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Abstract – In the recent decades, the growth of
 population, man-made facilities, infrastructures, and
lifelines at the expense of landslides-prone areas has been responsible for an exponential increase in human
and economic losses in many parts of the world. In the Moulay Yacoub region, where marly hills dominate,
the interaction of the semi-urban and rural socioeconomic development and landslides significantly
increases, which urges identifying and prioritizing areas of risk in order to maximize harm reduction and to
avoid the disastrous outcomes as is the case of Moulay Yacoub town. This paper aims to develop a landslide
susceptibility map in a highly affected sector of the province, where no previous landslide data have been
produced, and to find the most predisposing parameters. This goal is attained using two robust methods for
landslide susceptibility mapping, the Frequency Ratio and the GIS Matrix Method. Before that, the
correlation of 11 predisposing factors was tested. The results show that the anthropogenic factors,
particularly the agricultural practices, were highly involved, and the field investigations proved that cereal
farming slopes are the most affected. The success rate was about 0.75 (75%) for both models showing good
quality results for the two susceptibility maps. Therefore, the two models could be efficiently used, and the
new agricultural projects located in landslide-prone areas of the province must include such reliable methods
of landslide hazard analysis to minimize the risk, which would put human lives, ecosystems, food
production, and infrastructure in threat.

Keywords: Landslide susceptibility / GIS Matrix Method / Frequency Ratio / Marly context / anthropogenic factors /
Moulay Yacoub

Résumé – Cartographie de la susceptibilité aux glissements de terrain en utilisant la méthode
Matrice-SIG et le Rapport de Fréquence, application dans le contexte marneux de la région de Moulay
Yacoub, Maroc. Au cours des dernières décennies, la croissance de la population, des installations
artificielles, des infrastructures et des lignes de vie au détriment des zones sujettes aux glissements de terrain
a été responsable d’une augmentation exponentielle des pertes humaines et économiques dans de
nombreuses régions du monde. Dans la région de Moulay Yacoub, où dominent les collines marneuses,
l’interaction du développement socio-économique semi-urbain et rural et des glissements de terrain
augmente considérablement, ce qui oblige à identifier et à prioriser les zones à risque afin de maximiser la
réduction des dommages et d’éviter les conséquences désastreuses, comme est le cas du centre urbain de
Moulay Yacoub. Cet article vise à développer une carte de susceptibilité aux glissements de terrain dans un
secteur fortement affecté de la province, où aucune donnée antérieure sur les glissements de terrain n’a été
produite, et à trouver les paramètres les plus impliqués. Cet objectif sera atteint en utilisant deux méthodes
robustes, le rapport de fréquence et la méthode de la matrice-SIG. Avant cela, la corrélation de 11 facteurs a
été testée. Les résultats montrent que les facteurs anthropiques, particulièrement les pratiques agricoles, ont
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été fortement impliqués, et l’enquête de terrain a montré que les versants céréaliers étaient les plus touchés.
Le taux de réussite était d’environ 0,75 (75%) pour les deux modèles montrant des résultats de bonne qualité
pour les deux cartes de susceptibilité. Par conséquent, les deux modèles pourraient être utilisés efficacement,
et les nouveaux projets agricoles situés dans les versants de la province sujettes aux glissements de terrain
doivent inclure des méthodes d’analyse aussi fiables, afin de minimiser le risque, ce qui mettrait les vies
humaines, les écosystèmes, la production alimentaire, et les infrastructures en péril.

Mots clés : Susceptibilité aux glissements de terrain / Méthode de la Matrice-SIG / Rapport de Fréquence / Contexte
marneux / facteurs anthropiques / Moulay Yacoub
1 Introduction

Landslides represent the most destructive geological
hazard in word wide (Bao et al., 2020; Petley et al., 2005;
Schuster 1996; Schuster and Highland 2001), especially in the
Mediterranean rim where the environments are known by an
erratic distribution of intense rainfall events, and the neo-
tectonic activity is coupled with a high-energy relief (Van
Beek, 2002). Sometimes, the interaction between these geo-
hazards and the local practice of land use causes serious
damages to infrastructures and agricultural lands and threaten
local socioeconomic activities (Lee and Choi 2004; Conforti
et al., 2014; Del Soldato et al., 2017; Harmouzi et al., 2019; El
Kharim et al., 2021; Obda et al., 2022). According to the
International Federation of Red Cross and Red Crescent
Society, in the last decades, more than 3.2 million people have
been affected by landslides with more than 1.700 million
dollars losses (Hölbling et al., 2015). The large damaging
effects of these phenomena have incited adopting several
prediction strategies to identify high-risk areas that are the
most vulnerable to future landslides based on local physical
parameter, such as the relevant geology, geometry and slope
forming processes (Fell et al., 2008). With such information,
people and decision makers can foster the prioritization of
slopes requiring follow-up actions and take appropriate
preventive measures to spare expensive socioeconomic losses
and to plan safe future development activities (Pantelidis
2011). Therefore, in the last decades, landslide susceptibility
mapping has become an essential subject in international
geomorphology, engineering geology and regional/urban
territory planning (Bălteanu et al., 2020; Monsieurs et al.,
2019; Tien Bui et al., 2019), especially since the development
of GIS-aided mapping procedures has enhanced the capability
of preparation of landslide susceptibility maps, thus allowing
the analysis at a broad scale (Rybar et al., 2002). However, the
quality landslide susceptibility mapping (LSM) depends
mainly on the completeness and precision of the landslide
inventory (Pereira et al., 2012; Gaidzik and Ramírez-Herrera
2021; Bounab et al., 2022) and the quality of causal factors
used for modelling (Pereira et al., 2012; Mind’je et al., 2020;
Cao et al., 2021).

