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Abstract. Transition to smart agriculture demands tools for non-invasive monitoring of cultivated plants 

biomass. One of the most widespread and informative biomass indicators is leaf area index (LAI). LICOR 

2200C has become de facto standard in modern ecological research for non-invasive LAI estimation. In this 

paper, on the example of spring wheat crops of the RSAU-MTAA experimental field, the efficiency of yield 

and biomass parameters prediction using data from AccuPAR LP-80 and LI-COR LAI 2200C was 

compared. LAI data from both devices obtained at different phenological phases of spring wheat were used 

as predictor for spring wheat yield models. Comparing the generated models show superiority of AccuPAR 

LP-80 in yield prediction while LI-COR LAI 2200C shown better result in overall biomass prediction.

1 Introduction 

The progressive increase in average annual temperatures 

observed in recent decades is changing the agroclimatic 

potential for agriculture in Russia and the world [1,2]. In 

the conditions of economic and environmental risks 

typical for the agricultural sector, agricultural holdings 

need to monitor the parameters of their activities and 

conduct operational diagnostics. Building a model of a 

certain process, considering the profitability of 

production, is performed taking into account modeling, 

planning and forecasting, which are considered effective 

management methods [2]. 

The impact on agricultural production of biological 

and economic factors, the laws of development of which 

are not deterministic, can complicate the prediction of 

yield. The use of insufficiently effective methods for 

predicting the agroclimatic conditions of crop cultivation 

can negatively affect the reliability of forecasts performed 

[3]. 

Forecasting is based on the accumulated experience, 

that is, it is a complex process, during which it is 

necessary to solve many different tasks [2,3]. 

Against the background of constant changes in market 

demand and supply of various fertilizers and plant 

protection products, their zonal differentiation relative to 

agroclimatic conditions and soil types, it is necessary to 

develop decision-making systems that can optimally 

adapt agricultural facilities and agricultural technologies 

to the given conditions. It is necessary to take into account 

the large amount of data that requires modern computing 

equipment to process. In such conditions, the number of 

possible solutions is very large, and choosing the best one 

without a comprehensive and comprehensive analysis can 

lead to errors [2]. 
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The main attention in the context of changes in 

agrometeorological resources is paid to operational 

information on the impact of weather conditions on the 

state and formation of productivity of agrocenoses. In 

many countries of the world, including the Russian 

Federation, gross grain collections are the basis of food 

security, so special attention should be paid to forecasts of 

grain yields. The application of measures to minimize 

damage and in favorable harvest years, the determination 

of possible grain export volumes helps to organize the 

preparation of forecasts. The effectiveness of yield 

forecasts decreases in some years and does not satisfy 

employees in the agro-industrial sector, so with such large 

fluctuations in yield, the task of forecasting is quite 

difficult. Forecasts are an important link in the decision 

support system of agricultural holdings, so the 

requirements for their accuracy and advance are 

increasing [2]. 

Currently, two approaches are used to forecast crop 

yields: based on empirical regression models and 

biophysical models of vegetation growth. Empirical 

models relate crop yields to meteorological data and 

biomass characteristics and do not require a large number 

of input parameters. However, the effectiveness of such 

models largely depends on the availability and quality of 

data [4]. 

Crop models allows to obtain biophysical parameters 

of crops: yield, biomass, water content, etc. Examples of 

such models are World Food Studies (WOFOST), 

implemented within the framework of the European Crop 

Growth Monitoring System (CGMS), EPIC (Erosion 

Productivity Impact Calculator) and CERES (Crop 

Environment Resource Synthesis). The main difficulty in 

applying such models is that they require numerous input 
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parameters to run the model, including information about 

soil type, crop varieties, meteorological data, and 

agricultural technology. Such models are reliable, but 

their application requires appropriate adaptation and 

calibration considering the agricultural specifics of a 

particular region [4]. 

