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Abstract. This review aims to uncover the multifaceted landscape of methodologies employed by 
researchers for accurate fruit classification. The exploration encompasses an array of techniques and models, 
each tailored to address the nuanced challenges presented by fruit classification tasks. From convolutional 
neural networks (CNNs) to recurrent neural networks (RNNs), and transfer learning to ensemble methods, 
the spectrum of approaches underscores the innovative strategies harnessed to achieve precision in fruit 
categorization. A significant facet of this review lies in the analysis of the various datasets utilized by 
researchers for fruit classification. Different datasets present unique challenges and opportunities, thereby 
shaping the design and effectiveness of the models. From widely recognized datasets like Fruits-360 to 
specialized collections, the review navigates through a plethora of data sources, elucidating how these 
datasets contribute to the diversity of research endeavors. This insight not only highlights the variety in fruit 
types and attributes but also emphasizes the adaptability of deep learning techniques to accommodate these 
variations. By amalgamating findings from diverse articles, this study offers an enriched understanding of 
the evolving trends and advancements within the domain of fruit classification using deep learning. The 
synthesis of methodologies and dataset variations serves to inform future research pursuits, aiding in the 
refinement of accurate and robust fruit classification methods. As the field progresses, this review stands as 
a valuable compass, guiding researchers toward impactful contributions that enhance the accuracy and 
applicability of fruit classification models.

1 Introduction 
Fruits, nature's vibrant and diverse gifts, hold a profound 
significance in our day-to-day lives that transcends their 
delicious flavors and colorful appearances. These 
remarkable botanical wonders have been a cornerstone of 
human nutrition and culture for millennia [1]. As we 
navigate the hustle and bustle of modern life, it is easy to 
overlook the immense importance of fruits as a vital 
source of essential nutrients, natural sweetness, and 
culinary versatility. 

Fruits are rich in essential vitamins and minerals such 
as vitamin C, potassium, and folate, which are crucial for 
maintaining our health and well-being [2]. They are also 
packed with antioxidants, compounds that help protect 
our bodies from oxidative stress and chronic diseases [3]. 
Additionally, fruits are an excellent source of dietary 
fiber, which aids in digestion, regulates blood sugar 
levels, and promotes a feeling of fullness [4]. 

To procure a particular type of fruit, the significance 
of fruit classification becomes abundantly clear. Fruit 
classification is the systematic categorization of fruits 
based on various criteria such as botanical characteristics, 
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morphology, and usage. This process allows us to 
differentiate fruits and group them into categories, 
facilitating a deeper understanding of their diversity and 
characteristics [5]. Fruits are commonly classified into 
types such as simple fruits (developing from a single 
ovary), aggregate fruits (formed from a single flower with 
multiple ovaries), and multiple fruits (resulting from the 
fusion of ovaries from multiple flowers). Each of these 
types is further subdivided based on specific attributes 
like whether the fruit is fleshy or dry, dehiscent or 
indehiscent, and more. 

Exploring the classification of fruits, we encounter 
two main approaches: traditional and automated methods. 
These distinct approaches provide unique insights into the 
world of fruit taxonomy and hold varying degrees of 
relevance in our modern age. Traditional fruit 
classification is based on botanical and physical traits like 
size, shape, color, and seeds. It's vital in agriculture, 
botany, and taxonomy for categorizing fruits and 
understanding their diversity. In contrast, the modern era 
has ushered in automated methods for fruit classification, 
driven by technological advancements, particularly in the 
fields of machine learning and computer vision [6]. 
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Automated fruit classification leverages the power of 
algorithms and artificial intelligence to identify and 
categorize fruits based on visual data. This approach 
involves training machine learning models, such as 
Convolutional Neural Networks (CNNs), on extensive 
datasets of fruit images. 