In fact, the inventory of past occurrences remains the most
influential input factor on the calculation of the spatial
probability of landslide occurrence (Pereira et al., 2012;
Bounab et al., 2022), which makes the landslides mapping a
decisive step. Landslide inventory maps are prepared for
several objectives, such as defining the location and type of
landslides in the study area (Antonini et al., 2002; Cardinali
et al., 2001), showing the abundance of slope movements
(Degraff 1985; Guzzetti et al., 2000), determining the
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frequency-area statistics of slope failures (Guzzetti et al.,
2002; Hovius et al., 2000, 1997; Malamud et al., 2004), and
providing relevant information to construct landslide suscepti-
bility and hazard models (Soeters and VanWesten 1996; Chung
and Fabbri 1999, 2003, 2005; Guzzetti et al., 2005, 2006).

Actually, recent studies proved that a proper computation
of landslide frequency-area distributions (FAD) remains an
efficient tool for testing the completeness of the landslide
inventory (Van Den Eeckhaut et al., 2007), quantifying the risk
and estimating erosion and sediment yields (Guzzetti et al.,
2002; Fu et al., 2020) as well as comparing different
geomorphological contexts in terms of landslide predisposition
(Qiu et al., 2020; Sahrane et al., 2022). However, good
probability size distribution models can only be obtained from
complete geomorphological inventories (Galli et al., 2008).

As for the conditioning factors, which are considered as the
second key parameter in landslide susceptibility modelling,
recent studies usually assess about ten variables considered as
predisposing factors of slope instability, e.g., Lee and Choi,
2004 (15 variables); Van Den Eeckhaut et al., 2010 (9
variables); Byou et al. (2020), (11 variables). However, most
LSM studies, especially those published before the 2020s, tend
to mainly focus on the effects of different statistical techniques
used to calculate the landslide susceptibility model and to
validate its goodness of fit without assessing the correlation
rate between landslides and the variables chosen (e.g., Süzen
and Doyuran 2004; Schicker and Moon 2012; Kavzoglu et al.,
2015; Othman et al., 2015; Aditian et al., 2018). Moreover, the
choice of these parameters (data of influencing factors) could
depend on the spatial extent of the study area, where a local
spatial scale requires more accurate input data (Zêzere et al.,
2017) as compared to a regional scale, where the choice of
input is more generalized (Thiery et al., 2007; Holec et al.,
2013). However, the selection step of these influencing
parameters requires a geomorphologic synthesis by experts of
the geomorphological context of the study area to achieve data
consistency and to avoid objective evaluation of landslides
spatial susceptibility (Chung and Fabbri 2005; Bounab et al.,
2022). This could provide physical explanations of the
observed statistical correlations and contribute to advancing
our understanding of the underlying physical processes
controlling the evolution of hillslopes.

Two types of approaches are commonly used to perform the
landslide susceptibility maps, qualitative and quantitative
methods. Each of the latter has both advantages and drawbacks
(Li et al., 2017). Qualitative approaches are based on the expert
point of view (Akgun 2012; Bourenane et al., 2015; Chabok
et al., 2019; Demir et al., 2013; Pourghasemi et al., 2012; Zhou
et al., 2016),who should have enoughknowledge about the local
conditioning factors involved in landslides manifestations.
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Quantitative methods are based on the analysis of the functional
relations between the factors of instability and the distribution of
landslides and can be categorized into bivariate andmultivariate
methods. In the bivariate ones, each factor is combined with the
landslide distribution map. As for the multivariate approaches,
they are usually more adapted to irregular data distribution
(Kavzoglu et al., 2014).

In the Rif Mountain belt, Northern Morocco, landslides
are amongst the most frequent natural hazards and are
considered as a major risk to the socio-economic develop-
ment of the country after floods and droughts (WBG 2021).
Besides, the high energy relief and the lithological factor,
dominated by loose formations, combined with human
practices made landslides very abundant (Mastere et al.,
2013; Rouai and Jaaidi 2003; Tribak 1997), especially in the
region of Moulay Yacoub-Fez-Taza, where the lithology,
represented by weathered clays and marls, combined with
steep slopes and water saturation are the main factors
involved in slopes instability (Hassan et al., 2015). However,
the study of the anthropogenic factors (especially the land
use) and their impact on landslide occurrence in the Moroccan
territory (especially in the Rif mountain belt) is uncommonly
investigated while international studies focusing on this
important topic have increased exponentially since the 1960s
(Beguería 2006; García-Ruiz et al., 2010; Guns and Vanacker
2013; Notti et al., 2015), with most irrigation-induced
landslides occurring in dry climates (Chevesich et al., 2021).
Following this, recent studies have shown clear evidence of a
strong and increasing control of the land use practices,
especially the land cover change, agricultural activities and
even urban extension, on landslide occurrence (Chevesich
et al., 2021; Guns and Vanacker, 2013; Obda et al., 2022).
Therefore, the integration of this parameter cannot be omitted
in the landslide hazard analysis. Furthermore, landslide
susceptibility analysis in the Pre-Rif region is still very poorly
investigated. Recently, projects of construction of aptitude for
urbanization maps launched by the ministry of the national
territory planning aim to provide the whole of the Moroccan
territory with reference documents making it possible to
consider the dimension of the risk of natural disasters,
including the landslide hazard, during the urban planning
process and particularly, during the development phase of the
various urban planning documents. The later cannot be
established without basic expertise and analysis of landslide
susceptibility in predisposed areas.

