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Abstract. Using aerial inspection techniques in farmlands can yield vital 
data instrumental in mitigating various impediments to optimizing farming 
practices. Farmland anomalies (standing water and clusters of weeds) can 
impede farming practices, leading to the improper utilization of farmland 
and the disruption of agricultural development. Utilizing Unmanned Aerial 
Vehicles (UAVs) for remote sensing is a highly effective method for 
obtaining extensive imagery of farmland. Visual data analytics in the context 
of automatic pattern recognition from collected data is valuable for 
advancing Deep Learning (DL) -assisted farming models. This approach 
shows significant potential in enhancing agricultural productivity by 
effectively capturing crop patterns and identifying anomalies in farmland. 
Furthermore, it offers prospective solutions to address the inherent barriers 
farmers encounter. This study introduces a novel framework, namely the 
hybrid Convolutional Neural Networks and Long Short-Term Memory 
(HCNN-LSTM), which aims to detect anomalies in farmland using images 
obtained from UAVs automatically. The system employs a Convolutional 
Neural Network (CNN) for deep feature extraction, while Long Short-Term 
Memory (LSTM) is utilized for the detection task, leveraging the extracted 
features. By integrating these two Deep Learning (DL) architectures, the 
system attains an extensive knowledge of farm conditions, facilitating the 
timely identification of irregularities such as the presence of water, clusters 
of weeds, nutrient deficit, and crop disease. The proposed methodology is 
trained and evaluated using the Agriculture-Vision challenge database. The 
results obtained from the experiment demonstrate that the proposed system 
has achieved a high level of accuracy, with a value of 99.7%, confirming the 
effectiveness of the proposed approach. 

1 Introduction 
UAVs have become increasingly prevalent in sensing and surveillance applications, 
experiencing remarkable growth over the past decade. This can be attributed to notable 
technological advancements, including rapid developments in hardware and software. The 
utilization of UAVs for smart monitoring has emerged as a crucial aspect in multiple sectors, 
such as Precision Agriculture (PA) [1], post-disaster evaluation, metropolitan monitoring, 
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frontier inspection, ecological surveillance, and numerous civil and tactical situations [2]. 
These applications are facilitated by a resilient technological and interpersonal infrastructure 
that includes collecting information through Remote Sensing (RS) devices, analyzing 
signals, and evaluating data using sophisticated algorithms within cloud-based platforms. The 
rapid progress in RS-based information analysis for autonomous decision-making can be 
attributed to recent advances in multifunctional sensing approaches, wireless connectivity, 
IoT, AI techniques, and cloud computing.  

UAVs present several advantageous features compared to conventional sensor 
deployment methods. These advantages include reduced costs, simplified deployment 
processes, enhanced proficiency in RS, and the capability to collect high-resolution photos 
and videos of landscapes in a non-intrusive manner. This ability is precious for obtaining 
feature representations of the surveyed area [3]. The monitoring of farmland on an extensive 
basis has gained significance in facilitating PA [4].  

PA plays a pivotal role in the contemporary agricultural revolution. Integrating IoT, AI, 
and other advanced technologies has led to the refinement and increased precision of farming 
procedures. Incorporating contemporary practices and concepts in agriculture is a beneficial 
factor, as it enhances agricultural productivity and promotes enhanced sustainable 
development [5]. It facilitates the implementation of Site-Specific Management (SSM), 
which entails executing appropriate actions at the appropriate locations and instants. PA 
offers a framework for the integration of these concepts into agricultural practices. 
Implementing RS devices in agricultural fields enables the tracking of methodological 
parameters, facilitating the acquisition of current information. This continuous information 
stream offers a current view of farm and plant variables. Climate surveillance, crop 
surveillance, livestock monitoring, and greenhouse mechanization are among the prominent 
use cases derived from the IoT that significantly contribute to agricultural management and 
offer valuable insights to farmers. 

