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Abstract. Due to the occurrence of failures are divided into design, 
production and operational. Structural failures occur due to imperfection or 
violation of the established rules and (or) norms for the design of an object. 
Production - arise as a result of improper assignment of technological 
processes for the manufacture or restoration of parts and assembly of a car 
or are the result of a violation of the accepted technology, unsatisfactory 

quality of the material of parts or coatings applied to them, the use of 
insufficiently accurate measuring instruments, failure to meet technical 
requirements for the manufacture and assembly of elements, as well as the 
manufacture and assembly of elements and the object as a whole. In the 
article, basic information about the principles of calculations for solving a 
system of multiphase Navier–Stokes equations using the control volume 
method is provided. It is shown that the relationship between velocities and 
pressure is found using the procedure of SIMPLE. For the numerical 

solution of this problem, the McCormack scheme was applied. A 
comparison has been made between each other and with the experimental 
data. For turbulence, the Spalart–Allmares model was used. And also in the 
work the movement of sedimentary fluid in different diameters and different 
Reynolds numbers was studied. 

1 Introduction 

As one of the ways to obtain new knowledge, mathematical modeling is one of the main 

research methods in various fields of natural science today. The movement of gas in a wind 

tunnel, the propagation of tsunami waves, the spread of plasma in a trap, weather changes 

and other numerous phenomena in science and technology are described by various 

mathematical models represented as integral or partial differential equations. Modern 

computational algorithms make it possible to solve these systems of equations with sufficient 

accuracy in two-dimensional and three-dimensional approximations when solving various 
classes of problems, taking into account real geometries and non-stationarity of the process. 

Further progress in the development of numerical methods is associated with the 

development of new numerical algorithms and an increase in the speed and power of modern 

computer technology [1]. Modern numerical methods speed up the process of developing 

new products, allow you to point out the weaknesses of existing ones, but the question arises 

about the reliability of the results obtained. The accuracy of the results obtained using these 
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calculations depends on the choice of turbulence models, as well as on the number of 

elements of the computational grid [2]. 

2 Physical and mathematical statement of the problem 

A two-dimensional turbulent flow in a flat channel is considered. The physical picture of the 

analyzed flow and the configuration of the computational domain are shown in Figure1. Here, 

the height of the channel is H=1 cm, the length of the channel is L=57 cm. 

 

 

Fig. 1. Scheme of the computational domain in a flat channel. 

At the entrance to the channel in the section, the flow profile was set for the longitudinal 
velocity -U/U0=1 and the transverse velocity -V and pressure -p equal to zero. When 

dimensionless values are introduced, the channel height -H is taken as the length scale, and 

the average flow rate - at the channel inlet is taken as the velocity scale. For the numerical 

study of the problem posed, the system of Navier-Stokes equations averaged over Reynolds 

is used, taking into account the interaction between the phases [3]. The system of equations 

does not take into account the forces due to the effects of turbulent migration, Sefman, 

Magnus (lift force) and Coriolis [4]. Because they are significantly less than the force of 

gravity. Thus, for mathematical modeling of the processes of transfer of dust particles and 
aerosols in a channel, it is sufficient to take into account the gravity force and the Stokes 

force of interaction between the phases [5]. 
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here iU – is the axial, radial and tangential components of the air flow velocity, 

respectively; ipU - similar velocity components for the m-th fraction of sedimentary 

substances; p  – hydrostatic pressure;   – gas density; v  - its molecular viscosity; ji uu ''  
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- components of the Reynolds stress tensor; m - mass density of sedimentary substances; 

km - coefficient of interaction between air and the m-th fraction of sedimentary substances; 

N- number of fractions of sedimentary substances; 
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diffusion coefficient for the sedimentary phase, 8.0Sc  - Schmidt coefficient. The paper 

considers the number of fractions N=4. 

The interaction coefficient between the phases was determined through the Stokes 

parameter: 
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In this expression   - sediment density, m  - “effective” sediment diameter.  

The system of Navier-Stokes equations averaged over Reynolds (1) is not closed. To close 

this system in linear models, the generalized Boussinesq hypothesis is used. 
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Here tv - turbulent viscosity.  

