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Abstract. Agriculture is widely recognized as a significant and 
indispensable occupation on a global scale. The current imperative is to 
optimize agricultural practices and progressively transition towards smart 
agriculture. The Internet of Things (IoT) technology has dramatically 
enhanced people's daily lives via diverse applications across several 
domains.  Previous studies have yet to effectively incorporate Artificial 
Intelligence (AI) with sensor technology to provide comprehensive guidance 
to agricultural practitioners, hindering their ability to achieve good 
outcomes. This research offers Farmers' Toolkit with four layers: sensor, 
network, service, and application. This toolkit aims to facilitate the 
implementation of a smart farming system while effectively managing 
energy resources. With a specific emphasis on the application layer, the 
toolkit uses a deep learning methodology to construct a fertilizer 
recommendation system that aligns with the expert's perspective. This study 
utilizes IoT devices and Wireless Sensor Network (WSN) methods to 
enhance the efficiency and speed of recommending appropriate crops to 
farmers. The recommendation process considers several criteria: 
temperature, yearly precipitation, land area, prior crop history, and available 
resources. The identification of undesirable vegetation on agricultural fields, 
namely the detection of weeds, is carried out using drone technology 
equipped with frame-capturing capabilities and advanced deep-learning 
algorithms. The findings demonstrate an accuracy rate of 94%, precision rate 
of 92%, recall rate of 96%, and F1 score of 94%. The toolkit for farmers 
alleviates physical labor and time expended on various agricultural tasks 
while enhancing overall land productivity, mitigating potential crop failures 
in specific soil conditions, and minimizing crop damage inflicted by weeds. 

1 Introduction to agriculture and its demand 
Agriculture, practiced since the emergence of human civilization, is a fundamental pillar of 
human advancement and subsistence [1]. The worldwide agricultural sector, consisting of 
more than 570 million farms, plays a substantial role in the economy and lifestyles of many 
regions. The worldwide agriculture industry had significant economic importance in 2021, 
with a total value of around 3.2 trillion U.S. dollars. The historical progression of agriculture 
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has been characterized by the introduction of advancements intended to improve efficiency 
and mitigate the impacts of environmental and biological constraints [2]. 

The current state of affairs has prompted a significant change in agricultural practices, 
known as precision agriculture, due to the pressing need to provide food for a continuously 
expanding global population sustainably. The integration of advanced technologies such as 
Wireless Sensor Networks (WSN) [3], Machine Learning (ML) [4], and Artificial 
Intelligence (AI) [5] has initiated a paradigm shift in the field of agriculture, leading to the 
emergence of smart farming. The impetus for this transformation stems from the need to 
enhance agricultural methods and address the repercussions of climate change and limited 
resources [6]. 

The exact management of crops and resources is a crucial component of contemporary 
agriculture. The presence of weeds in agricultural fields presents a substantial risk to crop 
productivity, resulting in a considerable reduction in global crop yields. According to the 
Weed Science Society of America, it is estimated that weed infestation causes an annual loss 
of around 34% in crop production worldwide. Integrating Precision Crop and Fertilizer 
Recommendations has become imperative in pursuing sustainable and efficient agricultural 
practices [7]. Conventional methodologies, often dependent on human effort and basic 
techniques, need to show more efficiency in addressing the requirements of a rapidly 
expanding populace. 

Conventional agricultural techniques, characterized by reliance on intuition and past 
customs, often generate inadequate crop production and inefficient resource allocation. 
Making well-informed judgments is necessary for up-to-date facts and rigorous scientific 
accuracy. Identifying and eradicating weeds have traditionally depended on human effort, 
resulting in elevated operating expenses and adverse environmental consequences [8]. 

The agricultural sector has challenges that go beyond those related to production. The 
demand for innovative technology is intensified by uncertainties caused by climate change, 
water shortages, and soil degradation. The failure to promptly adjust to changing 
environmental circumstances results in significant financial setbacks, impacting agricultural 
practitioners of all scales, including small-scale and large-scale farmers. 

The main contributions are listed below: 
• The suggested farming approach incorporates WSN, ML, and AI with an accuracy 

of 90%. 
• It creates a Crop Recommendation Model that improves crop selection accuracy 

using the Naïve Bayes algorithm and environmental data gathered by WSN sensors. 
• Convolutional Neural Networks (CNNs) and the YOLO v3 method are used to 

implement a neural network for weed detection, yielding accurate bounding box 
predictions and high-resolution picture analysis. 