DL techniques have been effectively employed in a multitude of computer vision 
applications. As a result, numerous studies have also proposed visual-based approaches for 
the agricultural field [6]. Integrating deep learning techniques with RS and imaging 
technology can significantly enhance field maintenance practices by facilitating the 
evaluation and forecasting of various farmland and crop variables. Farmers can obtain data 
on various parameters, such as humidity and water content, using sensors mounted on UAVs. 
In addition, DL algorithms can evaluate the optimal conditions for sowing crops and offer 
valuable insights regarding appropriate timing for cultivation. These advancements can 
potentially improve agricultural productivity and promote adopting environmentally friendly 
farming practices [7]. The utilization of pattern recognition on farmland images holds 
significant potential for enhancing the forecasting of agricultural yields, determining 
appropriate crop patterns, assessing biological parameters associated with crops, and 
identifying anomalies in farmland. 

Incorporating advanced technologies has become a fundamental aspect of transforming 
conventional farming practices in the ever-changing field of modern agriculture [8]. An 
innovation that garnered significant attention is the application of UAVs to capture high-
resolution aerial imagery of agricultural land. CNNs and LSTMs have demonstrated 
significant efficacy in visual analysis and sequence modeling. This study explores the 
integration of these technologies, introducing an innovative CNN-LSTM framework 
specifically tailored for the automated identification of irregularities in agricultural land 
through the analysis of aerial imagery captured by UAVs. 

Detecting anomalies in farmland is a crucial component of PA, with the objective of early 
identification of abnormalities such as crop illnesses, pest outbreaks, or irrigation problems. 
A high demand for labor characterizes the conventional manual techniques employed for 
monitoring extensive agricultural fields, and they are susceptible to human errors. The CNN-
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LSTM framework proposed in this study aims to tackle these obstacles by harnessing the 
spatial comprehension abilities of CNNs and the temporal interactions recorded by LSTMs. 
The integration of these complementary elements enables the identification and examination 
of complex patterns and deviations in the temporal progression of agricultural landscapes by 
analyzing aerial images obtained from UAVs over time. 

2 Related works 
This literature review uses CNN-LSTM to study farmland anomaly detection using high-
resolution UAV aerial images. The introduction emphasizes the convergence of these 
technologies and their potential for proactive farmland anomaly identification. The survey 
examines the key studies and methods contributing to CNN-LSTM frameworks for automatic 
anomaly detection. 

Using data, Hu et al. (2023) assessed cattle farm air quality and environmental conditions. 
Sensors strategically placed on the farm collect environmental data, focusing on air quality 
factors. The research covers ecological factors in bovine farms [9]. The analysis includes 
many air quality and environmental measurements. Real-time monitoring and targeted 
interventions improve farm management. However, the initial financial investment for sensor 
deployment and data management challenges should be considered. 

Deep learning was used by Kavithamani and Uma Maheswari (2023) to detect whitefly 
infestations in coconut tree leaves [10]. The method involves training a DL model with 
labeled images of various whitefly conditions. The output provides a mechanized coconut 
tree-whitefly detection system. The results show that the model detects whitefly infestations 
well. One benefit of this method is its quick and accurate target identification. It requires a 
large dataset with proper labeling and computational resources, which may be a drawback. 

Ali et al. (2023) proposed a new pest detection system for large farms. This system 
performs well using AI and IoT. The authors used sound analytics to find pests. The 
implementation uses IoT devices with sound sensors to detect and monitor pest activity [11]. 
The system provides current agricultural pest data. This study accurately identifies pest 
sounds and sends notifications quickly. The benefits include early pest detection and reduced 
pesticide use. The need for seamless integration with farm management systems and the 
possibility of false positives are drawbacks. 

Di Lorenzo et al. (2022) used predictive methods to identify photovoltaic system 
performance and deterioration [18]. The methodology involves systematic observation and 
analysis of photovoltaic system performance data. The output predicts system issues. The 
outcome values include early detection of poor performance and decline. Prognostic 
algorithms improve system maintenance and lifespan. However, the complexity of these 
algorithms may cause implementation issues. 

