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Abstract. The paper presents the results of comparison of remote and proximal methods of spring wheat 
biomass monitoring. The study showed a linear relationship between data obtained with groups of methods 
at early stages of plant development (tillering, booting), when at later stages (earing, flowering) - the 
methods showed different degrees of interchangeability and did not have a clear relationship between them. 

1 Introduction 
Remote sensing has become a routine practice in 
agriculture in recent years. Satellite information allows to 
solve such typical tasks as providing current control over 
the state of crops; preliminary forecasting of crop yields; 
monitoring of harvesting rates over vast territories; 
capacity of different pastures and productivity of 
grasslands. In general, all the above makes it possible to 
realize effective support for management decisions in 
agriculture [1]. 

Remote sensing applications in agriculture are 
generally categorized according to the type of sensor 
platforms: satellite (remote sensing), unmanned (aerial) 
and ground-based (proximal). These platforms and their 
associated imaging systems can be differentiated by the 
height of the platform, image spatial resolution, and 
minimum data acquisition frequency. As spatial 
resolution increases, the area of the smallest pixel 
decreases and the uniformity of soil or crop characteristics 
within that pixel increases [1]. 

In agriculture, satellites have been used for imaging 
since 1972 [2,3], when Landsat 1 (originally known as 
Earth Resources Technology Satellite 1) was launched. 
The multispectral scanning system (MSS) on Landsat 1 
was capable of imaging in the green, red, and two infrared 
bands with a spatial resolution of 80 m, with a data 
acquisition frequency of 18 days. Landsat 1 was initially 
used to determine agricultural landscapes occupied by 
corn and soybean crops (USA) with an overall accuracy 
of 83% [2]. 

One of the key elements of agroecological 
optimization of modern technologies of grain crops 
cultivation is field methods of agroecological monitoring, 
in which digital technologies of operational processing of 
data on the state of crops obtained using unmanned aerial 
vehicles (UAV) are increasingly actively introduced [3].  

 
*Correspondence author: Alexandrov_na@rgau-msha.ru 

Based on the data obtained from the UAVs it is 
possible to estimate the workload of agricultural 
operations and control their implementation, predict the 
phenology of grain crops, fertilizer application 
optimization and optimal dates for harvesting [4]  

Remote sensing data obtained using UAVs have 
higher spatial and temporal resolution compared to 
satellite images, and compared to conventional aircraft 
UAVs have lower cost, weight, and potentially higher 
resolution due to lower minimum altitude and flight speed 
[3]. Another advantage of UAVs is the possibility to 
obtain a digital elevation model with very high resolution 
along with orthophoto. This allows both to obtain 
georeferencing of high enough resolution for soil 
parameters mapping [5] and extrapolate the data of soil 
parameters point measurements to produce high 
resolution mapping [6]. 

At the same time, most crop models are still based on 
satellite data, while UAV data, although used quite 
successfully for yield prediction, are still analyzed only in 
a few papers [7]. Therefore, we decided to test how 
detailed information including biomass parameters such 
as crop height, projective cover and LAI can be predicted 
with cheap and widespread UAV model on different 
phenological phases. 

2 Material and method 
The experiment was organized in 2023 on the 
experimental fields of K.A. Timiryazev Russian State 
Agricultural University-MSHA on the north of Moscow. 

The relief of the site is represented by a plain with 
weakly expressed microrelief. Absolute heights of the 
field area are in the range of 166-170 meters. Along the 
boundaries of the site there is a drainage channel (Fig. 1). 
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Fig. 1. Terrain map of experimental field. 

The experimental field was divided into 81 quadrats, 
coded from A-1 to I-9, with one sampling point inside 
each quadrat, as shown in Fig. 2, all measurement inside 
quadrant was done threefold.  

 
Fig. 2. Field sampling scheme. 

Plant height was measured using a measuring tape at 
the tillering and booting phases, the height was measured 
from the soil surface to the top leaf. Starting from the 
earing phase - from the soil surface to the top of the ear, 
the length of the ear was considered separately. The 
projective coverage was calculated using a digital RGB 
camera with a resolution of 50 megapixels and a shooting 
height of 1.5 meters above the ground. The photo was 
taken in such a way that the picture included a wire frame 
on the ground surface with dimensions of 0.5x0.5 meters.  
Georeferencing of the RGB images was recorded using 
GPS data extracted from mobile devices. The coordinates 
were further used to calculate the projective coverage for 
each quadrant. 

The obtained images were cropped along the 
boundaries of the wire frame and processed in the ImageJ 
software [8]. The image was converted from RGB color 
space into Hue, Saturation, Brightness (HSB) one. Using 
the "color threshold" tool, the green range was selected on 
the color gradient so that the entire surface of plant leaves 
was selected on the image. Then the image was adjusted 
using brightness and saturation parameters. This 
adjustment allows to exclude elements in the image that 

do not belong to vegetation. Using the "analyze" and 
"measure" tools, the program calculated the "area" 
parameter - the area of all extracted pixels. Then this value 
was recalculated by the number of pixels in the image and 
converted into percentages. 

During the period from 16.06.2022 to 29.08.2022 
weekly in the morning, the area was filmed with a DJI 
Phantom-4 RTK drone equipped with a camera with a 1 
inch CMOS sensor, the images were obtained with a 
resolution of 20 megapixels. Shooting was performed in 
RGB mode, and the shooting altitude was 70 m. The 
longitudinal and transverse overlap of imaging was 80%.  

The obtained RGB images were processed using 
Agisoft Metashape, where photogrammetric processing of 
digital images was performed, resulting in orthophotos of 
the fields with spatial resolution of 2.5cm and a digital 
elevation model for each flight date. 