The aim of the present study is first, to create a landslide
database and to identify the characteristics specific to the
regional study context and which have a direct impact on the
predisposition of slopes to landslides. The second goal is to
develop a landslide susceptibility map for the first time in the
MY region, whose slopes are widely affected. Thus, future
prevention measures could be proactive and efficient. To
achieve this, we have chosen two among the most robust and
accurate methods used in landslide susceptibility studies. The
bivariate statistical Frequency Ratio (FR) method is one of
the effective and widely used processes in landslide
susceptibility mapping. It provides better understanding of
the influence of the factors selected (whether geomorpholo-
gical, climatic or anthropogenic) on landslide occurrence
(Razavizadeh et al., 2017; Vakhshoori et al., 2016).
Moreover, the FR outperformed many other methods in
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landslide susceptibility mapping (Weights of evidence, Fuzzy
gamma model, Support vector machine, Evidence belief
function, etc.) in terms of accuracy (Huang et al., 2018;
Vakhshoori et al., 2016) and the ease of data manipulation in a
GIS platform (Zhang et al., 2020). On the other hand, the
landslide susceptibility results pointed out the quality of the
maps drawn by means of the GIS Matrix Method (GMM) in
comparison with those made by other bivariate-statistical
techniques (Perálvarez et al., 2009) and those made by the
multiple-regression method (Irigaray et al., 2007). Its
application showed satisfactory results and can be tailored
for a broad scale where the same predisposing factors prevail
(Irigaray et al., 2007; Boualla et al., 2019) which constitutes a
similar context of our study area. In this study, we opted for
these two models because in addition to the satisfactory
results they provide according to the authors cited above, the
FR method is counted among the most frequently used
models, vice versa, the matrix method is still very little
used in the modelling of landslide susceptibility, which
encouraged us to test it and compare its results with the FR
method in a specific and highly landslide-prone area as the
MY province.

2 Material and methods

2.1 Study area

The study area is located in the west part ofMoulay Yacoub
province (MY) northern Morocco (Fig. 1), and includes 3 rural
municipalities: Mikkes, Sebt Loudaya and Laajajra. The total
area covered is 335 km2. MY province occupies the extreme
south of the Pre-Rif unit (sub-unit of theRif belt) and is limited to
the southby theSouth-Rif overlapping front,which separates the
Pre-Rif from the plain of Saïs (Fig. 1). The Pre-Rif consists of
marly overthrust nappes that belong to Cretaceous and Tertiary
ages (Sendide 2002; Winckel 2002; Lakhdar et al., 2006;
Charroud et al., 2007). The marls domination affords to the
region a landscape of hills with 5 to 20% average slopes. The
highest hills rarely reach 900m altitude and are usually armed
with sandstone or limestone ledge. The observed processes of
water erosion (sheet, rill and gully erosion) reveal the relative
soils impermeability, their friability and the strong surficial flow
(Heusch 1970; Tribak et al., 2009).

The drainage pattern is non-perennial and quite dense.
Moreover, the study area is known by subarid climatic
conditions with an average of 314mm of annual precipitations.
Rainfall data of Fez and MY’s hydraulic stations show that
most precipitations fall as stormy rain events, sometimes
exceeding 50mm, during very short periods (2 to 10 days),
which expresses a severe seasonal contrast (DGM Moulay
Yacoub; Obda et al., 2022). For the structural geodynamic of
the region, the last studies confirmed recent tectonic activities
at this Southern-Rif border (Agharroud et al., 2021; Chalouan
et al., 2014; Poujol et al., 2017).

The main activity of the population in MYprovince, which
does not exceed 200 000 residents (RGPH, 2014), is the
agriculture which is primarily based on cereal farming and
olive tree plantation. The housing regime is mostly rural except
for the municipality of MY where the urbanization is closely
linked to touristic and commercial activities provided by the
existence of the thermal springs.
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Fig. 1. a Geological map of northwest Morocco: (CQ) continental quaternary, (NSR) Neogene South-Rifan corridor, (NV) Neogene volcanism,
(PR) Prérif, (MR) Mesorif, (INR) Intrarif, (F) flysch unit, (IR) Internal Rif, (M) Mesozoic blanket, (CM) Caledonian western Meseta, (TF)
Frontal thrust; b Lithological map of the MY province.
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2.2 Landslide inventory

In the province of Moulay Yacoub, no slope movements
data have been developed previously. The inventory map
was established according to the classification of Hungr,
2014, who proposed a more detailed update to the Varnes
classification. The landslide mapping was based on
geomorphological field mapping, on visual interpretation
of the aerial photos of the 1991 and 2005 missions at a scale
of 40000 and 30000 respectively, and on the use of imageries
like Google Earth and Bing maps, where most of landslides
were mapped on the December 2018 image. Then, seven
field investigation surveys were conducted in February
2020, July 2021, and October 2021 to check and validate
concealed processes by land cover (especially brushwood
and trees), and relatively eroded ones. Earthflows, slides,
and rock falls were observed and inventoried in the study
area (Fig. 2a). However, since rock falls are fairly localized,
particularly at the foot of a few rocky escarpments, they
were discarded from this study.

The term earthflows is used because their materiel is
composed of marly soils (fine-grained material), has a flow-
like surface morphology (Appendix 2), is essentially ductile
and does not significantly lose strength during deformation
(Hungr et al., 2014; Varnes et al., 1996). As a result,
earthflows move slowly and intermittently without requiring
steep slopes to be triggered (less than 12°) (Schuster et al.,
1996). In fact, they have long periods of relative dormancy
alternated with more rapid “surges”, allowing infrastructure
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and man-made projects to be built on them (Picarelli et al.,
2005; Hungr et al., 2014).
2.3 Area-Frequency distribution analysis

Nowadays, modelling landslide size distribution is
considered as essential in quantitative hazard and risk
assessment because of the assessment dependency on the
relationship between landslide size and frequency distribution
(Corominas et al., 2008; Malamud et al., 2004). Moreover,
several studies in the last decades have shown that landslide
populations exhibit some power-law scaling across a portion of
their size distribution (Guzzetti et al., 2002; Malamud et al.,
2004; Brunetti et al., 2014; Li et al., 2016; Qiu et al., 2020;
Sahrane et al., 2022). In fact, the tail of landslide size
probability distribution for medium and large landslides is a
power law where a controls the power law decays for medium
and large landslide sizes, while b controls the maximum
probability density of landslide distribution in square kilo-
metres, and g controls the rate of decay for small landslide
areas in square kilometres. In addition to its ability to
characterize the size distribution of the landslides affecting the
slopes of the study area, the probability size distribution also
helps to assess the completeness of the landslide inventory
carried out (Eeckhaut et al., 2007; Guzzetti et al., 2002; Li
et al., 2016). In the present work, an Area-Frequency
distribution analysis will be carried out to check the
completeness of the landslide inventory but also to investigate
f 19



Fig. 2. a. Key characteristics of the landslide database. a. landslide inventory map; b. occurrences of earth flows by area of the movements; c.
occurrences of slide by area of movements; d. Double Pareto, and Inverse Gamma models with frequency area distribution of the landslide
inventory.
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further how the land use practices affect the size of landslides
in the study area. This will give us a better understanding of the
role of vegetation types in landslide occurrence (Guns et al.,
2014), which is essential to integrate the land use practices in
the protection programs against the landslide risk in the region.

