPad LiDAR 

can precisely measure objects [15]. This device has been 

explored for forest inventory and reported to provide 

reliable information comparable to terrestrial and 

mobile laser scanner [16,17].  

As iPhone/iPad LiDAR scans objects on the ground, 

it offers an opportunity to be integrated with UAV-based 

surface model to generate canopy height mode (CHM). 

Thus, this present study investigates the feasibility of 

apple lidar to improve CHM generated by UAV. 

2 Methodology 

2.1 Study area 

Our study area is located in Wanagama I Education 

Forest or simply called Wanagama Forest. Wanagama 

Forest is situated in Yogyakarta, Indonesia with a total 

area of 622.25 ha. This study focused on the teak stands 

(Tectona grandis) in Plot 13 of Wanagama Forest with 

an extent between 110.5286°–110.5334° E and 

7.8968°–7.9066° S or 448041–448565 mE and 

9127080–9125999 mN (UTM Zone 49M) (Figure 1). 

The teak stands comprise two different types, i.e., Mega-

clone type and conventional type. The Mega teak stands 

were planted in 2004 with a planting distance of 6 × 2 m 

[18]. Compared to conventional teak, Mega teak has 

superior growth characteristics in diameter, height, and 

stem alignment [19]. 
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Fig. 1. Study area located in Wanagama I Education Forest, 

Yogyakarta, Indonesia. 

2.2 Materials and methods 

This study compared tree height estimates derived from 

UAV and the integration between UAV and LiDAR 

data. The flowchart is illustrated in Figure 2, while the 

detailed methods are provided in the following sub-

sections. 

 

Fig. 2. Flowchart of the present study. 

2.2.1 Aerial images 

Aerial images were taken by deploying three quadcopter 

drones simultaneously to minimise the time difference 

in capturing the study area. We used DJI Mavic 2 Pro 

with an autopilot according to the planned flight paths 

programmed on DroneDeploy. The flight height was 

150 m from the ground at the base station, while the 

overlap and sidelap were set to 80%. The aerial images 

were processed in Agisoft Metashape using Structure 

from Motion (SfM) algorithm to generate georeferenced 

orthomosaic and 3D data in the form of point clouds 

[20]. The resulted orthomosaic has a spatial resolution 

of 4 cm (Figure 3a). 

2.2.2 iPhone/iPad LiDAR data 

The Apple products equipped by a LiDAR sensor are 

iPhone 12 Pro, iPad Pro 2020, and the latest Pro version 

of those models. This study utilised iPhone and iPad 

mobile devices to record the point clouds of the ground 

surface using the LiDAR sensor operated with 

ForestScanner application [15].  

The iPhone/iPad LiDAR scanning system was 

operated by holding the devices at the breast height 

(±1.3 m) while walking along the transects. The 

transects were designed to with a minimum distance of 

40 m and considers the variability of topography. There 

were 11 transects within the teak plantation areas 

(Figure 3b). 

2.2.3 Canopy height model 

The point clouds generated from SfM processing 

contain X and Y coordinates, and Z value which 

represents a relative height to the ground of all surface 

objects. A filtering method was implemented to 

distinguish off-ground from ground objects. We used a 

cloth simulation filtering (CSF) approach by inverting 

the Z plane before a simulated cloth drops the surface to 

cover the inverted surface then performing a re-

inversion [21]. 

 

Fig. 3. (a) Aerial images captured from UAV and (b) 

visualization of filtered LiDAR point clouds measured 

showing the elevation of the terrain condition captured by 

iPhone/iPad. 

The point cloud processing was conducted in 

CloudCompare software. CSF algorithm was applied on 

UAV point clouds with user-defined parameters. Cloth 

resolution, maximum iteration, and classification 

threshold were set to 1.2, 500, and 0.5, respectively, and 

a slope factor was set to “Relief” terrain condition. 

Subsequently, point cloud noise elimination was 

performed. CSF method was also implemented for the 
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iPhone/iPad LiDAR data to eliminate tree stems and 

other non-surface objects which were recorded during 

the scanning. The parameters selected to filter 

iPhone/iPad LiDAR data are cloth resolution = 0.8, 

maximum iteration = 500, and classification threshold = 

0.5. 

Using the Rasterize tool in CloudCompare, the off-

ground UAV point clouds were transformed into digital 

surface model (DSM) with a resolution of 4 cm. 

Similarly, the ground UAV point clouds were rasterized 

to produce digital terrain model (DTM). We also 

combined the ground UAV point clouds with filtered 

iPhone/iPad LiDAR data to generate DTM. Canopy 

height models (CHMs) were generated by a subtraction 

between DSM and DTMs with and without the 

integration with LiDAR data. A mean filtering was 

applied to the CHMs using a 3 × 3 window to minimise 

the extremely different values. 

2.2.4 Tree height data 

The ground truth data of tree height were measured 

using Nikon Forestry Pro II laser rangefinder with 2-

points measurement mode. The tree height here refers to 

Larjavaara and Muller-Landau [4], who defined it as the 

vertical distance between the topmost of the tree (either 

living or dead part) and the base of the tree. We 

measured the tree height within approximately 20 × 20 

m plots with a total of 6 sample plots. The measured tree 

locations were recorded using the iPhone/iPad LiDAR 

devices.  

The tree height data were derived from the CHMs by 

calculating the maximum height value within the crown 

of the corresponding trees. The tree crowns were 

delineated visually from the orthomosaic. In total, there 

are 148 tree height data for the analysis (Figure 4). 

 

Fig. 4. Orthomosaic of the teak plantation area and the 

distribution of tree height samples collected in the field. 