Chaudhary et al. (2024) examined a hybrid framework for precise farming that integrates 
ML and the IoT [13]. Implementation requires the synthesis of hybrid framework literature 
in precision agriculture. The output provides a comprehensive analysis of current 
methodologies' pros and cons. The findings provide insights into precision agriculture's ML 
and IoT technologies use. Hybrid frameworks are comprehensive but can be difficult to 
interoperate due to the many technologies involved. 

Khan et al. (2022) used machine and deep learning to analyze hyperspectral imaging 
technology for agricultural applications [14]. The methodology involves reviewing 
hyperspectral imaging technology applications and advancements literature. The output is a 
comprehensive assessment of hyperspectral imaging in agriculture. Results show machine 
and deep learning's effectiveness in hyperspectral data analysis. This technology's strengths 
are its comprehensive understanding of its potential, while its weaknesses include data 
preprocessing and model interpretability. 
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Kou et al. (2022) implemented the Software-Defined Networking (SDN)-based network 
intrusion detection model for drone communication. SDN is used to create a model to identify 
drone communication network intrusions [15]. An effective intrusion detection system for 
UAV networks is produced. Outcome measures include intrusion detection accuracy. Drone 
communication networks improve security. However, this approach may have drawbacks, 
such as adapting the model to new threats. 

Fu et al. (2023) proposed a machine learning-based intrusion detection system for 
agricultural information security and UAVs. ML algorithms are integrated into UAV-
supported agricultural information systems during implementation [16]. The output improves 
agricultural data and system security. The outcomes measure intrusion detection precision 
and security architecture resilience. Implementing agricultural information systems improves 
cybersecurity. This can improve agricultural data security from unauthorized access or 
malicious activity. However, drawbacks should be considered. For instance, updating to 
combat new cybersecurity threats may be difficult or inconvenient. 

In conclusion, this literature survey used CNN-LSTM to detect farmland anomalies, 
demonstrating the strength of UAV-captured aerial imagery and advanced deep learning. The 
surveyed studies demonstrate how this approach has revolutionized agricultural monitoring. 
Converging CNNs and LSTMs will shift anomaly detection from reactive to proactive, giving 
farmers and agricultural practitioners a powerful tool to optimize resource management and 
farm productivity [19]. 

3 Proposed HCNN-LSTM to detect anomalies in farmland using 
images obtained from UAVs 
The HCNN-LSTM framework is an advanced approach for the automated identification of 
anomalies in agricultural land by analyzing images captured from UAVs. The proposed 
methodology integrates the spatial feature extraction capabilities of CNNs with the temporal 
sequence modeling proficiency of LSTMs. The CNN module demonstrates exceptional 
proficiency in detecting complex patterns within high-resolution aerial images, enabling the 
identification of spatial intricacies that are essential for detecting abnormalities in crops and 
soil conditions [12]. Concurrently, the LSTM component processes these features 
temporally, thereby discerning dynamic patterns and deviations. Utilizing a hybrid 
framework facilitates a comprehensive approach to anomaly detection, thereby contributing 
to the advancement of precision agriculture. This approach enables timely and accurate 
insights into the overall health of farmland, thereby enhancing its effectiveness. The 
integration of CNN and LSTM technologies represents a notable advancement in proactive, 
data-driven farm management. This development enables the rapid detection of anomalies 
and facilitates precise interventions that optimize agricultural outcomes. 
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Fig. 1. IoT framework with cloud server to detect anomalies in farmland using images obtained from 
UAVs 

Fig. 1 illustrates an IoT framework that incorporates a cloud server to detect farmland 
anomalies. This detection is achieved through the utilization of images acquired from UAVs. 
This study introduces an IoT framework that incorporates a cloud server. A deep aerial 
semantic segmentation framework is also proposed for agricultural pattern recognition. This 
framework utilizes UAV-acquired aerial images. The overall objective of this research is to 
explore the potential of IoT-assisted PA. In this study, we present a resilient multi-scale 
hierarchical attention network designed for semantic segmentation on images of farmland. 