2.4 Landslide influencing parameters

Many factors have been used to establish landslide
susceptibility maps (Catani et al., 2005; Wang et al., 2012).
There are two types of involved factors in the occurrence of
landslides, intrinsic and extrinsic factors. The first type is
directly connected to slope instability, as the types of terrain,
the presence of discontinuities, to the morphology of the slopes
and to the hydrological conditions. The second type includes
rather triggering factors such as intense rainfall, earthquakes
and anthropic activities (railway or road constructions, mining,
deforestation, drilling, different uses of lands, etc.) (Crozier
1984; Hansen 1984). For this study, the factors taken into
consideration were those where data and maps were available.
In the first step, slope, aspect, elevation, curvature, surface
roughness, topographic wetness index (TWI), proximity to
drainage network, proximity to roads, proximity to faults,
lithology and land use were selected as the involved
parameters of landslide influence in this study
(Appendix 1). The first six factors have been calculated from
the 12 meters DEM downloaded from ALOS-PALSAR
platform, using GIS software. Lithology and faults were
digitised from the Fes-Ouest geological map. As for the land
use, roads, and the hydrographic network, they were extracted
from the topographic maps and have been detailed on google
earth imagery. The aspect has an impact on hydrological
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phenomenon, evapo-transpiration, it governs soil moisture,
vegetation and grass, and root penetration. Therefore, slope
aspect has an indirect link on landslide occurrence and its
degree of susceptibility (Neuhäuser et al., 2012; Pourghasemi
et al., 2018). Moreover, recent susceptibility mapping studies
have shown that surface roughness proves to be an important
parameter with a strong influence on the landslides
occurrence (Komac 2006). As for the TWI, it is usually
used to study the on-going hydrological processes of the sub
soils. The topographical character of the terrain directly
affects the soil moisture, which is considered as a
conditioning parameter of shallow gravitational processes,
and is recently used for their forecasting (Marino et al., 2020).
To calculate the values of the index of the topographic
moisture index we can use spatial data, namely the digital
terrain model (Krivoguz and Bespalova 2017). This prompted
us to evaluate the correlation of these parameter with
landslide occurrence. Table 1 summarises the class range
chosen for each parameter.

After selecting the influencing parameters in slope
instability, a geostatistical connection between these param-
eters and each landslide type was estimated by analysing the
association coefficients of contingency tables (Tab. 1). Then,
a cross-tabulating of each factor grid layer and the landslide
vector layer was analysed using SPSS statistical software to
quantify the relative correlation. This step allows, on the one
hand, to select from the factors previously considered as those
which most contribute to each movement type giving
rise to the landslides inventoried, and to square parameters
that faintly influence the instability on the other.
Good-man-Krustal’s Gamma (G-K) and Pearson’s R were
the two correlation coefficients calculated (Davis 1973;
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Table 1. Sample of the landslide-susceptibility matrix considering all the slope movements in the study area: Cm: combine number whose line
shows the numbers of each class factor, Lith: lithology, Ele: elevation, Ds-ri: distance from river, Lu: land use, Sl: slope, Ds-ro: distance from
roads, Twi, topographic wetness index, Rgh: slope roughness, LSM%: percentage of landslide susceptibility matrix, LS: landslide susceptibility.

Cm Effective factors LSM % LS

Lith Ele Ds-ri Lu Sl Ds-ro Twi Rgh

1 8 4 9 8 6 6 1 3 100 very high
4 4 6 9 9 3 6 1 4 25 high
10 4 4 9 9 3 6 1 2 10 moderate
13 5 4 2 8 3 6 3 2 61 very high
14 1 3 8 8 4 6 1 2 36 very high
15 9 1 4 8 2 5 2 2 67 very high
15 1 5 3 8 3 6 1 2 20 high
20 6 8 9 8 3 6 1 3 10 moderate
29 7 8 9 8 5 6 2 3 65 very high
196 9 1 6 4 3 6 2 2 10 moderate
... ... ... ... ... ... ... ... ... ... ...
32346 3 3 9 8 2 6 2 3 1 very low
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Goodman and Kruskal 1979). The predictor variables are
classified as “effective” (EFF) if the condition G-K index >
0.5 and R > 0.4 applies, and as “non effective” if it doesn’t
(Fernández et al., 2003; Costanzo et al., 2012).

Despite that the cross-correlation were carried out for each
landslide type, the G-K and R coefficients showed close values
for earthflows and slides (Tab. 2). Therefore, the susceptibility
maps were developed for the two landslide types combined.