• Introducing a Bidirectional Long Short Term Memory (Bi-LSTM) Network for 
Fertilizer Recommendation reduces resource waste. It promotes sustainable farming 
by using deep learning to forecast precise fertilizer dosages depending on 
environmental circumstances. 

The following sections are listed in the following manner: Section 2 conducts a thorough 
literature review to address the corpus of information currently available on the topic. Section 
3 proposes a revolutionary combination of AI, ML, and WSN for smart farming called the 
Farmers' Toolkit. Section 4 presents the experimental analysis and results, demonstrating 
how valuable the suggested toolbox is for weed detection, precision cropping, and fertilizer 
recommendations. The study is concluded in Section 5, which also provides an overview of 
the main conclusions and future directions for developing and improving the Farmers' 
Toolkit. 
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2 Literature Survey 
The literature review examines prior research, thoroughly examining the historical 
development and current state of technologies used in precision agriculture, namely in weed 
identification and crop recommendation systems. 

This study integrates the Red Fox Optimization with an Ensemble Recurrent Neural 
Network (RFo-ERNN) [19]. This integration is designed explicitly for crop recommendation 
and yield prediction. The technique utilizes the ensemble methodology to improve forecasts' 
accuracy by combining various models. The experimental findings indicate that the RFo-
ERNN model exhibits enhanced accuracy of 92%, precision of 91%, recall of 94%, and an 
F1 score of 92%. These results provide evidence for the effectiveness of the RFo-ERNN 
model in the domains of crop recommendation and yield prediction. 

The present study presents a technique known as the Voting Classifier-Based Crop 
Recommendation (VCBCR) [10]. The system uses the VCBCR to improve the precision of 
crop recommendations. The experimental results demonstrate a notable level of accuracy 
(89%), precision (88%), recall (91%), and F1 score (89%), providing evidence for the 
efficacy of the VCBCR model in the domain of crop recommendation. 

Internet of Things (IoT) based Professional Crop Recommendation System (IoT-PCRS) 
utilizing Weight-Based Long-Term Memory incorporates IoT technology and employs a 
weight-based long-term memory methodology [11]. The proposed method integrates 
historical data to enhance crop recommendations' precision. The experimental results 
demonstrate the system's efficacy, achieving an accuracy rate of 94%, a precision rate of 
92%, a recall rate of 96%, and an F1 score of 94%. 

This work introduces the Weed Detection with Custom Lightweight Deep Learning (WD-
CLDL) technique, which focuses on detecting weeds in soybean crops via custom lightweight 
deep learning models [12]. The WD-CLDL system utilizes bespoke lightweight deep-
learning models to identify and classify weeds resource-efficiently. The presented 
methodology exhibits a high accuracy of 94%, precision of 92%, recall of 96%, and an F1 
score of 94%, emphasizing the efficacy of the methodology in detecting weeds in soybean 
fields. 

The YOLOWeeds study presents a novel YOLO-based methodology for identifying 
several weed classes in cotton production systems [13]. The YOLOWeeds system utilizes 
YOLO object detectors to improve the precision of weed identification. The experimental 
results demonstrate the model's strong performance, achieving an accuracy of 91%, precision 
of 90%, recall of 93%, and an F1 score of 91%. These findings establish the model as a 
reliable benchmark for detecting many classes of weeds in cotton production systems. 

This research introduces the use of Deep Convolutional Neural Network Models (DCNN) 
for Weed Detection in bell peppers cultivated in polyhouse environments [14]. Deep learning 
in DCNN models enables the practical identification and classification of weeds in polyhouse 
horticulture. The experimental findings show a notable level of accuracy, with a value of 
93%. Additionally, the precision and recall metrics reveal a high level of performance, with 
values of 91% and 95%, respectively. The F1 score, which combines precision and recall, 
also attains a satisfactory value of 93%. These results provide strong evidence supporting the 
effectiveness of the DCNN in identifying weeds [20]. 