1.1 Deep learning 

Deep Learning (DL), a subset of machine learning, has 
profoundly transformed various domains, ushering in a 
paradigm shift in academia, healthcare, finance, and 
agriculture [7,8]. In education, DL has revolutionized 
pedagogical strategies through personalized learning 
platforms, adaptive assessment systems, and intelligent 
tutoring systems, tailoring education to individual needs 
[9]. In healthcare, DL's image and speech recognition 
capabilities have accelerated disease diagnosis, while 
predictive models have enhanced patient outcomes 
through early intervention [10–16]. Financial institutions 
benefit from DL's risk assessment, fraud detection, and 
algorithmic trading algorithms, enhancing decision-
making processes [17]. Moreover, DL has revolutionized 
agriculture by enabling precision farming through data-
driven decision-making, enhancing crop disease 
detection, predicting yields, and optimizing resource 
utilization [18–21]. DL-powered weed management and 
livestock monitoring promote sustainability and animal 
welfare. Furthermore, DL assists in supply chain 
management, climate resilience, and market forecasting, 
ensuring food safety, reducing waste, and maximizing 
profits. 

When it comes to fruit classification, deep learning has 
turned out very effective, offering numerous advantages 
in automating and optimizing the sorting and grading 
processes in agriculture and the food industry. Using 
Convolutional Neural Networks (CNNs) and other DL 
architectures, fruit classification systems can accurately 
distinguish between different fruit types and their various 
grades based on visual attributes, such as size, color, 
texture, and shape. 

One significant application of DL in fruit 
classification is in the agricultural sector, where it is 
utilized for sorting and grading fruits as they are 
harvested. DL-powered sorting machines can rapidly 
process large quantities of fruits, classifying them into 
different categories based on predefined quality criteria. 
This automation reduces labor costs, improves accuracy, 
and ensures consistent quality in the final product. 

1.2 Objectives 

The objective of this critical review is to 
comprehensively assess the state of the art in fruit 
classification utilizing deep learning methodologies. This 
review aims to: 

1. Literature Review: Conduct an extensive literature 
review on deep learning applications in fruit classification 
to understand the current state of research. 

2. Data Extraction and Analysis: Extract relevant data 
from the Web of Science database and analyze it to 

identify trends and distribution of research articles and 
conference papers. 

3. Model Performance Assessment: Evaluate the 
reported model performance metrics, focusing on 
accuracy, and identify factors influencing model 
performance, such as dataset size and model choice. 

4. Challenges and Limitations Identification: Identify 
and discuss the challenges and limitations associated with 
deep learning-based fruit classification, including dataset 
size disparities and model interpretability. 

5. Future Directions Exploration: Investigate emerging 
trends and future directions in the field, considering areas 
like multi-modal sensing, interpretable AI, and human-AI 
collaboration in fruit classification. 

2 Material and method 
In this critical review, we conducted an exploration of the 
Web of Science database. We utilized the following 
search string to extract data from the database: 
Search String “Deep Learning” AND “Fruit 
Classification” NOT “Disease”. 

Note: all of these keywords were employed to retrieve 
data from various fields, including the title, abstract, 
author keywords, and Keywords Plus. 
In our quest to retrieve research articles using the 
aforementioned search string, we identified a total of 52 
studies as of September 16, 2023. Within this pool of 
studies, we discerned the following distribution: 40 
research articles and 12 conference papers. Subsequently, 
we narrowed our focus to research articles that focus only 
on classification, resulting in a selection of 21 articles for 
further examination. 

In the pursuit of advancing fruit classification using 
deep learning, researchers have employed diverse 
methodologies and datasets to develop accurate and 
efficient models. This section provides an overview of the 
methodologies commonly utilized in the studies 
summarized in Table 1 and highlights the characteristics 
of the datasets employed for training and evaluation. 