3.1 CNN 

CNNs, which belong to the category of deep learning models, have demonstrated significant 
efficacy in diverse computer vision applications such as image recognition, object detection, 
and semantic segmentation. The design of a CNN draws inspiration from the neural 
processing mechanisms observed in the human visual system, making it highly suitable for 
tasks that involve structured data representations, such as images. The architecture of a 
CNN comprises essential components such as Convolutional Layers (CL), Pooling Layers 
(PL), and Fully Connected (FC) layers. Every layer within the system performs a vital 
function in extracting and abstracting features. CL is a fundamental component of CNNs; the 
primary operation is the convolution operation. The process entails applying a filter, 
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commonly referred to as a kernel, to the input image to extract localized features. In 
mathematical terms, the convolution operation can be represented as: 

𝑆𝑆(𝑖𝑖, 𝑗𝑗) = (𝐼𝐼 ∗ 𝐾𝐾)(𝑖𝑖, 𝑗𝑗) = ∑𝑚𝑚∑𝑛𝑛𝐼𝐼(𝑚𝑚,𝑛𝑛)𝐾𝐾(𝑖𝑖 − 𝑚𝑚, 𝑗𝑗 − 𝑛𝑛)  (1) 

Here, 𝑆𝑆(𝑖𝑖, 𝑗𝑗) is the output of the convolution operation, 𝐼𝐼 is the input image, and 𝐾𝐾 is the 
filter. 
Activation Function: 
In conventional practice, employing a non-linear activation function such as the Rectified 
Linear Unit (ReLU) after the convolution operation is common. The rectified linear unit 
(ReLU) function is mathematically defined as follows: 

𝑓𝑓(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑥𝑥(0, 𝑥𝑥)    (2) 

PL: PL is responsible for downsampling the input's spatial dimensions, resulting in reduced 
computational requirements and improved translational invariance. One frequently used 
pooling operation in computer vision is known as max pooling. This operation is defined as: 

𝑂𝑂(𝑖𝑖, 𝑗𝑗) = max [ 𝐼𝐼(2𝑖𝑖, 2𝑗𝑗)  𝐼𝐼(2𝑖𝑖 + 1,2𝑗𝑗)
𝐼𝐼(2𝑖𝑖, 2𝑗𝑗 + 1)  𝐼𝐼(2𝑖𝑖 + 1,2𝑗𝑗 + 1)]  (3) 

FC layers: Following a series of CL and PL, it is customary for the network to conclude with 
one or more FC layers. The interconnections between neurons in each layer establish a 
comprehensive connectivity pattern wherein every neuron is linked to every neuron in both 
the preceding and succeeding layers. 

3.2 LSTM Classifier 

The input to the LSTM in the proposed approach consists of the feature maps obtained from 
the Softmax layer, which are utilized to improve the classification performance. To enhance 
and regulate the data performance of the proposed system, the LSTM model incorporates a 
gate architecture consisting of an Input Gate (IG), Forget Gate (FG), and Output Gate (OG). 
The numerical equation corresponding to each gate is elucidated as follows: 
The FG (𝐹𝐹𝐹𝐹𝑡𝑡) aids the LSTM in deciding the data that must be provided and dismissed 
through the cell state based on the prior hidden structure. 

𝐹𝐹𝐹𝐹𝑡𝑡 = 𝜎𝜎(𝑀𝑀𝐹𝐹𝐹𝐹. [𝐻𝐻𝑡𝑡−1,𝑌𝑌𝑡𝑡] + 𝑏𝑏𝐹𝐹𝐹𝐹)    (4) 

Where 𝑀𝑀𝐹𝐹𝐹𝐹 and 𝑏𝑏𝐹𝐹𝐹𝐹 are the weight and bias vectors, respectively. 𝐻𝐻𝑡𝑡−1 is the previous gate, 
𝑌𝑌𝑡𝑡 is the input data, and 𝜎𝜎(. ) is the sigmoid function. The candidate's cell state �̃�𝑆𝑡𝑡 determined 
by IG (𝐼𝐼𝐹𝐹𝑡𝑡) is given as: 