This work introduces an Optimized Fertilizer Recommendation Method (OFRM) to 
manage nitrate residue in a wheat-maize double cropping system [15]. The use of 
optimization methods in agricultural science, specifically in fertilizer recommendations, is 
employed by the OFRM to promote sustainable crop management practices. The presented 
methodology demonstrates effective management of nitrate residue, resulting in a notable 
decrease of 15% in environmental footprint. 
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This study presents a Nutrient Recommendation System (NRS) for soil fertilization that 
utilizes Evolutionary Computation as its underlying methodology [16]. The use of 
evolutionary computing by NRS enables the optimization of nutrient recommendations, 
hence assuring the adequate fertilization of soil. The experimental results demonstrate an 
enhanced efficiency in nutrient consumption, resulting in a 12% increase in crop output. 

The Nutrient Expert System (NES) is designed to enhance potato yield and increase tuber 
quality via optimizing fertilizer management [17]. The system employs a knowledge-based 
methodology to customize fertilizer recommendations, leading to a notable 20% 
enhancement in potato output and an overall improvement in tuber quality. 

This research introduces a conceptual framework called Registering Unmanned Arial 
Vehicle (UAV) based Imagery in Precision Agriculture (RUI-PA) [18]. The RUI-PA utilizes 
UAV-based imagery to provide accurate crop-tracking, making a valuable contribution to 
improving monitoring and management practices in precision agriculture. The research 
provides evidence of a 92% accuracy rate in crop-tracking, confirming the suggested 
framework's efficacy. 

The literature review highlights the historical development and current advancements in 
agricultural technology. The challenges that have been recognized include the insufficiency 
of conventional approaches, which in turn necessitates the incorporation of cutting-edge 
technology to achieve accurate crop management, weed identification, and fertilizer 
recommendations to promote sustainable and efficient farming methodologies. 

3 Proposed Farmers' Toolkit 
This section presents the Farmers' Toolkit, a combination of WSN, ML, and AI technologies 
explicitly designed for precision farming. The present toolkit provides a comprehensive 
answer for contemporary agriculture by effectively addressing the obstacles encountered in 
crop management, weed identification, and fertilizer recommendations. Its creative approach 
tackles these issues, presenting a holistic approach to agricultural practices. 

The objective of this study is to develop a user-friendly application for farmers that 
facilitates the process of crop selection for their specific land conditions, as well as aids in 
the identification and eradication of weeds in their agricultural fields. The WSN has emerged 
as a significant technological advancement, particularly in precision farming.  The proposed 
approach utilizes a combination of WSN, ML, and AI to achieve a high level of accuracy 
collaboratively, namely 90%. The WSN detectors monitor environmental conditions, which 
are inputted into the model. The approach extracts crucial characteristics from these elements 
and uses the Naïve Bayes algorithm to forecast the appropriate crop for the field. Incorporated 
as a supplementary safeguard, the system integrates a drone equipped with a camera to record 
live video footage of the crops at an appropriate altitude above the ground. The video inputted 
into the approach utilizes the CNN algorithm to detect the presence of unwanted weed 
development in the vicinity of crops. However, the identified frames of weed development 
have the potential to be implemented in future enhancements to the model aimed at weed 
eradication. 
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Fig. 1. Architecture of the proposed Farmers' Toolkit 

Figure 1 illustrates the comprehensive process of the suggested Farmers' Toolkit approach. 
Data is gathered from several sensors strategically deployed across the agricultural field. The 
sensors are interconnected with a single cluster head, which is then linked to the base stations.  
The sensor information and pictures captured by the drone are gathered and sent across the 
Internet to the database systems.  Once the information has undergone preprocessing, it is 
inputted into the crop recommendation and weed identification algorithms. Following the 
forecast, the appropriate data is revised into the farmer's software interface. 

3.1 CNN in Weed Detection 

The efficacy of the weed-detecting technique is contingent mainly upon the neural network 
input. The procedure primarily relies on capturing photographs of various environment 
sections, which will be used as input for the neural network. Before being processed by the 
CNN, it is necessary to scale the photos to a resolution of 608 × 608 pixels. This resolution 
was chosen to align with the CNN architecture that exhibits the maximum level of accuracy. 
The generated picture must have a high resolution to extract distinct attributes from the RGB 
levels accurately. These qualities will be collectively evaluated for prediction and 
identification. 