3 Results 

3.1 Model architectures 

Deep learning models serve as the backbone of fruit 
classification systems, and researchers have explored a 
spectrum of architectures tailored to their specific 
objectives. These models encompass both established and 
novel approaches: 

• Proposed Models: Hossain et al. [22] introduced a 
novel architecture in their study, while Altaheri et al. [23] 
leveraged pre-trained VGG16 and AlexNet models. 
Similarly, Faisal et al. [26] and Faisal et al. [27] adopted 
VGG19 and ResNet, respectively, as their base models. 
Ni et al. [28] explored GoogLeNet, and Shahi et al. [35] 
employed MobileNetV2. 

• Instance Segmentation: Le et al. [25] embraced the 
Mask R-CNN architecture, particularly suited for tasks 
requiring instance-level segmentation. This allowed them 
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to differentiate and classify individual bananas within the 
same image. 

• Ensemble Approaches: In some instances, 
researchers amalgamated multiple deep learning models 
to enhance classification performance. For instance, 

Altaheri et al. [23] combined VGG16 and AlexNet, 
achieving remarkable accuracy. 

• Specialized Architectures: Azadnia et al. [40] 
proposed a custom architecture for hawthorn fruit 
classification, while Phan et al. [41] utilized ResNet-101 
for tomato classification. 

 

Table 1. Summary of Deep Learning Approaches in Fruit Classification Studies. 

Paper Base Model/ 
Proposed Dataset Public/Private 

(self-created) Classes Number 
of images 

Data 
augmentation 

Transfer 
Learning Accuracy 

Hossain 
et al. [22] Proposed Date Fruit Public 4 4000 Yes Yes 99.2 

Altaheri 
et al. [23] 

VGG16, 
AlexNet Date Fruit Private 5 8072 Yes Yes 99.01, 99.56 

Hossain 
et al. [24] VGG16 MIX Fruit Private 10 5946 Yes Yes 99.75 

Le et al. 
[25] 

Mask R-
CNN Banana Public 2 194 Yes Yes 96.5 

Faisal et 
al.[26] VGG19 Date Fruit Public 7 8,079 Yes Yes 99.4 

Faisal at 
al. [27] ResNet Date Fruit Public 5 8,079 Yes Yes 99.10 

Ni et al. 
[28] GoogLeNet Banana Private 6 - Yes Yes 98.92 

Xue at al. 
[29] CAE-AND MIX fruit Public 26 124,212 No Yes 93.78 

Chen et 
al. [30] Proposed MIX fruit Public 30 12,000 No No 99.03 

Gill et 
al.[31] Proposed MIX fruit - 10 360 No No - 

Kang et 
al.[32] ResNet MIX Fruit Public 7 11,632 Yes Yes 97.43 

Ufuah et 
al. [33] DenseNet Date Fruit Private 3 1,800 Yes Yes 99.0 

Siddiqi 
[34] VGG16 MIX Fruit Private 7 3000 Yes Yes 94.82 

Shahi et 
al. [35] MobileNetV2 MIX Fruit Public 53 15,737 Yes Yes 96.24 

Albarrak 
et al. [36] MobileNetV2 Date fruit Private 8 917 Yes Yes 99.0 

Shankar 
et al.[37] DenseNet169 MIX Fruit Public 15 2633 Yes Yes 99.84 

Mimma et 
al[38] RestNet MIX fruit Public 30 971 Yes Yes 99.0 

Wang et 
al.[39] MobileNetV3 Mix fruit Public 11 2278 Yes Yes 95.0 

Azadnia 
et al.[40] Proposed Hawthorn Private 3 600 Yes Yes 99.63 

Phan et 
al.[41] ResNet-101 Tomato Private 3 1508 Yes No 98 

Gulzar 
[42] MobileNetV2 Mix fruit Public 40 26,149 Yes Yes 99 

 

3.2 Data augmentation 

The augmentation of training data plays a pivotal role in 
enhancing model robustness and generalization [43, 44]. 
Most studies incorporated data augmentation techniques 
such as rotation, scaling, flipping, and introducing noise 
to artificially diversify the training dataset. This 
augmentation strategy helped mitigate overfitting and 
enabled models to handle variations in fruit appearance 
effectively. 