3 Modelling of landslide susceptibility

3.1 GIS Matrix method (GMM)

The GMM is based on the construction of three matrixes in
which the following data are recorded (Irigaray 1995; Chacón
et al., 2006):

–
 The first matrix TSM (Total Surface Matrix): was
calculated by computing the selected factors as effective
parameters, making all possible combinations among the
selected factors, and then calculating the area occupied by
each combination.
–
 The second matrix LM (Landslide Matrix): was calculated
by cross tabulating the reclassified landslide inventory
binary map with the first resulting matrix TSM, this step
allows us to calculate the area affected by landslides for
each unique combination. (Irigaray et al., 2007),
–
 The third Matrix SM (Susceptibility Matrix): is the result
of dividing the LM by the TSM, the results can be
calculated by a percentage that represent an assessment of
relative susceptibility levels (0<LSM<100).
Then, the matrix of susceptibility (SM) is established from
these data where the percentage of each of the combinations
occupied by rupture zones for each type of movement is
recorded (Tab. 3). The higher the percentage, the more
susceptible is the corresponding combination of factors to
landslide phenomena (Fernández et al., 2003). Finally, the
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values obtained are visualized showing 5 susceptibility levels
(very low, low, moderate, high, very high). Moreover, it should
be noted that there are no statistical rules for automatically
categorizing continuous data. So,most researchers use their own
expert opinion to develop class boundaries (Ayalew et al., 2004;
Chaudhary et al., 2016). In our case, the landslide susceptibility
levels of the GMM map were categorised using the Quantile
method (groups that contain an equal number of values).

3.2 Frequency ratio method (FR)

In order to investigate landslide susceptibility at medium
and small scales, statistical methods are the most frequently
adopted approaches (Yalcin et al., 2011). Frequency ratio is
one of the statistical methods frequently used (Lee et al., 2006;
Pourghasemi et al., 2018; Yalcin et al., 2011). The FR method
estimates the area correlation of landslide occurrence with
each of the landslide-inducing parameters (Kannan et al.,
2013). The reclassified factor maps were combined with the
inventory map to calculate the frequency ratio of each factor
class according to the equation below (Youssef et al., 2015).
The higher it is the more it represents a positive correlation and
high landslide susceptibility. In other words, if the FR is greater
than 1, it means that a high association exists between slide
locations and different classes, and a value lower than 1 means
lower correlation.

FR ¼
NpðLXiÞPm
i¼1 NpðLXiÞ
NpðLXjÞPm
j¼1

NpðLXjÞ

;

with FR= frequency ratio of class i of factor j, Np (LXi) =
number of pixels with landslides within class i of factor
variable X, Np (Xj) = number of pixels within factor variable
Xj, m= number of classes in the factor variable Xi, n = number
of factors in the study area.
f 19



Table 2. Contingency tables showing the total surface (class pixels) and its percentage (% Class pixels), the affected surface by landslides (L.
pixels) and the percentage of the latter (%L. pixels) of each class factor; The main factors classes which are strongly affected are underlined.

Factors Factor class Class pixels % Class pixels L. pixels % L. pixels

Slope (°) 0 � 5 570343 26,6 4946 4,8
5 � 10 726226 33,9 29528 28,7
10 � 15 559019 26,1 42434 41,3
15 � 20 222766 10,4 20314 19,8
20 � 25 53523 2,5 4641 4,5
25 � 30 9605 0,4 818 0,8
30 � 35 1465 0,07 63 0,1
>35 256 0,01 17 0

Elevation (m) <150 261236 12,2 1282 1,2
150 � 200 405838 18,9 9121 8,9
200 � 250 512825 23,9 23251 22,6
250 � 300 362016 16,9 27498 26,8
300 � 350 254866 11,9 21922 21,3
350 � 400 151753 7,1 12558 12,2
400 � 450 100548 4,7 5282 5,1
450 � 500 47019 2,2 1585 1,5
>500 47102 2,2 262 0,3

Slope Roughness <0,2 9501 0,4 68 0,1
0,2 � 0,4 338084 15,5 13106 12,7
0,4 � 0,6 1582055 72,5 86284 83,9
0,6 � 0,8 246361 11,3 3338 3,2
>0,8 6072 0,3 1 0

Witness index <4 64354 3 5013 4,9
4 � 8 1714058 80 82761 80,5
8 � 12 302654 14,1 13407 13
12 � 16 54486 2,5 1454 1,4
>16 7651 0,4 126 0,1

Road proximity <20 26498 1,2 706 0,7
20 � 50 39100 1,8 1102 1,1
50 � 80 38494 1,8 1139 1,1
80 � 150 86277 4 3418 3,3
150 � 200 59318 2,8 2645 2,6
>200 1894140 88,4 93765 91,2

Land use orchards-plantations 100337 3,8 46 0
rural 47332 2,2 678 0,7
olive trees 72081 3,4 4361 4,2
wadi bed 53458 2,5 553 0,5
brushwood 35239 1,6 863 0,8
dam 29993 1,4 52 0,1
cereal farming 1769794 82,5 94635 92,1
bad lands 32592 1,5 1587 1,5

Lithology marls 920465 43 65662 64
sandstone-marls alternation 145047 6,8 347 0,3
shales 343627 16 5432 5,3
saliferous clays 34453 1,6 640 0,6
calcareous marls 320690 15 24095 23,5
bioclastic sandstone 17211 0,8 402 0,4
slope deposits 38403 1,4 5123 5
alluvial deposits 323134 15,1 950 0,9

Dist. Faults <200 651196 30,4 31293 30,4
200 � 400 368053 17,2 14545 14,2
400 � 600 249774 11,7 11203 10,9
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Table 2. (continued).

Factors Factor class Class pixels % Class pixels L. pixels % L. pixels

600 � 800 195712 9,1 10189 9,9
>800 679092 31,7 35545 34,6

River proximity <20 88716 4,1 5534 5,4
20 � 40 95906 4,5 5777 5,6
40 � 60 84243 3,9 4925 4,8
60 � 100 126899 5,9 4571 4,4
100 � 150 63834 3 2642 2,6
150 � 200 132137 6,2 4633 4,5
200 � 300 36576 1,7 1352 1,3
300 � 400 36136 1,7 1221 1,2
>400 1479380 69 72120 70,2

Table 3. G-k and R values showing the correlation degree of the pre-selected conditioning factors with landslide types; R: Pearson R coefficient,
G-K: Goodman and Kruskal coefficient.