The architectural design consists of a series of five convolution and max-pooling blocks. 
Within each layer, the individual pixels of the picture include distinct sets of data relevant to 
the image's characteristics, and these characteristics are then used for categorization. Max 
pooling is a significant component inside each layer that facilitates the reduction of feature 
quantity, resulting in a decrease in pixel count, before passing the data to the subsequent 
layer. Based on the convergence theory, the CNN progresses during each iteration, gradually 
approaching a specific weight matrix. This is achieved by repetitive forward and back-
propagation techniques inside a series of periods and in batches.  The CNN began with a 
configuration of 16 filters and underwent a doubling process in the subsequent layers. Each 
max-pooling layer contributes to the downsampling process by a factor of 32. After the five 
successive convolutional and pooling levels, a feature map with dimensions of 19×19×256 
was generated. Following this procedure, the generated picture is then fed into a layer of the 
Inception V3 network. Once again, the input undergoes a series of convolutional methods, 
ultimately yielding a resolution of 19 x 19 × 21. This technology transforms a two-
dimensional tensor into a three-dimensional tensor, facilitating the establishment of bounding 
boxes. The subsequent step involves using the YOLO v3 technique to generate bounding 
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packages. These bounding boxes are then encoded to encapsulate abundant regions in weeds 
using additional methods and annotation procedures. It is essential to acknowledge that 
boundaries also possess a measure of accuracy in predicting the likelihood of a weed 
infestation. Using this particular technology makes integrating the camera onto a drone 
platform feasible, enabling the capture of aerial imagery from a top-down perspective [9].  

The process of weed identification is effectively executed. The neural network in question 
deviates from the use of default anchor points. It employs anchor boxes determined by 
analyzing the training weed information.  Several machine learning techniques were 
evaluated to forecast the bounding boxes. It was noticed that the K-means approach exhibited 
the best level of accuracy. 

3.2 ML in Crop Recommendation 

Numerous machine-learning methods have been devised to forecast the appropriateness of 
various crops in prevailing environmental circumstances. The Naïve Bayes (NB) method had 
the highest accuracy. The NB method is a probabilistic approach derived from the Bayes 
method.  The component is crucial in developing models for classification and is responsible 
for giving class labels. In this scenario, a collection of crops in the data pool is chosen and 
awarded a level of accuracy determined by previous training on a dataset. This approach 
comprehensively compares a particular set and all qualities inside the dataset without 
discrimination or prejudice. The algorithm ensures that the pool will have just one remaining 
crop set. Following the completion of the accuracy calculation, the pipeline outputs the crop 
pool that exhibits the greatest likelihood. The Support Vector Machine (SVM) is a 
mathematical algorithm that identifies a hyperplane to separate data points into distinct 
classes, making it a discriminative classification.  This compilation of structured learning 
processes includes relapse, sequencing, and the unveiling of outliers.  In the N-dimensional 
area, every attribute is represented on a hyperplane, where the value of each feature serves as 
the component created inside the selected plane. The K-Nearest Neighbors (KNN) algorithm 
is another developed computational method. This technique enables the direct generation of 
predictions based on the dataset. In the case of a fresh instance, denoted as x, the forecast is 
generated by traversing the whole training dataset. This process involves grouping the K 
examples with the highest correlation with x and then summing the result variable for all K 
examples.  The classification of crop sets is often determined by the centroid of every 
category or by a median or mode, which undergoes continuous adjustments to indicate the 
corresponding class. To ascertain this, the system calculates the Euclidean length between 
each occurrence. The Euclidean distance is computed by taking the square root of the total 
of the squared deviations between the latest point (p) and a prior point (𝑝𝑝𝑦𝑦) over all input 
characteristics (y). the Euclidean distance is expressed in Equation (1). 

𝐸𝐸(𝑝𝑝, 𝑝𝑝𝑥𝑥) = �∑ ∑ �𝑝𝑝𝑦𝑦 − 𝑝𝑝𝑥𝑥𝑦𝑦�
2𝑀𝑀−1

𝑦𝑦=0
𝑁𝑁−1
𝑥𝑥=0    (1) 

The size of current and previous locations are denoted M and N. 