3.3 Transfer learning 

Transfer learning, a prevalent strategy, involved 
initializing models with pre-trained weights, often from 
large-scale image datasets like ImageNet. Researchers 
fine-tuned these models on their specific fruit 
classification tasks. Transfer learning expedited 
convergence and leveraged previously learned features 
for improved performance. 
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3.4 Datasets 

Public Datasets: Several publicly available fruit datasets 
served as the foundation for numerous studies. Notable 
among them is the "Date Fruit" dataset, a standardized 
benchmark for date fruit classification. Additionally, 
mixed fruit datasets with varying numbers of classes were 
employed, offering a comprehensive range of fruit types 
for training and evaluation. 
Private Datasets: In certain cases, researchers collected 
and curated their private datasets to address specific 
research objectives or fruit types not adequately 
represented in public datasets. These private datasets 
allowed for customization and control over data quality 
and labeling. 

3.5 Dataset characteristics 

• Number of Classes: The number of fruit classes in 
these datasets varied considerably, ranging from 2 to 53 
classes. This variability catered to the diverse range of 
fruit types and research goals. 
• Number of Images: Datasets contained varying 
quantities of images, spanning from a few hundred to over 
a hundred thousand. The size of the dataset significantly 
influenced model performance. 
• Data Augmentation: Data augmentation techniques 
were extensively applied in both public and private 
datasets to enrich the training data. 
• Transfer Learning: Transfer learning was a common 
practice, enabling models to benefit from pre-trained 
knowledge and adapt it to fruit classification tasks. 

3.6 Model performance 

Model performance in fruit classification studies is 
typically measured by accuracy, and the table presents a 
variety of accuracy scores from different research papers. 
Here, we will analyze and discuss the model performance 
trends and highlights: 
• High Accuracy Across the Board: One notable trend 
in the table is the consistently high accuracy achieved by 
most of the models. Many studies report accuracy scores 
well above 95%, with several even surpassing the 99% 
mark. This indicates that deep learning models are highly 
effective in fruit classification tasks, regardless of the 
specific architecture or dataset used. 
• Influence of Dataset Size: Larger datasets often result 
in better model performance. For instance, the "MIX 
Fruit" dataset used by Chen et al. [30] and the 
"MobileNetV2" dataset by Gulzar [42], both with 
substantial numbers of images, achieved accuracy scores 
of 99.03% and 99%, respectively. Similarly, the "Date 
Fruit" dataset with 8,079 images used by Faisal et al. [27] 
and Faisal et al. [26] also yielded high accuracy scores of 
99.1% and 99.4%. 
• Effect of Model Choice: While the choice of deep 
learning model architecture varies across studies, it is 
evident that several models, including VGG16, ResNet, 
and MobileNetV2, consistently perform well. For 
example, Shahi et al. [35] achieved an accuracy of 96.24% 

using MobileNetV2, while Shankar et al. [37] obtained an 
impressive 99.84% accuracy with DenseNet169. This 
demonstrates the robustness of these architectures in fruit 
classification tasks. 
• Private vs. Public Datasets: The table includes studies 
that used both public and private datasets. Interestingly, 
some private datasets, such as those used by Altaheri et al. 
[23] and Albarrak et al. [36], outperformed public datasets 
in terms of accuracy, indicating the potential benefits of 
curated, domain-specific datasets. 
• Specialized Architectures: In some cases, specialized 
architectures tailored for specific fruit types, like the 
hawthorn fruit in Azadnia et al. [40], performed 
exceptionally well, achieving an accuracy score of 
99.63%. This suggests that custom architectures can be 
highly effective for niche fruit classification tasks. 
• Impact of Data Augmentation and Transfer Learning: 
Most studies employed data augmentation and transfer 
learning, which contributed to improved model 
generalization and accuracy. These techniques allowed 
models to adapt to variations in fruit appearance and 
leverage pre-trained knowledge from large-scale datasets. 