�̃�𝑆𝑡𝑡 = tanh (𝑀𝑀𝑆𝑆. [𝐻𝐻𝑡𝑡−1,𝑌𝑌𝑡𝑡] + 𝑏𝑏𝑆𝑆)    (5) 

𝐼𝐼𝐹𝐹𝑡𝑡 = 𝜎𝜎(𝑀𝑀𝐼𝐼𝐹𝐹. [𝐻𝐻𝑡𝑡−1,𝑌𝑌𝑡𝑡] + 𝑏𝑏𝐼𝐼𝐹𝐹)    (6) 

tanh(. ) denotes the hyperbolic tangent function. The updated cell state 𝑆𝑆𝑡𝑡 has been given as: 

𝑆𝑆𝑡𝑡 = 𝐹𝐹𝐹𝐹𝑡𝑡 ∗ 𝑆𝑆𝑡𝑡−1 + 𝐼𝐼𝐹𝐹𝑡𝑡 ∗ �̃�𝑆𝑡𝑡    (7) 

𝑆𝑆𝑡𝑡−1 is the past cell state, and the new candidate cell state is given by �̃�𝑆𝑡𝑡. The output of the 
LSTM cell has been regulated by the OG, which is given as follows: 

𝑂𝑂𝐹𝐹𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑂𝑂𝐹𝐹 . [𝐻𝐻𝑡𝑡−1,𝑌𝑌𝑡𝑡] + 𝑏𝑏𝑂𝑂𝐹𝐹)    (8) 

where 𝐻𝐻𝑡𝑡 = 𝑂𝑂𝐹𝐹𝑡𝑡 . tanh (𝑆𝑆𝑡𝑡)    (9) 
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The LSTM model effectively tackles the issue of persistent dependencies in data caused by 
prolonged addiction and overcomes the problem of gradient vanishing or exploding by 
utilizing memory storage cells and gate mechanisms. Consequently, the LSTM model 
mitigates the limitations of Recurrent Neural Networks (RNNs). 

3.3 Proposed HCNN-LSTM 

 
Fig. 2. Proposed HCNN-LSTM framework for automatic detection of anomalies in farmland using 
images obtained from UAVs 

Fig. 2 depicts the proposed HCNN-LSTM framework for automatic detection of 
anomalies in farmland using images obtained from UAVs. The network consists of a total of 
19 layers, which include 11 CL, five PL, one FC layer, one LSTM layer, and one output layer 
that utilizes the softmax function. Each convolutional block is augmented with two or three 
2D-CNNs and one PL. This is subsequently followed by a dropout layer, which is 
characterized by a dropout rate of 20%. A CL with 3 × 3 kernels is employed for feature 
extraction, subsequently activated through the ReLU function. Utilizing a max-PL, 
employing kernels of size 2 × 2, diminishes the dimensions of an input image. In the final 
architectural design stage, the function map is passed on to the LSTM layer to extract time-
related data. Following the convolutional block, the resulting output shape is determined to 
be (7, 7, 512). The input size of the LSTM layer has been transformed to (49, 512) using the 
reshape technique. By integrating two DL architectures (CNN and LSTM), the system attains 
an extensive knowledge of farm conditions, facilitating the timely identification of 
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irregularities such as the presence of water, clusters of weeds, nutrient deficit, and crop 
disease. 

4 Results and discussion 
The proposed methodology is trained and evaluated using the Agriculture-Vision challenge 
dataset [17]. The dataset comprises a total of 20,997 images of agricultural land that were 
captured throughout the United States in the year 2020. Each image has four color channels, 
each with a resolution of 256×256 pixels. These channels include the Red, Green, and Blue 
(RGB) channels and the Near Infrared (NIR) channels. In addition, the images are 
accompanied by a perimeter map and a binary masking. The perimeter map delineates the 
spatial extent of the agricultural land depicted in the image, whereas the binary mask 
represents the pixels considered valid. The evaluation process does not encompass regions 
beyond the perimeter map or the mask. The markings encompass four distinct categories: 
identifying water stagnation, cluster of weeds, nutrient deficiency, and crop disease. 