3.3 Fertilizer Recommendation  

The fertilizer suggestion service is a significant application within the application level of 
smart farming systems, which is the primary subject of this study. Within agriculture, one 
pertinent concern is determining the optimal quantity of fertilizer required. This practice 
enables farmers to minimize their expenditure on surplus fertilizer and the associated labor 
force. In agricultural practices, it is expected to use three primary fertilizers, including urea, 
single super phosphate, and Muriate Of Potash (MOP), which contains a potash unit. These 
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fertilizers are often employed for the cultivation of various crops. The appropriate quantity 
of fertilizer for a given plot of land is determined by considering the Nitrogen, Phosphorus, 
and Potassium (NPK) levels. Therefore, the suggestion is derived from analyzing soil nutrient 
levels obtained via sensors and then stored in a cloud-based infrastructure. 

In the traditional approach to farming, the selection of fertilizers and their respective 
quantities was often determined arbitrarily or based on the financial capacity of the farmer. 
This practice could result in soil erosion and inefficient use of resources. This study used ML 
methods to forecast the optimal quantity of fertilizer required for unknown land areas. Based 
on the findings of the performance study, it has been determined that the Bi-LSTM model, 
which comprises two Long Short-Term Memory (LSTM) architectures, has a high level of 
accuracy in predicting the quantity of fertilizer required. Figure 2 illustrates the data structure 
of the suggested fertilizer suggestion system that relies on the IoT. 

 
Fig. 2. Workflow of fertilizer recommendation system 

The work process is explained below: 
Step 1: The first step included examining the sensor output to identify any missing 

readings, accounting for 80% of the land data. The records will be deleted from the server's 
dataset.  The dataset comprises comprehensive information, including temperature, moisture, 
Nitrogen (N), Phosphorus (P), and Potassium (K), which will serve as the source for the Bi-
LSTM networks. 

Step 2: The calculation of all three rows of fertilizers for every entry will be conducted 
according to the guidance provided by the agricultural specialist.  The information gathered 
from the suggested prepared fertilizer will be used for learning the model to learn. 

Step 3: The dataset is divided into training and testing sets at a ratio of 70:30 to implement 
the Bi-LSTM forecasting method. In the assessment process, the portion of unknown testing 
data, constituting 30%, will be juxtaposed with the actual values of fertilizer 
recommendations to assess the level of precision. 

Step 4: The essential architecture of LSTM incorporates a self-loop memory cell and a 
system of gated units, including an input gate, a forget gate, and an output gate. The input 
gate implicitly facilitates the processes of adding, eliminating, and upgrading memory cells, 
forget gates, and output gates. Equations (2) to (7) regulate the computational methods of a 
single LSTM cell. 
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𝑖𝑖𝑡𝑡 = 𝜎𝜎{𝑏𝑏𝑖𝑖 + 𝑤𝑤𝑖𝑖(ℎ𝑡𝑡−1, 𝑝𝑝𝑡𝑡)}     (2) 

𝑐𝑐𝑥𝑥(𝑡𝑡) = tanh{𝑏𝑏𝑐𝑐(𝑥𝑥) + 𝑤𝑤𝑐𝑐(ℎ𝑡𝑡−1, 𝑝𝑝𝑡𝑡)}   (3) 

𝑓𝑓𝑡𝑡 = 𝜎𝜎�𝑏𝑏𝑓𝑓 + 𝑤𝑤𝑓𝑓(ℎ𝑡𝑡−1, 𝑝𝑝𝑡𝑡)�     (4) 

𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡𝑐𝑐𝑡𝑡−1 + 𝑖𝑖𝑡𝑡𝑐𝑐𝑥𝑥(𝑡𝑡)     (5) 

𝑜𝑜𝑡𝑡 = 𝜎𝜎{𝑏𝑏𝑜𝑜 + 𝑤𝑤𝑜𝑜(ℎ𝑡𝑡−1, 𝑝𝑝𝑡𝑡)}    (6) 

ℎ𝑖𝑖(𝑡𝑡) = tanh{𝑐𝑐𝑡𝑡𝑜𝑜𝑡𝑡}     (7) 

The variables𝑏𝑏𝑖𝑖 , 𝑏𝑏𝑐𝑐 , 𝑏𝑏𝑓𝑓 , 𝑏𝑏𝑜𝑜 and 𝑤𝑤𝑖𝑖 ,𝑤𝑤𝑐𝑐 ,𝑤𝑤𝑓𝑓 ,𝑤𝑤𝑜𝑜  represent the weight and bias values 
associated with the input gate and intermediary cell. The input, concealed, forget, output, and 
hidden layer are expressed 𝑖𝑖𝑡𝑡 , 𝑐𝑐𝑡𝑡 , 𝑓𝑓𝑡𝑡 , 𝑜𝑜𝑡𝑡  𝑎𝑎𝑎𝑎𝑎𝑎 ℎ𝑡𝑡. The input is denoted 𝑝𝑝𝑡𝑡 , and the computation 
function is denoted 𝑐𝑐𝑥𝑥(𝑡𝑡). 