2.2.5 Data analysis 

One-way analysis of variance (ANOVA) (α = 0.05) was 

carried out to test the significant differences of tree 

height and CHMs generated from UAV and UAV + 

iPhone/iPad. In addition, Pearson’s correlation analysis 

was conducted between tree height data and both 

CHMs, separately. Further, a linear regression analysis 

was performed with the ground truth data as the 

independent variable. We randomly divided the tree 

height data into two groups, i.e., training (104 samples) 

and validation (44 samples). The accuracy assessment 

was conducted by calculating the mean absolute error 

(MAE). 

3 Results and discussion 

CSF algorithm was intended to separate between the 

ground and off-ground surface of the point clouds 

generated from UAV data. The point clouds containing 

off-ground surface were used to produce digital surface 

model as shown in Figure 5a. The digital terrain models 

were derived from the UAV point clouds only and the 

combination of UAV point clouds and iPhone/iPad 

LiDAR. As depicted in Figure 5, visually, there are no 

significant differences between both resulted DTMs. 

While the profiles plotted as shown in Figure 6, the 

discrepancy is quite clear, where local terrain conditions 

below the teak stands varied as shown by the DTM from 

UAV + iPhone/iPad LiDAR. It can be seen that DTM 

derived from UAV + iPhone/iPad is smoother following 

the local topography compared to DTM from UAV that 

interpolated area between ground points indicated by the 

plain terrain as shown in Profile A. However, some 

errors were also recorded using iPhone/iPad, showing 

the rough topography and extreme slopes. This might be 

due to an imperfect filtering method in excluding the 

off-ground points.  

 

Fig. 5. Rasterization results of point clouds: (a) digital 

surface model, (b) digital terrain model derived from UAV, 

and (c) digital terrain model derived from the combination of 

UAV and iPhone/iPad LiDAR. 

Canopy height models (CHMs) were generated from 

the subtraction results between DTMs and DSM, thus 

resulting in CHM from UAV and CHM from UAV + 

iPhone/iPad (Figure 7). At a glance, the UAV CHM 

shows higher values than UAV + iPhone/iPad CHM, 

particularly in the southern part of the study area. 

The ANOVA test showed a significant difference 

between three populations (tree height, CHM from 

UAV, and CHM from UAV + iPhone/iPad) with a p-

value smaller than 0.001. We plotted scatterplots to see 

the relationship between CHMs and tree height data. 

Figure 8 shows that both CHMs are overestimated, 

particularly for CHMs’ values of more than 15 m. The 

MAE values are 5.24 and 4.05 m, while the correlation 
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values are 0.542 and 0.601 for UAV and UAV + 

iPhone/iPad CHMs, respectively.  

 

Fig. 6. Profiles showing the differences between DTMs from 

UAV and UAV + iPhone/iPad. 

 

Fig. 7. Canopy height models derived from (a) UAV and (b) 

UAV + iPhone/iPad combined. 

 

Fig. 8. Scatterplots between tree height and CHMs derived 

from (a) UAV and (b) UAV + iPhone/iPad. 

This study extracted the maximum value of the 

CHMs within the corresponding tree crowns [9]. From 

above, UAV can capture the condition of the object’s 

surface so that the maximum height can be easily 

detected. In contrast, the field measurement using laser 

rangefinders can lead to erroneous since the topmost of 

the tree might be obscured by the leaves and branches, 

especially in the dense coverage as reported by 

Larjavaara and Muller-Landau [4]. 

As the correlation values are significant (p-values < 

0.05), we modelled the tree height based on the CHMs 

to correct the overestimation. The total samples are 148, 

of which 104 samples are for constructing linear 

regression model. The linear regression plots are 

illustrated in Figure 9. As observed, the coefficients of 

determination (R2) are 0.3082 for UAV only and 0.3761 

for UAV + iPhone/iPad CHMs.  

 

Fig. 9. Linear regression plots between tree height (y-axis) 

and CHMs (x-axis) derived from (a) UAV and (b) UAV + 

iPhone/iPad. 

The regression equations were then applied to CHMs 

to produce tree height models from UAV and UAV + 

iPhone/iPad (Figure 10). Subsequently, we assessed the 

accuracy using the validation samples. Using the MAE 

metric, we found that the tree height estimated using the 

UAV + iPhone/iPad managed to produce a slightly 

higher accuracy (MAE = 2.188 m) compared to UAV 

only (MAE = 2.446 m). This improved accuracy is 

observed due to the local topography correction as the 

terrain conditions below teak stands were measured by 

iPhone/iPad. 

 

Fig. 10. Tree height modelled from canopy height models 

derived from (a) UAV and (b) UAV + iPhone/iPad 

combined. 

Although the accuracy increased by 0.258 m, this 

preliminary study shows the potential of iPhone/iPad 

LiDAR to be integrated with UAV to generate a more 

accurate a tree height model. The slight increase is also 

due to the sparse iPhone/iPad LiDAR measurement 
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transects. Future studies should consider denser and 

more systematic transects to cover the high variability 

of local topography. 

4 Conclusion 

This study demonstrates LiDAR data measured using 

the advanced iPhone/iPad devices to be integrated with 

UAV data to generate canopy height model (CHM). 

CHMs resulting from UAV and UAV + iPhone/iPad 

show overestimation compared to field data. Linear 

regression analysis was used to model tree height from 

CHMs. We found that the combination of UAV and 

iPhone/iPad can improve the accuracy of the tree height 

model, showing an MAE of 2.188 m, compared to the 

UAV-only result (MAE = 2.446 m). 
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