4 Challenges and limitations 
In the realm of fruit classification using deep learning, 
numerous challenges and limitations shape the landscape. 
These challenges and limitations are discussed as follows:  

• Dataset Size Disparities: One of the primary 
challenges in fruit classification using deep learning is the 
variability in dataset sizes. While some studies have 
access to extensive datasets with tens of thousands of 
images, others are constrained by smaller datasets. This 
size disparity can significantly impact model 
performance, with larger datasets generally resulting in 
more robust models. Researchers with limited access to 
data may face challenges in achieving comparable 
accuracy levels. 

• Private Dataset Dependency: Several studies rely on 
private datasets that are not publicly accessible. While 
private datasets offer the advantage of customization and 
domain-specific labeling, they can also limit the 
reproducibility and comparability of research. The lack of 
standardized public datasets for specific fruit types may 
hinder collaboration and benchmarking across studies. 

• Class Imbalance: In fruit classification tasks, class 
imbalance is a common issue, particularly when dealing 
with datasets containing numerous fruit classes. This can 
lead to biased models that perform well on majority 
classes but struggle with minority classes. Addressing 
class imbalance through techniques like oversampling, 
undersampling, or generating synthetic data can be 
challenging and requires careful consideration. 

• Computational Resources: Deep learning models, 
especially those with complex architectures and large 
datasets, demand substantial computational resources. 
Training and fine-tuning models can be computationally 
expensive and time-consuming, limiting the accessibility 
of this technology to researchers with limited resources. 

• Generalization to New Fruit Types: Many studies 
focus on specific fruit types or a limited number of fruit 
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varieties. The challenge lies in extending the applicability 
of models to novel or previously unencountered fruit 
types. Models trained on one set of fruits may not 
generalize well to entirely different types, necessitating 
retraining or adaptation. 

• Interpretable Models: Deep learning models, 
particularly those with intricate architectures, can be 
challenging to interpret. Understanding why a model 
makes a specific classification decision is essential, 
especially in applications where interpretability is crucial, 
such as quality control in the food industry. 

• Model Robustness: While high accuracy rates are 
impressive, the robustness of models in real-world 
scenarios with variations in lighting, background, and 
fruit deformities remains a limitation. Ensuring that 
models perform well under diverse conditions is an 
ongoing challenge. 

• Scalability: The scalability of fruit classification 
models for large-scale agricultural or industrial 
applications is a concern. Deploying these models across 
vast fruit processing facilities or agricultural fields 
requires efficient hardware, real-time processing 
capabilities, and scalability considerations. 

5 Applications and implications 
Fruit classification using deep learning holds immense 
promise and is poised to revolutionize several industries 
and domains. This technology's applications and 
implications are far-reaching. Some of them are 
mentioned as follows:  

• Agriculture and Quality Control: Fruit classification 
using deep learning has significant implications in 
agriculture. Accurate identification of fruit types and 
quality assessment can aid in automated harvesting, 
sorting, and quality control processes. This technology 
can optimize resource allocation and reduce waste in fruit 
production. 

• Food Processing Industry: The accurate 
classification of fruits can enhance the efficiency of fruit 
processing facilities. Automated sorting based on quality 
and ripeness can lead to improved product quality and 
reduced processing time. This can be particularly valuable 
in industries such as juice production and canning. 

• Consumer Convenience: Deep learning-based fruit 
classification can extend to consumer applications, 
including mobile apps and devices that help consumers 
identify fruits quickly and accurately. This can assist in 
making informed dietary choices and provide information 
on fruit ripeness. 

• Disease Detection: Beyond classification, deep 
learning models can be adapted for disease detection in 
fruit crops. Early detection of diseases or pests can enable 
timely intervention and reduce crop losses, contributing to 
sustainable agriculture. 