Earth flows Slides

Factor R G-K Factor R G-K

Land use 0,7 0,4 Land use 0,7 0,43
Dist. roads 0,68 0,57 Dist. roads 0,68 0,6
Dist. rivers 0,68 0,4 Dist. rivers 0,68 0,46
TWI 0,66 0,55 TWI 0,66 0,55
S. Rough. 0,65 0,6 S.Rough. 0,65 0,65
Lithology 0,63 0,39 Lithology 0,63 0,42
Slope 0,61 0,64 Slope 0,61 0,68
Elevation 0,5 0,37 Elevation 0,5 0,39
Dist. faults 0,4 0,45 Dist faults 0,4 0,45
Aspect 0,31 0,4 Aspect 0,31 0,46
Curvature 0,11 0,33 Curvature 0,11 0,33
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The Landslide Susceptibility Index (LSI) represents the
relative susceptibility or hazard to landslide occurrence. To
obtain the sliding susceptibility index, each factor’s frequency
ratio values were summed to the training area as in the equation
below (Yalcin et al., 2011; Hong et al., 2017; Sun et al., 2018).
The higher LSI value indicates higher susceptibility to
landslide. As or the landslide susceptibility levels of the FR
map, they were categorised using Natural bricks method

LSIi ¼
Xm

j¼1

FRðjÞ
i :
3.3 Validation of susceptibility maps

The results quality assessment is an essential step in any
mapping of susceptibility and/or hazard. In this research, the
quality-control of the landslide susceptibility maps were
assessed through the cross correlation between these maps and
a previous inventory composed of 200 instability movements.
In each case, two robust validation methods were used:

(i) In the first method, the degree of fit or concordance (DF)
was determined (Goodchild 1986). This statistical method has
been used and judged valid by several researchers studying
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instability movements (Chacón et al., 2006; Zieher et al., 2016;
Boualla et al., 2019). The degree of fit was obtained according
to the following equation:

DFi ¼ Zi=SiP
Zi=Si

;

where Zi is the area occupied by the landslide at each
susceptibility level and Si is the area of the i class of
susceptibility.

For DF results, the lower the values in the low and very low
susceptibility classes and the higher the values in the high or
very high susceptibility classes, the higher the quality of the
susceptibility map (Fernández et al., 2003; Irigaray et al.,
2007; Boualla et al., 2019).

(ii) The Area Under the ROC Curve (AUC) was the second
validation approach. it is used to assess the performance of the
statistical model, and larger AUC is considered better (Zhou
et al., 2018). The AUC estimates the quality of the statistical
model by describing its power to predict the occurrence or non-
occurrence of landslide events (Feizizadeh and Blaschke
2013). Values close to 1 (100%) show excellent prediction,
conversely if it is around 0.5 (random fit).
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Fig. 3. Landslide influencing parameters in the study area.
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4 Results and discussion

4.1 Landslide inventory
In the study area, 1113 earthflows and 843 slides were

identified (Fig. 2a), which expresses a total sliding surface of
17,74 km2. Panels b and c of the same figure shows that for
both landslide types, earthflows and slides, small size and
therefore shallow movements (<10000m2) are much more
common. This is undoubtedly controlled by the predisposing
factors specific to the regional context of the study area.

The statistical analysis of the landslide inventory shows
that the most affected slope gradient is the range of 10�15°
with 1003 movement which represents 51% of the total
occurrences (Fig. 3a). This suggests that, in the context of the
study area, the moderate slopes of theMY’s hilly landscape are
steep enough to be prone to slope movements, which,
according to the landslide inventory, are shallow processes.
Moreover, the relatively low occurrences in steeper slopes
(>20°) can be explained by the fact that the latter promote
more surficial water erosion (gullying) as strong inclinations
may not allow enough infiltration to saturate the shallow marly
layer. As for the material affected, about 1250 movements
affects marly slopes and 484 were mapped in the calcareous
marls, corresponding to respectively 63% and 25% of total
occurrences (Fig. 3c). This means that the MY marls are the
most prone to slope movements probably giving their low
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carbonate content compared to the calcareous marls and which
seems to provide higher cohesion to the latter.

Furthermore, earthflows represent 57% of the total sliding
area. Field investigation showed that most of them occur in
cereal farming slopes (Fig. 4 and Appendix 2). The later alone
represents 92% of the area affected by all the landslides,
corresponding to 1637 movements (Tab. 1 and Fig. 3b),
although the seasonal agricultural activity has erased
morphological features of several landslides, especially the
shallow ones. However, earthflows could be instantly
reactivated after heavy rain events (Bardi et al., 2017). These
results suggests that cereal-growing areas not only promote
landslides, mostly shallow ones since they are more dominant
according to the movement size analyses (Fig. 2b, c and d), but
also represent a determining factor in the predisposition to
shallow landslides.

As for the slides, they represent 43% of the movements
mapped. Field visits show that many slides affect the road
network which means that the latter is suspected of being a
significant influencing parameter in slides triggering. More-
over, several cases of compound slides were inventoried in the
field and by photo interpretation. The multiple scarps along the
sliding area attest that the these movements occur along
multiple rupture surfaces, which is commonly encountered in
soft lithologies (Hungr et al., 2014; El Kharim et al., 2021;
Obda et al., 2022). Furthermore, few large and eroded slides
f 19



Fig. 4. Histograms reveal the landslide occurrences by slope ranges (panel a), land use sub-classes (panel b) and by material involved (c).
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are observed in the region, the oldest ones are not included in
the present study presuming that the parameters involved in
their activity are not the same as today (Guns et al., 2013). The
case study of slides investigated in MY town (east of the study
area) develop with rotational components (circular rupture
surface), showing prominent main scarp and back-tilted
landslide head (Hungr et al., 2014). They are usually very
to extremely slow (fewmm per year) with short acceleration
events (El Kharim et al., 2021; Obda et al., 2022).
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4.2 Quality assessment of LIM