 
Fig. 3. Results of segmentation of images using the proposed method in the Agriculture-vision 
challenge dataset for automatic detection of farmland anomalies 

Fig. 3 depicts the results of the segmentation of images using the proposed method in the 
Agriculture-vision challenge dataset for automatically detecting farmland anomalies. The 
segmentation predictions for classes such as weed clusters and cloud shadow exhibit a high 
level of precision, particularly in cases where the segmentation area is significantly larger. 
The model we have developed can accurately predict the presence of standing water on the 
farm field, even when the water is shallow. This prediction is based on the analysis of Fig. 3, 
which highlights the oversight of ignoring the presence of standing water during target 
segmentation for the corresponding image. Furthermore, there has been extensive analysis of 
cases involving complex shapes following the predictions made by the image analysis. A 
robust segmentation has been generated despite the similarity in image features between 
waterways and weed clusters. However, some erroneous predictions are along the corners of 
the background class. The achievement of high accuracy in results within the Agriculture-
vision challenge dataset is noteworthy despite class imbalance. 
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Fig. 4. Confusion matrix for the prediction of farmland anomalies using the proposed HCNN-LSTM 
framework 

Fig. 4 gives the confusion matrix for predicting farmland anomalies using the proposed 
HCNN-LSTM framework. The diagonal elements of the matrix correspond to the true 
positive rates for each class, which signify the proportion of correctly predicted instances. 
An example of the model's effectiveness in accurately identifying instances of water 
stagnation can be observed in the high value 0.75 in the corresponding row and column. On 
the other hand, the presence of off-diagonal elements in the matrix demonstrates instances of 
misclassifications. For example, the value of 0.28, located in the intersection of the "Crop 
diseases" and the "Background," signifies a discernible degree of confusion between crop 
diseases and background. The matrix is a comprehensive instrument for assessing the model's 
precision, recall, and F1 score for each anomaly class. This aids in guiding subsequent 
enhancements and advancements in the HCNN-LSTM framework for detecting anomalies in 
farmland. 

 
Fig. 5. Performance of the various DL models regarding accuracy, precision, recall, and F1-score for 
the prediction of farmland anomalies 
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Fig. 5 depicts the performance of the various DL models regarding accuracy, precision, 
recall, and F1-score for predicting farmland anomalies. The HCNN-LSTM model 
demonstrates a high level of accuracy, reaching an impressive 99.7%. This performance 
surpasses other models, highlighting its robustness in effectively capturing and classifying 
anomalies. The precision value of 99.6% signifies a low occurrence of false positives, 
highlighting the model's proficiency in accurately detecting anomalies. Moreover, achieving 
a perfect % recall rate of 100% indicates that the HCNN-LSTM model successfully detects 
all occurrences of anomalies without any false negatives. The F1-score, which stands at 
99.65%, serves as a comprehensive measure of the model's performance by considering both 
precision and recall. When considering various models such as CNN (GoogleNet), CNN 
(AlexNet), and LSTM, it is evident that they demonstrate impressive performance. However, 
the proposed HCNN-LSTM model stands out as a particularly accurate and dependable 
solution for predicting anomalies in farmland. 

5 Conclusion 
This paper presents a new framework, called the hybrid Convolutional Neural Networks and 
Long Short-Term Memory (HCNN-LSTM), to automatically detect anomalies in farmland 
using images acquired from UAVs. The employed system utilizes a CNN to perform deep 
feature extraction. Additionally, the system leverages LSTM for the detection task using the 
extracted features. By combining these two DL architectures, the system acquires a 
comprehensive understanding of agricultural conditions, enabling the prompt detection of 
anomalies such as the existence of water, clusters of weeds, nutrient deficiency, and crop 
diseases. The methodology under consideration is trained and assessed using the Agriculture-
Vision challenge database. The experimental findings indicate that the proposed system has 
attained a significant degree of accuracy, with a value of 99.7%. This outcome validates the 
proposed approach's efficacy for detecting anomalies in farmland using UAV-acquired 
images. 
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