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Abstract: This article presents a study devoted to predicting the fatigue 
behavior of two different materials: aluminum alloy AL-2024-T6 and glass 
fiber composite samples. The approach used in the study involves the use of 
artificial neural networks (ANNs) to develop accurate models for predicting 

the fatigue life of these materials at various skewness ratios (R). For the first 
case study, the S-N curve of tensile-tested AL-2024-T6 was predicted for 
different values of R using a few sets of data for learning. The model was 
then tested on the same values of R as the learning set, as well as on a 
different value of R (-0.4), to demonstrate the ability of the model to predict 
fatigue data under varying conditions. The results showed that the model 
was capable of accurately predicting the fatigue life of AL-2024-T6 for 
different values of R. For the second case study, the stiffness degradation of 

bending-tested glass fiber woven composite samples was predicted for 
different values of R using ANN. Different layups of composite samples 
were considered in this study. The model was trained on a few sets of data 
and tested on the same and different values of R, demonstrating the ability 
of the model to accurately predict stiffness degradation of composite 
samples under varying coefficients of asymmetry. The results of both case 
studies showed that ANN-based models can be effective in predicting the 
fatigue behavior of different materials tested using different methods under 
varying coefficients of asymmetry. These findings have practical 

implications for industries involved in the design and manufacturing of 
materials, particularly in the aerospace and automotive sectors, where 
fatigue behavior is critical to the structural integrity of components.  

1 Introduction 

Fiber-resin composites are now widely used in many areas of engineering, especially in 

various means of transport such as aircrafts or automobiles. These materials have remarkable 

strength and low weight, making them the preferred choice for many applications. Despite 

fiber-reinforced composites having a good fatigue lifetime rating, the damage starts early due 

to their anisotropic and inhomogeneous nature. Therefore, fatigue must be considered when 
designing with composites, and procedures must be developed to predict the damage 

accumulation and expected lifetime of the material/component [1]. As the stiffness 
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degradation starts early in composites, it imposes additional dangers when applied to civilian 

transportation. As a result, the structure loses efficiency when safety stands first in composite 

structures that are subjected to cycling loadings. This sometimes reduces the weight 

advantages of non-metallic materials greatly. 

To safely use composite materials in structural elements, it is necessary to know precisely 

when the failure of material is occurred and how the properties are reduced during the 

structure life. There are several approaches developed for composites fatigue modelling such 

as classical S-N curves-based models [2, 3], residual strength [4-6] and stiffness [7-9] models, 

progressive damage models [10, 11]. In the topic reviews of the end of 20th century and the 
start of 21st century [12-14] and 2021st year review [15] scientists come to similar 

conclusions that there should be developed a model for realistic structures which accounts 

for a lot of different conditions and factors. The little difference in conclusions of reviews so 

widely separated in time means that there were no general inventions in the field of fatigue 

modelling of composites. However, recently a new approach started to get useful. 

One of the innovative methods for the fatigue life prediction is the use of Artificial 

Intelligence. There are several methods that were used and tested for fracture mechanics 

analysis and mechanical fault detection: Fuzzy Logic, Case Based Reasoning, Genetic 
Algorithm, Bayesian Network, and Artificial Neural Network [16]. It could also be seen that 

there are many fields of engineering which used ANN for various applications [17-19] and 

for fatigue in particular [20-23]. In this work the ANN method is chosen for fatigue behavior 

prediction. It can provide high accuracy and great flexibility as it may be applied to any 

material which is also shown in this work. This modelling tool uses available data from 

experiments and predicts the material behavior based on what was “learned”. 

This work shows that ANN can predict the material’s fatigue life based on some 

previously learned assets for different values of the coefficient of asymmetry. Moreover, it 
shows that the material is not important for this method as the prediction result are both 

accurate for the conventional alloy and the composite. With the successful application of 

ANNs to predict fatigue life, it becomes possible to reduce safety factors and fully exploit 

the potential weight advantages offered by non-metallic composite materials. 

2 Computational method 

2.1 ANN general description 

An artificial neural network (ANN) is the name of computational approach. Among the many 

descriptions, the one common stands out first: ANNs are digital systems that are built to 

recognize patterns and make sense (for themselves) of complex sets of data. The inspiration 

for their creation was taken from nature as these systems aim to imitate the work of a living 

creature’s brain. 