Using the obtained orthophotos, the projective 
coverage was calculated in the QGIS program.  
Vegetation indices were calculated for each orthophoto 
using the QGIS raster calculator according to the formulas 
in Table 1 [8]. At the next stage, from all resulting raster 
files with values of indices for different dates, 81 
fragments corresponding to the boundaries of 
experimental squares were cut out using vector masks. 

Table 1. Vegetation indices. 

Vegetation Index 
(VI) Formulae 

Normalized 
Difference 

Yellowness Index 
NDYI = (G-B)/(G+B)) 

Normalized Green 
Red Difference 

Index 
NGRDI = (G - R)/(G + R) 

Triangular Green 
Index TGI = -0.5*(190*(r-g)-120*(r-b)) 

Visible 
Atmospherically 
Resistant Index 

VARI = (G - R)/(G + R - B) 

Green Leaf Index GLI = (2*G - R - B)/(2*G + R + B) 

Modified 
Photochemical 

Reflectance Index 
MPRI = (G-R)/(G+R) 

Red Green Blue 
Vegetation Index RGVBI = (g - b*r)/(g*g+r*b) 

Modified Green Red 
Vegetation Index MGVRI = (g*g-r*r)/(g*g+r*r) 

Excess Green Red 
Vegetation Index ExGR = ExG - ExR 

Excess Red 
Vegetation Index ExR = (1.4*r - g) 

Excess Green 
Vegetation Index ExG = (2*g-r-b) 

Vegetativen Index VEG = g/(r^0.667*b^0.333) 

Normalized Red r = R/(R+G+B) 

Normalize Green g = G/(R+G+B) 

Normalized Blue b = B/(R+G+B) 
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LAI was measured using a LICOR LAI-2200C and an 
AccuPAR LP-80 ceptometer. Biomass and yield were 
measured by direct harvests on a 0.25 by 0.25 m square 
plots. 

3 Results and discussion 
The projective coverage was calculated using both UAV 
remote sensing data and proximal data from crop surveys 
at the sites. Comparison of these data by phenophases 
showed that the maximum and statistically significant 
correlation between the indicators of projective cover 
calculated according to the two methods is reached in the 
tillering phase R2=0,48 Relatively low values of linear 
relationship at later stages are associated with an increase 
in spatial heterogeneity of biomass distribution in the 
field, due to the large heterogeneity of soil cover. Thus, 
already at the earing phase the strength of linear 
relationship between projective cover measured by two 
methods decreased R2=0.18. 

Fig. 7a and 7b show correlograms of dependencies of 
individual biomass parameters and vegetation indices 
measured by proximal and remote methods at the time of 
tillering and booting phases, respectively. The scale of 
Pearson correlation coefficient values is presented on the 
right side of the figure. Only statistically significant 
dependencies, p<0.01, are presented on the graph. 

 

 
Fig. 7. Correlogram of dependencies of individual biomass 
parameters and indices measured by proximal and remote 
methods at the phase of tillering A) and booting B). 

The data obtained by LI-COR LAI2200C were used to 
estimate the LAI biomass parameter, since the instrument 
is considered the standard for determining this index in 
the academic environment. According to the correlation 
analysis data, the highest correlation coefficient is 
observed in the relationship between the LAI parameter 
and indices, namely ExGR, ExR, r, MPRI, NGRDI, 
MGVRI, VARI, b, where |r|≥ 0.7. Hence, these indices 
can be utilized to predict LAI. The projective coverage 
has weak predictive power. 

The highest correlation coefficient is observed in the 
relationship between the height parameter and the indices: 
R, G, B, g, b, RGBVI, RGVBI, GIL, TGI, ExG and NDYI, 
where |r|≥ 0.7. Hence, these indices can be applied to 
predict plant heights. The projective coverage has an 
average predictive power comparable to the LP-80 data. 
At tillering stage, the LAI2200C is not recommended for 
wheat growth prediction. 

It is best to use Lp-80 for yield prediction because the 
correlation coefficient is -0.8. Using the height parameter 
for prediction is also applicable as r = 0.7. The LAI2200C 
instrument gave a weak correlation with yield. Indices and 
projective cover gave no relationship and are not 
recommended for yield prediction at tillering stage. 

Analysis of the relationship between the variables 
yield and LAI index measured by LAI-2200C proximal 
sensor at the stage of tube emergence showed a strong 
relationship, as the correlation coefficient is equal to 0.7. 
TheLP-80 instrument has a weaker relationship r = - 0.4. 
The vegetation indices have correlation coefficient |r|≤ 
0.6, except for the b index, which showed the strength of 
relationship comparable to LAI2200C (Fig.7B). 

At the booting phase, the LAI parameter is generally 
predicted weaker than at the tillering stage. The highest 
correlation coefficient |r| = 0.6 characterizes the 
relationship with indices R, G, r, b, RGVBI, MGVRI, 
VARI, NGRDI, TGI, ExGR, VEG. The indices B, g, 
RGBVI, GIL, and ExR have the lowest predictive power 
|r| = 0.5. Projective coverage is not recommended because 
the correlation coefficient is 0.2. 
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At later stages all correlation between proximaly and 
remotely sensed biomass parameters dropped 
dramatically, and only few pairs had statistically 
significant relation. 

4 Conclusion 
Based on the summary data for predicting height, leaf 

area index and yield of wheat, the remote method using a 
cheap RGB camera gives results comparable to proximal 
methods using sophisticated tools. At the same time, 
proximal and remote methods are compatible at most 
phenological phases, especially at early stages (tillering - 
booting). 
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