3 Spalart-allmares model 

To find the turbulent viscosity, the Spalart-Allmares SA turbulence model was used in the 

work. The SA model [6] belongs to the class of one-parameter turbulence models. Here there 

is only one additional equation for calculating the kinematic coefficient of eddy viscosity 
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Turbulent eddy viscosity is calculated by the formula:
1

~
vt f   

The function 
1rf  is a correction factor that describes the effect of streamline curvature on 

turbulence. This function has the following form: 
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where  
ijS  — strain rate tensor, DtDS ij / — components of the substantial derivative of 

the strain rate tensor, 
ij  — тензор завихренности. The remaining values remain the same 
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as for the "standard" model, which are presented in [7]. Obvious no-slip boundary conditions 

are set on all fixed solid walls 0Г Г ГU V v   , where Г – hard boundary [8]. 

4 The method of solution 

For the numerical solution of the system of initial non-stationary equations (1) for the 

scheme, the method of finite differences was used. Due to the complexity of matching the 

velocity and pressure fields for discretization of the equations of motion in YX ,  directions 

and the continuity equation, a grid with a spaced arrangement of grid nodes for dependent 
variables was used. This means that the velocity and pressure components are determined at 

different nodes. This approach is similar to the SIMPLE methods and provides certain 

advantages in calculating the pressure field [9]. The arrangement of cells and nodes is similar 

to that of the SIMPLE method.                                    

5 The scheme of McCormack 

In computational hydrodynamics, the McCormack method is a widely used discretization 

scheme for the numerical solution of hyperbolic partial differential equations. This second-
order finite difference method was introduced by Robert W. McCormack in 1969 [10]. 

McCormack's method is elegant, easy to understand and easy to program. The McCormack 

method is widely used to solve the equations of hydrodynamics. McCormack is especially 

useful for solving non-linear partial differential equations such as the Euler and Navier-

Stokes equations. The system of equations (1) can be represented in matrix form. 
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Applying the explicit predictor-corrector method to the nonlinear Navier-Stokes and 

SA equations, we obtain the following difference scheme: 
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Here  
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This is an explicit scheme of the second order of accuracy in time and space with an 

approximation error       2 2 2
, ,O t x y   , this scheme is stable at max max 1

U t V t

x y

  
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  
. 

Initially (predictor) is an estimate 1n

i

  values and at 1n -м time step, and then 

(corrector) the final value is determined 1n

i

  at 1n -st time step. Note that in the predictor 

it is approximated by forward differences, and in the corrector, by backward differences. 

6 Calculation grids 

In computational fluid dynamics, it is extremely important that the simulation correctly 

represents the conceptual model. Moreover, the simulation should resemble real flows as 

closely as possible. Numerical simulation has various advantages over experiments [2]. The 

main one is that the parameters can be easily changed and quick results are possible at a lower 

cost. In this study, a computational grid was used, which is refined near the channel walls 
Figure. 2. 

 
 

Fig. 2. Refining the mesh near the channel wall                       

Grinding is carried out using the following formula 
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   (8) 

If 0  , then the grid will be refined only near y h , while if 1/ 2  , then the grid 

will be refined as near 0y   so around y h . Roberts showed [2, 13] that the stretching 

parameter   is approximately related to the dimensionless thickness of the boundary layer 

/ h  in the following way: 
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where h  — grid size in direction y . For the first case used, grid number is 1000 100 . 

7 Calculation results and their discussion 

Figure 3 shows the results of the longitudinal velocity in various sections along the length of 

the channel. Reynolds number Re=27000. 

 

 

Fig. 3. Longitudinal velocity in various sections along the length of the channel. 

U0– is the reference velocity in the center channel used for the dimensionless 

determination of velocity profiles [11]. 

Figure 4 shows the results of the transverse velocity in various sections along the length 

of the channel. Reynolds number Re=27000. 
 

 

Fig. 4. Transverse velocity in various sections along the length of the channel. 

Now we compare the numerical results with the experimental data in Fig.5. Reynolds 
number Re=27000. 

  
а b 
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Fig. 5. Comparison of numerical results with experimental data a) longitudinal flow velocity, 
b) Reynolds stresses. 

Here Uref– is the reference speed in the center channel. 

Comparisons of the obtained numerical results with known experimental data are shown 
below. On figure. 6 shows the numerical results of changing the Reynolds number of the 

momentum loss thickness from the dimensionless plate length x . The Reynolds number of 

momentum loss thickness was found by integrating the equation 

Re
0.5 .f

d
C

dx

 
               (9) 

Here fC - plate friction coefficient: 

2
.
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x
f

V
C

y

 
  

 
                      (10) 

Figure 6 shows the experimental results for comparison 

  

Fig. 6. Dependence of the Reynolds number of the momentum loss thickness on the length of the 
plate. 