An artificial neural network consists nodes called artificial neurons which are organized 

in layers and interconnected between each-other. Three basic layer types in a typical ANN 

are called input, hidden and output. The total number of hidden layers may vary, it depends 

on the complexity of an ANN. Initial data comes to the input layer, then it gets processed in 
the hidden layer and then the final result of network calculations is obtained on the output 

layer (fig. 1-6). 

The network operates by assigning weights to inputs received by each neuron. These 

inputs are multiplied by their corresponding weights, and the resulting products are 

aggregated. Subsequently, the sum undergoes a non-linear transformation through an 

activation function. The output from each neuron serves as input for the neurons in the 
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subsequent layer, establishing a continuous flow of information within the network. The 

structure of a typical ANN could be seen on Fig. 2 

In the training phase, the Artificial Neural Network (ANN) undergoes training utilizing a 

dataset comprising input-output pairs. The neurons' weights and biases undergo iterative 

adjustments through a process known as backpropagation. This technique involves 

propagating the error between the network output and the desired output back through the 

network. Consequently, the network progressively refines its internal parameters, enhancing 

its capacity to make precise predictions or classifications. 

 

Fig. 1. Activation functions equations and shapes. 

 

Fig. 2. Artificial Neural Network scheme. 
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3 Method validation 

A method to validate the accuracy of an ANN in predicting fatigue behavior is to run it 

through test problems for various materials. 

3.1 First validation task 

The first task is to obtain the S-N curve for the aluminum 2024-T6 

 

Fig. 3. Reference SN curves for AL 2024-T6 [24]. 

  
1,3,6 – Initial data for (R = 0, -0.4, -1) 

2,4,7 – Predicted data for (R = 0, -0.4, -1) based on (R = 0, -1) 

5 – Predicted extrapolation for curve №4 (R = -0.4) 

Fig. 4. Initial and obtained curves for AL 2024-T6. 

3.2 Second validation task 

The second test task is to obtain predicted force-cycle curve for composite sample bending. 
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Fig. 5. Reference stiffness degradation curves for e-glass/epoxy composite [25]. 

 

1,3,5,10 – Initial data for different layups and asymmetry coefficients R 

2,4,6,7,9,11 – Predicted data 

9 – Predicted curve without initial data 

Fig. 6. Initial and obtained curves for r e-glass/epoxy composite. 

4 Results discussion 

Taking into account the dispersion of the initial data, ANN predicted curves turned out to be 

of relatively good accuracy. There was found a relation between the initial data given for the 

ANN learning and the output predictions. So, if ANN learned on two sets of the data with the 
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coefficients of asymmetry R = 0,4 and R = 1 it could be said that it will give good prediction 

for R lying within the interval of 0,4 and 1. The prediction will lose accuracy when R is taken 

out of the interval, the further from the initial borders the worse the accuracy is. 

5 Conclusion 

Novel computational tool such as ANN proves to be a reliable modeling tool for capturing 

the nonlinear characteristics of CFRP laminates under constant amplitude loading. This 

method exhibits effectiveness in representing fatigue life characteristics for various material 
systems, displaying comparable or superior modeling capabilities when compared to 

alternative methods. To this day, ANN have been used as nonlinear regression tool stochastic 

in its nature. The advantages of this approach can be summarized like: Computational 

methods, like ANN, function as stochastic tools for nonlinear regression, enabling the 

modeling of fatigue behavior in any material, provided sufficient training data is available. 

The stochastic nature of these methods is crucial, generating distinct outputs for identical 

input data with each model run. This property facilitates the creation of new datasets based 

on specific inputs to enhance limited databases. The modeling process avoids reliance on 
assumptions, such as adherence to a specific statistical distribution for the data or the use of 

a power curve equation to represent the S-N curve. Additionally, the method does not account 

for the mechanics inherent in each material system. In short, this computational approach is 

a data-driven and material-independent method that correlates input and output values to 

establish a model describing their relationship. Consequently, the proposed method readily 

lends itself to application across various materials, contingent upon the availability of 

sufficient data. The S-N curves derived through this data-driven modeling technique do not 

adhere to any predetermined mathematical form; rather, they conform to the trend observed 
in the available data, providing the best estimate of material behavior in each instance. While 

previous studies have demonstrated the ease with which output data can be fitted with simple 

second to fourth-order polynomial equations, caution is warranted in cases involving limited 

datasets, as artificial intelligence methods may risk overfitting in such instances. 
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