As for the assessment of the quality and the completeness
of the landslide inventory, the probability size distribution of
the landslides seems to be well fitted with the double pareto
and the three-parameter inverse-gamma models (Fig. 2d). The
rollover is well presented, and the power law does not exhibit a
heavy tailed behaviour, which means that landslide inventory
is quite complete for both ranges, small size/shallow
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(<104m2) and large/deep landslides (>104m2) (Qiu et al.,
2020; Sahrane et al., 2022) . The quality of these results is quite
comparable to the completeness assessing of landslide
inventories in Eeckhaut et al. (2007); Fausto Guzzetti et al.
(2002), and Tanyas et al. (2019). Furthermore, the landslide
size ranges are between 80 and 316,200 m2. As for the rollover
effect (representing the most frequent landslide range), it is
observed at 800 m2, which show that the small size landslides
are much more frequent. This could be related to differing
environmental conditions such as lithology, slope, aspect, and
land use practices. This will be statistically evaluated in the
section of factor’s correlation analysis.
4.3 Factors correlation analysis

After relating each factor class to slope movements
distribution in the contingency tables (Tab. 1), the correlation
assessment between the factors and the landslides has been
performed. Table 2 shows the correlation coefficients (G-K and
R) for each factor previously selected. The two factors that
have been discarded are the aspect and the curvature, whose
correlation coefficients are not high enough to say that these
parameters play a determining role in the landslide hazard
(G-K<0.5 and R<0.4). The hilly landscape of the region could
be responsible for the low correlation value of the aspect
parameter, as the low slope gradients mean that there is not a
great difference in exposure to rain or sunlight, which
generally affects the hydrological properties of the surface
layer. The other influencing parameters are listed according to
a decreasing order of the R of Pearson absolute value, which
does not vary too much showing a moderate to high correlation
for all the effective factors. Unlike that, the G-K values
indicate a weak to medium correlation for some factors (land
use, lithology, dist. from rivers, elevation) and a medium to
strong correlation for others.

Slope angle is among the more effective instability factors
for all the 3 landslide typologies, having a fairly high G-K and
R values (G-K ≥ 0.6). In fact, slope gradient, faults-proximity,
elevation, and distance from rivers are strongly connected
parameters. In active mountain belts, such as the southern
border of the Rif unit (as mentioned before), elevated
hillslopes respond to an intense fluvial incision and slope
adjustment which generates landslides to compensate for the
oversteepening who increases the vertical component of
gravity (Donati and Turrini, 2002 and Korup et al., 2010). This
domino-effect results in the fact that these 4 parameters usually
appear as controlling factors especially in the context of
collision belt as the Rif. In the study area, the correlation values
of the elevation and the distance to faults are not that high.
However, the landslide affected area of the last factor shows
that most landslides occur in the first 200meters from the faults
(Tab. 1) attesting that there is an influence even if it is not
direct, it can be through a domino effect as mentioned above.
As for the slope and the proximity to rivers, the correlation
values clearly express their effective role in the landslide
occurrence. However, the landslide affected area of the river
proximity factor shows that most these gravitational processes
occur uphill, at the furthest part from watercourses (>400m,
Tab. 1). Such values mean that bank undercutting may not
always be a causative factor for the landslides mapped
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although the strong correlation values. Otherwise, the other
ranges of watercourse’s proximity would not have such weak
values. On the other hand, the high corelation of the slope
parameter confirms the results of the LIM analyses section
where moderate slopes promote landslide occurrence while
steep ones are prone to gully erosion.

Surface roughness and TWI are also among the main
causative factors in our case showing medium G-K values
(0.5<G-K<0.6) and slightly high R values (R >0.6). Surface
roughness is considered as a significant conditioning factor in
LSM (Abdulwahid and Pradhan 2017). In the specific case of
landslides, the study of Eeckhaut et al. (2005) have shown that
surface roughness can be used to identify landslides shape and
estimate their relative age or create an assets landslide map. As
for the TWI, it is used to quantify the effect of local topography
on hydrological processes and modelling the spatial distribu-
tion of soil moisture and surface saturation (Qin et al., 2011).
In several landslide susceptibility studies, the TWI appears
among the main causative factors (Costanzo et al., 2012; Sun
et al., 2021), which highlights the effect of soil moisture and
surface saturation on landslide occurrence. This supports the
correlation results, since the texture and the hydrological
properties of the shallow layers are directly linked with the
human practices in our case, and the cereal farming terrain
shows the highest affected area (Tab. 1).

The road proximity and the land use are considered as
anthropogenic controlling factors that promotes landslides
occurrence in this study. The effects of roads and/or trails on
slope stability can be summarised as (i) alteration of the natural
hydrologic pathways, (ii) undercutting of unstable slopes, and
(iii) overloading and oversteepening of the hillslopes (Sidle
and Ochiai 2006; Guns and Vanacker 2013). Moreover, field
investigations showed that landslides are often associated with
bad road drainage and slope oversteepening, which explains
the high R values for road proximity despite the limited road
network in the MYprovince. For the land use, the G-K values
are slightly weak, but the R ones are the highest. Land cover
change induced by human activities significantly controls
landslide patterns in the monotonous context of MY, as
vegetation influences slope stability. In fact, vegetation
modifies the hydrology of the subsurface (unsaturated zone)
by controlling the impact of precipitation and evapotranspira-
tion which affect the amount of water stored in the subsoil.
Moreover, roots increase water infiltration and soil hydraulic
conductivity (Beguería 2006). This explains why shallow
movements are mostly found on cereal-growing slopes while
wooded areas present relatively deeper processes (Appendix 2
and 3). Vegetation also has a mechanical effect on the subsoil
as roots create an apparent cohesion via root fibre reinforce-
ment that promotes slope stability (Roering et al., 2003;
Schwarz et al., 2010). Consequently, the conversion from
wooded areas to pastures and agriculture lands results in a
rapid decline of the sub soil cohesion. According to Rogers and
Selby (1980) study, forms of instability begin to manifest after
3 to 5 yr, which corresponds to the time it takes for roots to
decay. This is well observed in the study area where field
investigation and statistical analysis show that significantly
fewer landslides are observed in forests, arboriculture zones
and brushland compared with cereal farming areas (Fig. 4 and
Tab. 1), knowing that the latter are much more dominant (83%
of the total surface). In a recent study (Guns et al., 2013), the
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Fig. 5. a shows the abundant active shallow landslides affecting several cereal farming slopes.
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analyses of soil physical properties in natural forest soils
showed that the saturated hydraulic conductivity is very high
(estimated to be 500mm/h) and the bulk density is very low
(0.35 ± 0.13 g/cm3). Also, the observation of high porosity in
the forest soils (87 ± 5%) indicates that water can easily
infiltrate and percolate through the solum, which reduces the
soil wetness and the landslide activity. Thus, in our case, the
practice of cereal farming to the detriment of forests and
brushland constitutes an effective role in the exposure of slopes
to landslides by promoting water infiltration in the sub-surface,
which after stormy rain events, triggers shallow movements.