Most classical models of agroecosystem production 

use LAI as one of the main parameters. The practical 

utility and growing need for modeling and predicting 

yields using dynamic models has led to a growing demand 

for reliable information on leaf area. First, the leaf surface 

index is used to determine the density of vegetation cover 

and biomass, monitor the growth and death of vegetation 

cover, predict yield, and calculate the total evaporation of 

moisture. 

The aim of the study was to evaluate the production 

process of spring wheat using the leaf surface index (LAI) 

and projective cover (PC), for subsequent modeling of 

crop yield. 

2 Material and method 

The study was conducted in 2022 at the experimental 

fields of the Russian State Agrarian University in the 

north of Moscow. 

The microrelief of field is a relatively flat, with 

alternating between small elevations and extensive 

depressions, as shown in Fig. 1. 

 

 

Fig. 1. Digital surface model of experimental field. 

The soil cover is mainly represented by arable medium 

loamy sod-podzolic soil, cultivated since XVII century 

[5]. Investigated academical field is under crop rotation 

and in 2022 was used for spring wheat planting (Triticum 

aestivum L. breed Darya). Sowing was in first week of 

June 2022 and harvest was on 1 of August.  

Before seeding field was separated into 81 squares. In 

each square sampling mark was randomly placed and 

georeferenced. Georeferencing was performed with a 

Stonex S9 RTK GPS pair with RMSE less than 4 cm, 

since precision of common GPS navigator is not suitable 

for precise field work [6].  All measurements were done 

in triplicate within a half-meter radius from sampling 

mark, Fig. 2. 

 

Fig. 2. Field sampling scheme. 

Monitoring was performed on weekly basis starting 

from 16 of June. Every visit wheat phenology phase 

according to Zadoks scale [7], heights, number of stems, 

and plant biomass were estimated.  

Plants heights were assessed using a measuring tape: 

from emerging to booting phenology phases  from the soil 

surface to the top of the upper leaf; at the onset of earing  

to the top of the ear.  

Photos for the subsequent calculation of crops PC 

were taken with an RGB camera with a resolution of 14 

megapixel from a height of 1.2 m. 

LAI was measured using an AccuPAR LP-80 and a 

LI-Cor LAI 2200C. Sensors were placed above the 

surface of the vegetation cover and below, below the level 

of the assimilation organs of plants, recording data 

considering spatial and temporal characteristics. 

AccuPAR model LP-80 uses photosynthetically active 

radiation (PAR) to measure light absorption in plant 

crowns and calculate the LAI. AccuPAR calculates LAI 

based on measurements of fractional radiation (with 

photosynthetically active radiation (PAR) measured 

above and beneath plant canopy), zenith angle, and leaf 

area distribution for a particular crop. LI-Cor LAI-2200C 

measures the leaf area using an optical sensor that detects 

the scattered radiation of the sky at five zenith angles, 

projecting a hemispherical image onto five detectors 

located in concentric rings [8].  

Data was organized and statistically processed using 

R: A Language and Environment for Statistical 

Computing [9]. All graphs were produced utilizing 

ggplot2 R package [10] 

3 Results and discussion 

Due to high spatial heterogeneity of the field soil the high 

variance of wheat LAI were observed for all phenological 

phases caused by the high heterogeneity of the state of 

crops in the field, and not by the low accuracy of 

measurements. The values obtained by AccuPAR LP-80 

are characterized by lower average errors, but also lower 

variance [6]. 
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Fig. 3. LAI temporal dynamics and spatial variance according 

to LAI 2200C and AccuPAR LP-80, whiskers represent 95% 

conf. İnterval. 

• Data from both devices have a statistically significant 

linear relationship as shown in Fig. 4 (R2= 0.46), despite 

the obvious difference between the index values obtained 

by the devices [8]. 

 

 

Fig. 4. Scatter plot and linear relation of LAI values obtained 

with the LAI 2200C and AccuPAR LP-80 . 

Therefore, the LP-80 values can be used to estimate the 

real value of LAI (1): 

 

        LAI2000 = 0,53* LAI80+0,95                     (1) 

 

* LAI2000 – LAI measured with LAI-2200C,  

* LAI80 – LAI measured with the LP-80. 