Step 5: The Bi-LSTM model effectively retains information by leveraging past and future 
values by implementing two layers of LSTM. Memory cells are assigned for the forward and 
reverse passes, respectively. A composite hidden state was formed by concatenating several 
hidden elements (ℎ⃖�𝑡𝑡  𝑎𝑎𝑎𝑎𝑎𝑎 ℎ�⃗ 𝑡𝑡), including both preceding and succeeding information. The 
LSTM memory cell utilizes the current (𝑐𝑐𝑜𝑜 , ℎ𝑜𝑜) and concealed input to calculate the 
subsequent cell state at each time step t. The decision to either disregard or incorporate data 
gathered from the cell is determined by individual memory processes.  

The LSTM unit's memory cell sent from the bidirectional approach computes the initial 
output cell (𝑜𝑜𝑡𝑡) and a fresh cell condition (𝑐𝑐𝑡𝑡) by using the initial state values. The forward 
and reverse propagation of the Bi-LSTM model uses the conventional LSTM unit of action 
to execute this process at each given time step, denoted as t. The two directions' final hidden 
values (ℎ𝑡𝑡 ) are combined by concatenating them into a unified result, as shown in Equation 
(8). 

ℎ𝑡𝑡 = 𝜎𝜎�ℎ⃖�𝑡𝑡 ,ℎ�⃗ 𝑡𝑡�     (8) 

The symbol σ represents the aggregation function, encompassing addition, multiplying, 
combining, or averaging, and the hidden elements (ℎ⃖�𝑡𝑡  𝑎𝑎𝑎𝑎𝑎𝑎 ℎ�⃗ 𝑡𝑡). 

Step 6: The output of the Bi-LSTM system is regarded as a suggestion for the appropriate 
fertilizers to be used on a given unidentified plot of land. Properly determining fertilizer 
quantities for land application is crucial in safeguarding soil fertility and mitigating the risk 
of soil erosion. 

The Farmers' Toolkit comprehensively integrates WSN, ML, and AI. This amalgamation 
provides a revolutionary solution for precision farming. The system comprises a Crop 
Recommendation, Weed Detection using CNN, and a Bi-LSTM Network designed for 
Fertilizer Suggestions.  This section presents a comprehensive methodology that utilizes 
cutting-edge technology to augment agricultural methods, maximizing crop productivity and 
improving resource allocation. 

4 Simulation Analysis and Outcomes 
The simulation configuration entails the implementation of the suggested Farmers' Toolkit 
on a computer cluster equipped with at least 32 GB RAM and 8-core processors to manage 
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the computational requirements effectively. The WSN utilizes 100 IoT devices strategically 
deployed throughout a field spanning an area of 1000 square meters. These sensors are 
responsible for gathering data at a frequency of 1 Hz. The Weed Detection Neural Network 
is implemented on a Graphics Processing Unit (GPU) with 8 gigabytes of Video RAM. It 
efficiently processes high-resolution pictures obtained by a drone at a rate of 30 frames per 
second. The best performance of the Bi-LSTM Network for Fertilizer Recommendations 
necessitates a computing environment equipped with a GPU. The training process is executed 
across 100 epochs, with a batch size 64. 

 
Fig. 3. Accuracy evaluation 

The Accuracy findings, which indicate the accuracy of the model's forecasts, are shown in 
Figure 3. The mean accuracy across all approaches is calculated by dividing the number of 
adequately predicted cases by the total number of instances, resulting in a value of 88.70%. 
The Farmers' Toolkit, as suggested, demonstrates better performance in precision farming 
applications, with remarkable accuracy rates of 95.45% in training, 93.38% in testing, and 
94.92% in validation, surpassing previous models. 
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Fig. 4. Precision evaluation 

Figure 4 depicts the Precision, which evaluates the precision of optimistic predictions 
within the anticipated positive cases. The average accuracy across all approaches is 
calculated by dividing the number of true positive predictions by the total of true positives 
and false positives, resulting in a value of 84.22%. The Farmers' Toolkit demonstrates high 
accuracy values of 95.23% in training, 92.67% in testing, and 93.78% in validation. These 
results highlight the toolkit's effectiveness in accurately performing crop management and 
recommendation activities. 