• Research and Biodiversity Conservation: Fruit 
classification aids researchers in studying fruit varieties, 
tracking biodiversity, and understanding fruit-bearing 
plant species. This information can be crucial for 
ecological and conservation studies. 

• Market Demand and Export: Accurate fruit 
classification can help meet market demands by ensuring 
that the right types and qualities of fruits are available. It 
can also facilitate the export of fruits by complying with 
international standards. 

6 Emerging trends and future directions 
• Multi-Modal Sensing: Integrating multiple sensing 
modalities, such as vision and spectroscopy, can enhance 
fruit classification accuracy. Emerging research is likely 
to explore the fusion of data from various sensors to 
improve fruit assessment. 
• Edge Computing: Future directions may involve the 
deployment of lightweight deep learning models on edge 
devices, allowing real-time fruit classification directly in 
the field or at processing facilities. This reduces latency 
and minimizes the need for extensive computational 
resources. 
• Few-Shot Learning: Developing models that can 
classify fruits with minimal labeled data (few-shot 
learning) is an emerging trend. This can be particularly 
valuable for rare or newly discovered fruit types. 
• Interpretable AI: As the demand for transparency and 
accountability in AI systems grows, future research may 
focus on developing interpretable models that provide 
explanations for their classification decisions. This is 
especially relevant in quality control and food safety 
applications. 
• Transfer Learning Across Domains: Transfer 
learning techniques can be extended to transfer 
knowledge from one fruit type to another or even across 
different domains (e.g., from vegetables to fruits). This 
can reduce the need for large labeled datasets for each 
fruit type. 
• Robustness and Adaptability: Researchers will likely 
continue to work on enhancing model robustness and 
adaptability to varying environmental conditions, 
including changes in lighting, fruit deformities, and 
background noise. 
• Human-AI Collaboration: The future may see the 
development of collaborative systems where humans and 
AI work together in fruit classification tasks. AI can assist 
human experts in faster and more accurate assessments. 

7 Conclusion 
The landscape of fruit classification using deep learning 
is marked by a diverse array of models, datasets, and 
methodologies. The research efforts showcased in section 
2 have illuminated both the potential and the challenges 
of applying deep learning to fruit classification. These 
studies have underscored the significance of dataset size, 
with larger datasets often yielding more robust models, 
but have also highlighted the limitations faced by 
researchers with constrained access to data. 

Furthermore, the reliance on private datasets, while 
offering customization advantages, has raised concerns 
about research reproducibility and collaboration. The 
challenge of class imbalance in fruit datasets has been 
acknowledged, necessitating the application of 
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specialized techniques to ensure fair and accurate model 
training. 

The demand for computational resources, particularly 
for complex models and large datasets, has surfaced as a 
noteworthy limitation, potentially restricting the 
accessibility of deep learning technology. Generalization 
to new and previously unencountered fruit types remains 
a challenge, calling for adaptability and retraining of 
models. 
Additionally, the need for interpretable AI models has 
become apparent, particularly in contexts such as food 
quality control. Ensuring model robustness under diverse 
conditions and scaling these technologies for large-scale 
applications present ongoing challenges in the field. 

Despite these challenges, the studies in section 2 have 
showcased remarkable achievements, with several models 
achieving high accuracy rates in fruit classification. As we 
look to the future, the field is poised for exciting 
developments, including multi-modal sensing, edge 
computing, few-shot learning, interpretable AI, transfer 
learning, and innovative human-AI collaboration models. 

These emerging trends and future directions hold the 
promise of making fruit classification technology more 
versatile, accessible, and adaptable across various 
industries and research domains. Overall, the insights 
gained from the studies in section 2 pave the way for 
continued advancements in fruit classification using deep 
learning, with broader applications and far-reaching 
implications in agriculture, food processing, consumer 
services, research, and beyond. 
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