The temporal dynamics of the leaf area index was 

recorded using AccuPAR LP-80 and LAI-2200C for 

different phenological stages presented on Fig. 5. 

 

Fig. 5. Comparison of spring wheat crops LAI dynamics by 

phenophases for LAI 2000C (blue dots) and LP-80 (yellow 

dots). 

Analyzing the graph shown in Fig. 5, we can see that 

during the tillering and booting phenological phases, the 

LAI values obtained with AccuPAR LP-80 differ 

significantly from the data obtained with LAI-2200C. 

AccuPAR LP-80 values in the tillering phase reach a 

maximum of slightly more than 1 m2 m-2, while LAI-

2200C data exceed them several times (reach almost 4 m2 

m-2). AccuPAR LP-80 values in the tube exit phase are a 

maximum of 3.5 m2 m-2, and LICOR-2200C data reaches 

5 m2 m-2. During the earing and flowering phases, the leaf 

surface index values do not vary much and are within the 

same range. During the milk ripeness phase, data were 

collected only from LAICOR-2200C, the maximum 

values of which did not exceed 3.8 m2 m-2. 

We compared PC data obtained using the ImageJ 

software with the yield and with the measured height in 

the tillering-tube exit phases in order to understand how 

effectively yield and biomass can be predicted (Fig. 6). 

 

 

Fig. 6. Scatter plot and linear relation of wheat height and 

projective cover, for tillering and booting phenophases. 

Based on the graph shown in Fig. 6, we can see that 

there is a relationship between the PC and the height in 

the tillering phase R2 = 0.39, and a very weak linear 

relationship between this parameter is observed during the 

booting phase, with R2 = 0.15. Hence, projective cover 

can be used for prediction of some biomass parameters 

(height) in the early stages of development. 

There was no statistically significant dependence 

between PC in the tillering and booting phases and yield. 

Projective cover was not measured at later phases due to 

saturation of one after booting. Therefore, PC cannot be 

used for spring wheat yield prediction. 

Evaluation of LAI obtained with AccuPAR LP-80 and 

LAI 2200C at different phenological phases as a predictor 

of spring wheat yield showed that AccuPAR LP-80 well 

predicts yield in the flowering phase, which is supported 

by the obtained correlation coefficient R2= 0.71 (strong 

linear relationship), Table 1. In the booting and earing 

phases, the data of the device did not have strong 

relationships with yield (R2= 0.23 and R2= 0.05, 

respectively). 
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Table 1. R2 of spring wheat yield predicted with LAI values 

obtained with LAI 2200C and AccuPAR LP-80 at different 

phenological phases. 

Phenophase LAI 2200C AccuPAR LP-80 

Tillering < 0.01 < 0.01 

Booting 0.03 0.23 

Flowering 0.32 0.71 

Earing 0.04 0.05 

Milking 0.11 < 0.01 

 

Assessment of LAI obtained with LAI 2200C had the 

strongest relationship with yield, as well as with 

AccuPAR LP-80 in the phenological phase of flowering, 

while the absolute values were lower (R2= 0.32). In other 

phases, LAI 2200C readings had no significant linear 

relationship with yield. As a result, LAI estimated by both 

devices had a significant linear relationship with yield 

only in the flowering phase, but the strength of the 

relationship in AccuPAR LP-80 data was higher. 

4 Conclusion 

The study showed that LICOR LAI 2200C can predict the 

yield during the flowering phase, but in general there is a 

weak relationship between LAI and yield, while 

AccuPAR LP-80 predicts the yield well during the 

flowering phase, and in other periods it is also less 

effective. The AccuPAR LP-80 ceptometer, despite its 

cheaper price segment than LICOR, is more suitable for 

measuring the LAI of low growing crops. While data 

obtained with LAI 2200C better predicted overall 

biomass, specially during the flowering phase (R2= 0.35), 

in contrast to AccuPAR LP-80, which has a weak 

correlation between the tillering and earing phases. 
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