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Abstract. The article provides basic information about the principles of 

calculations for solving the system of Navier–Stokes equations using the 

control volume method. The calculation of the incompressible fluid velocity 

field and pressure is found using the SIMPLE algorithm and MacCormack 

method. Particle trajectories were determined using the Lagrangian 

approach. 

1 Introduction  

Introduction Currently, velocity profiles have been determined for laminar steady motion of 

a Newtonian fluid in channels with a wide variety of cross-sectional shapes [1]. The flow of 

a continuous medium in channels and elements of technical devices is of practical interest 

for a number of applications [2-6]. 

Calculation within the framework of the complete Navier-Stokes equations of laminar 

flows at low and moderate Re, as a rule, does not involve overcoming any fundamental 

difficulties. However, as Re increases (Re>1000), obtaining reliable results becomes a 

problem, which greatly limits the possibilities of numerical modeling of those laminar flows 

for which the boundary layer approximation is unsuitable, and, in particular, the study of the 

loss of stability of laminar flow. 

In scientific research the basis of computational science serves as a mathematical model 

of the physical phenomenon that interests us. The equations of the mathematical model are 

translated into discrete algebraic form, amenable to numerical solution. Discrete algebraic 

equations describe a computational model which, when translated into a sequence of machine 

instructions, provides a simulation program for the computer. After this, the computer and 

the program make it possible to study the evolution of the model physical system in 

computational experiments.[15] 

The term "particle models" is common to the class computational models in which a 

discrete description of physical phenomena involves the use of interacting particles. The 

name itself arose because in most applications these particles can be directly associated with 

physical objects. Each particle has a set of attributes, such as mass, charge, vorticity, position, 

momentum. 
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In addition to direct methods, which by their nature are the most accurate, there are 

simpler and therefore more applicable models: 

Euler-Euler models. 

Euler-Lagrange models. 

Euler-Euler models. 

A widely used method is to create transfer laws on based on the volume fractions of two 

phases in each computational control volume, resulting in a continuous representation of both 

phases. This approach is called two-fluid model or also called Euler-Euler model. In progress 

[12] one of the first to mention such a concept as interpenetrating continuums. 

The key idea behind building a two-phase model is that multiphase flow is represented as 

a set of interacting continuums. Behavior of each component phase of a multiphase model 

described by the laws of conservation of mass, momentum and energy. Phase interaction 

relative to each other is taken into account by adding special (algebraic or differential) terms. 

Euler-Lagrange models. 

The Lagrangian approach, also known as the "dilute phase approach", used when the 

amount of dispersed phase is small and does not interfere with movement continuous phase 

[13-14]. In the Lagrangian approach, three main ones can be distinguished modeling method: 

•Direct Numerical Simulation (DNS), 

• Large Eddy Simulation (LES), 

• Reynolds averaging by the Navier-Stokes method (RANS) [2] 

DNS modeling approach requires particles to be smaller on the scale of Kolmogorov. 

This requirement greatly limits the use of DNS. low Reynolds numbers or very small 

particles. To overcome this is a limitation, LES modeling can be used. Application as DNS, 

Likewise, LES is limited to dilute systems, where collisions and hydrodynamic interactions 

can be neglected and are assumed one-way connection between the dispersed and carrier 

phases [10]. In recent studies [3] one-way coupled Eulerian-Lagrangian models have been 

used to study dilute solid-liquid flows weigh it. Reviews of Lagrangian-Eulerian methods for 

multiphase flows have been given in works [ 11] 

This can only be achieved with a very fine mesh, which therefore leads to unrealistically 

high computational time and memory costs. Therefore, a subgrid drift velocity model was 

developed to allow use coarser meshes [12]. All phenomena on a scale smaller than numerical 

grid, require first of all modeling of flow turbulence fluids using RANS or LES methods. 

However, such models need extensions to account for two-way communication. 

In this article, a mathematical model of the movement of dispersed particles in a flow is 

created and numerical results are obtained. For this purpose, the speed of water movement 

was determined using the Navier-Stokes equation [7]. The trajectories of dispersed particles 

were determined using the Lagrangian approach. 

2 Physical and mathematical formulation of the problem 

In Fig. Figure 1 shows pipeline of the flow of dispersed particles 

  

Fig. 1. Schematic view of the flow 
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Here ,U V -radial and axial velocities of two-phase flow, ,p pU V - radial and axial 

velocities of dispersed particles, p – hydrostatic pressure, K -phase interaction coefficient, 

g - acceleration of gravity: 

The coefficient of phase interaction during laminar motion is determined as follows. 
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Here  - dispersed particle density,  - fluid density, - diameter of dispersed 

particles.  



 d
d


Re - Reynolds number for a dispersed particle,  - coefficient of kinematic 

viscosity. 

The vector representation of system of equations (1) has the following form. 
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To numerically solve the system of equations, the SIMPLE method was used. [4] In this 

case, the system of equations was solved by dividing the physical variables velocity-pressure. 

The solution of displacement equations in the volume control method, expressions for hybrid 

differentials, and chessboard nodes have been implemented. In this method, solving a system 

of equations written in new coordinates includes two stages. [2] 
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The McCormack method was used to numerically solve this system of equations (2). The 

McCormack method provides second-order accuracy in time and step. 
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3 Initial and boundary conditions 

Initial boundary 
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An extrapolation condition was used for all velocities in the outlet 
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An extrapolation condition was used for all velocities at the wall 

 

0.p pU U V V     
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Fig.2. Mesh of flow 

4 Solution method  

Numerical solutions of the presented systems of equations were carried out in the physical 

variables velocity - pressure by physically splitting the fields of velocity and pressure. In this 

case, a checkerboard difference grid using the control volume method is used for the transport 

equations. 
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Equations (2) The superscript “U
~

”denotes the intermediate grid function for the velocity 

vector; 
nn ppp  1  pressure correction. Multiplying equation (2) by the gradient and 

taking into account the solenoidal nature of the velocity vector at the th time layer,  1n
we obtain the Poisson equation for determining the correction to pressure:
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Equation (4) was solved using the iteration method, for which equation (4) was reduced 

to parabolic form 
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It is easy to show that the calculation scheme has an order of accuracy 2( , , )O t x r   . 

This means that the velocity and pressure components are determined at different nodes. This 

approach is similar to the SIMPLE methods and provides certain advantages when 

calculating the pressure field [7–11]. The layout of cells and nodes is similar to the layout of 

the SIMPLE method. 

5 Calculation results and their discussion 

In Fig. Figure 3 shows comparison graphs of calculated data. The figures show profiles of 

the longitudinal velocity U in various measured sections 

 

  

a) b) 

  

а) / 30x r   b) / 30x r   
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Fig. 3. shows graphs of a) radial velocity U and b) axial velocity V. 
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c) d) 

Fig 4. Particle settling distance as a function of flow velocity  

 a)U=0.35 m/s, b) U=0.55m/s, c) U=0.75m/s, d) U=1 m/s. 

 

 
Fig 5. Result of isoline velocity 

6 Conclusion 

In this article, the results were obtained at the Reynolds number equal to Re=1000.This 

article examines the movement of dispersed particles. The Navier-Stokes equation was 

used to determine flow rates. The Lagrangian approach was used to determine the particle 

trajectory. In numerical calculations, it was determined that if the size and dimensions of 

the particle are large, then it will settle very quickly, if the particle is light, then it will 

travel a long distance, which is shown in the graphs. 
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