 
Fig. 5. Recall evaluation 

Figure 5 presents the results of the Recall evaluation, which measures the model’s 
capacity to identify all positive cases correctly. The average recall across all approaches is 
determined by calculating the ratio of true positives to the total of true positives and false 
negatives, resulting in a value of 88.05%. The Farmers’ Toolkit, as suggested, has remarkable 
recall values of 96.12% during training, 93.23% during testing, and 94.56% during 
validation. These results highlight the toolkit’s efficacy in accurately recognizing pertinent 
information for precision farming applications. 
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Fig. 6. F1 score evaluation 

The F1 Score findings are shown in Figure 6, a statistic that combines precision and recall 
to evaluate the overall performance of a model. The average F1 score across all techniques 
is calculated as the harmonic mean of accuracy and recall, resulting in a value of 85.51%. 
The Farmers' Toolkit, as suggested, demonstrates impressive performance in precision 
farming applications. It achieves F1 scores of 95.89% in training, 92.45% in testing, and 
93.56% in validation, indicating a well-balanced performance in precision and recall. 

 
Fig. 7. Computational Efficiency evaluation 

The Computational Efficiency findings are shown in Figure 7, which measures the 
effectiveness of the models in processing information. The average efficiency across all 
techniques is determined by calculating the ratio of the actual computational efficiency to the 
theoretical maximum efficiency, resulting in a value of 84.76%. The Farmers' Toolkit, as 
suggested, exhibits significant computational efficiency, achieving training accuracy of 
94.23%, testing accuracy of 91.78%, and validation accuracy of 92.45%. These results 
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highlight the toolkit's efficacy in enhancing computing resource utilization for precision 
farming applications. 

The exceptional results validate the toolkit's effectiveness in delivering precise, efficient, 
and reliable solutions for identifying weeds, recommending crops, and controlling fertilizers 
in precision agriculture. 

5 Conclusion and Future Scope 
Throughout human civilization, agriculture has played a pivotal role, serving as a 
fundamental pillar that has not only provided nourishment but also had a profound influence 
on the development and structure of communities throughout many historical periods. The 
need to improve agricultural methods has resulted in the birth of precision farming, which 
prioritizes efficiency and sustainability. Detecting weeds and providing precise crop and 
fertilizer recommendations are crucial in maximizing the efficient use of resources and 
minimizing the negative effects on the environment. These duties were mainly carried out by 
physical labor and conventional methods, which needed to be improved to meet the precise 
requirements of modern agricultural needs. Acknowledging these constraints, the Farmers' 
Toolkit is designed to use WS, ML, IoT and AI to provide complete solutions. The toolkit 
has many features, such as a Crop Recommendation Model, a CNN designed for Weed 
Detection, and a Bi-LSTM Network specifically developed for Fertilizer Recommendations. 

The findings demonstrate the high performance of the toolkit, as evidenced by various 
metrics such as Accuracy (96.45% for training, 94.23% for testing, and 95.67% for 
validation), Precision (95.23% for training, 92.67% for testing, and 93.78% for validation), 
Recall (96.12% for training, 93.23% for testing, and 94.56% for validation), F1 Score 
(95.89% for training, 92.45% for testing, and 93.56% for validation), and Computational 
Efficiency (94.23% for training, 91.78% for testing, and 92.45% for validation). 

The results underscore the potential of the toolkit to transform precision farming by 
enabling precise weed identification, tailored crop suggestions, and effective fertilizer 
control. Obstacles such as ensuring data security, achieving scalability, and promoting 
technological accessibility present significant challenges, underscoring the need for ongoing 
improvement. The prospects include augmentation of the toolkit's scalability, real-time data 
analytics integration, and socio-economic obstacles mitigation to facilitate broader use. It is 
essential to emphasize the significance of joint endeavors among academics, farmers, and 
technology developers to ensure smart agriculture's continuous progress. 
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