In Figure 7, the solid line shows the dependence of the friction coefficient on the 

dimensionless momentum loss thickness according to the proposed model. Diamonds are 

also illustrated by results on the Karman-Schoencher theory [12]. 
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Fig. 7. Dependence of the coefficient of friction on the Reynolds number of the momentum 
loss thickness. 

The solid line in Figure 8 shows the result of numerical calculation for the dimensionless 

longitudinal flow velocity depending on the dimensionless distance to the plate. 
Dimensionless velocities and distance were determined by the formulas 

* *

*
, Re , 0.5 .x

f

V
u y yu u C

u

   
    (11) 

Here, for comparison with the results of the diamond model, the results of the Coles 

theory are also shown [13,14]. 

 

Fig. 8. Transverse distribution of longitudinal velocity. 

Numerical studies have shown that the SA model using the McCormack scheme gives 

results that are closer to the experimental data. [15]. 

In fig. 9-11 shows the isoline of the dimensionless longitudinal, transverse velocity and 

Reynolds stress of the flow, respectively. 

 

 

 

Fig. 9. Isoline of the dimensionless longitudinal flow velocity U/Uref 
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Fig. 10. Isoline of the dimensionless transverse flow velocity V/Uref 

 

 

Fig. 11. Isoline of the dimensionless Reynolds Stress 

21000 ' ' / refu v U
 

Figure 12 shows the trajectory of sedimentary fluid with a diameter of 0.01 mm at various 

Reynolds numbers. 

 
Re=7000 

 
Re=10000 
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Re=14000 

 
Re=17000 

Fig. 12. Trajectory of a sedimentary fluid with a diameter of 0.01 mm at various Reynolds 
numbers 

From figure 12. sedimentary liquid with a diameter of 0.01 mm can be seen at Re=7000 

sedimentary liquid remains in the lower part of the channel. At Re=17000 sedimentary fluid 

is absent from the lower part of the channel. 
Figure 13 shows the trajectory of a sedimentary fluid with a diameter of 0.5 mm at various 

Reynolds numbers. 

 

 
Re=7000 

 
Re=10000 

 
Re=14000 

 
Re=17000 
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Re=20000 

 
Re=24000 

 
Re=27000 

Fig. 13. Trajectory of a sedimentary fluid with a diameter of 0.5 mm at various Reynolds numbers. 

Figure 14 shows the trajectory of sedimentary fluid with a diameter of 1 mm at various 

Reynolds numbers. 

 

 
Re=7000 

 
Re=10000 
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Re=14000 

 
Re=17000 

 
Re=20000 

 
Re=24000 

 
Re=27000 

Fig. 14. Trajectory of a sedimentary fluid with a diameter of 1 mm at various Reynolds numbers 

In figure 14. it can be seen that it carries away all sedimentary fluid with a diameter of 

0.5-1 mm on the lower part of the channel Reynolds number Re>20000 these are values 

approximately rhubarb U0=30 м/с. 

Figure 15 shows the percentage of residual liquid inside the channel at different Reynolds 

numbers and diameters. 
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Re D=0.01 mm, % D=0.1 mm, % D=1 mm, % 

7000 44 78 82 

10000 36 56 60 

14000 18 36 40 

17000 2 18 22 

20000 0 0.04 0.1 

24000 0 0 0 

27000 0 0 0 

Fig. 15. Percentage of remaining sedimentary fluid inside the channel at different Reynolds numbers 
and diameters. 

8 Conclusion 

The paper presents numerical solutions for the flow of a multiphase incompressible viscous 
fluid in a channel according to the Spalart-Allmares turbulence model. The dependence of 

the Reynolds number of the momentum loss thickness, the dependence of the friction 

coefficient on the Reynolds number of the momentum loss thickness, and the transverse 

distribution of the longitudinal velocity are demonstrated. For the numerical implementation 

of the turbulence equation, schemes of the second order of accuracy were used. The figures 

show the Spalart-Allmares model using the McCormack scheme satisfies the experimental 

results. Moreover, the movement of sedimentary fluid in different diameters and different 

Reynolds numbers has been studied in the work. 
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