As for the lithology, despite the low G-K value, the R ones
are slightly high (Tab. 2). This parameter is considered among
the main controlling factors in landslide susceptibility.
Moreover, the low G-K values obtained for lithology do not
reflect the real weight of this factor and may even lead to it
being underestimated. In the present case, most of the slopes
are covered by marls and calcareous marls (equivalent to more
than 50% of the total area) which reveals the monotony of the
lithological factor in the region. Moreover, 64% of the affected
area is part of the marls class and 23% of the calcareous marls
class. Which means that these two marly formations represent
87% of the landslide affected area. This leads us to believe that
the lithological factor has a very effective role in landslide
occurrence. Therefore, to estimate the real weight of this
parameter, it is necessary to consider the old, inactive, and
eroded landslides that affected the slopes, which are difficult to
identify, especially when the weathering and the agricultural
practices conceal the topographic features of these mass
movements. Furthermore, most of these large and eroded
landslides are very old and the factors (except the lithology)
involved during their period of activity are not the same as
today (especially the faults activity and its related parameters),
for the reason that the landslide controlling factors are not fixed
in time (Guns et al., 2013). However, if some factors are losing
weight, the importance of other anthropogenic landslide
controlling factors is increasing strongly and cannot be omitted
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in landslide hazard analysis. Which is the case of the current
study where the installation of the road network and the land
cover conversion from forests and brushwood to cereal crops
are among the most influencing parameters in landslide
occurrence.
4.4 FAD analysis of the land use parameter

The statistical analysis of the influence of the dominant
vegetation on landslide occurrence using the probability size
distribution have shown that:
o

1

f 1
Small size/shallow landslides occurring in cereal farming
slopes have an area of about 80 m2 while for the olive tree
slopes, the smallest landslides have an area of about 250 m2

(Fig. 5)

2
 The rollover-effect, representing the area of the highest
occurrence density, occur at 630 m2 in cereal farming
slopes and at 1000 m2 at olive growing slopes
3
 The power law decay of landslide distribution decreases
earlier for the cereal farming compared to olive growing,
which decreases at a larger landslide size. Moreover, the
first decreases more rapidly with an a (angle controlling
the power law decay for medium and large landslides)
equal to 1.2, while the second decreases with an a of about
1 allowing the power law decay toward larger landslides.
Therefore, based on FAD results, the cereal farming
activity promotes more the small size landslides than the olive
growing. On the other hand, landslide events occurring in
slopes with olive trees, as the main vegetation type, are
significantly larger. These findings support the discussions in
the previous section. Thus, we can assert that, in the
homogenous context of MY province, land use practices
control the landslides magnitude and hence their typological
difference as:
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Fig. 6. Double Pareto, Inverse Gamma and frequency area distribution of landslide inventory in cereal farming and olive trees slopes.

Table 4. Covering area for each landslide susceptibility class presented by the FR (left) and GMM (right) maps.

FR GMM

LS Area covered (%) LS Area covered (%)

very low 10 very low 33
low 18 low 9
moderate 23 moderate 13
high 28 high 27
very high 21 very high 18
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4.5 Susceptibility maps

The landslide susceptibility maps for both GMM and FR
methods are presented in Figure 6. From a general comparison,
the map resulting from the GMM method shows that very low
susceptibility levels cover much more areas compared to the
map of the FR method Table 4. On the other hand, areas of low
and moderate susceptibility levels cover more areas in the FR
map. As for the high and very high levels, they cover
comparable surfaces.

A cross-comparison between the causative factor maps and
those of the landslide susceptibility at a detailed scale have
yielded some interesting conclusions about the direct impact of
some factor classes on landslide susceptibility. A first
observation shows that the valleys and the beds of the wadis
have a very low susceptibility to landslides, especially in the
GMM map. On the other hand, areas with high susceptibility
are featured in the moderate and steep slopes which explains
the strong correlation of the slope parameter. Regarding the
lithology, the slopes dominated by marls and calcareous marls
show high susceptibility levels while shales, saliferous clays
and sandstone-marls outcrops seem to significantly increase
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the slope stability (Appendix 1 and Fig. 6). Moreover, for the
land use, the orchards and the brushwood seem to directly
reduce the susceptibility level of the areas they cover,
especially in the GMM map (Fig. 7). Unlike that, most
terrains of high and very high landslide susceptibility are
dominated by cereal farming. This corroborates what was
previously mentioned about the consequences of land cover
conversion from natural forests, orchards and brushland to
pastures and cereal farming on the exposure of slopes to
landslides in the study area. Another interesting observation
shows that badlands also reduce the landslides susceptibility
level of the slopes (Fig. 7). Badlands are geomorphological
processes that consist in the mobilization of the parent rock
downslope by water erosion. They are characterized by steep
slopes, minimal vegetation, and high drainage density.
Moreover, they inhibit the agricultural use and are devoid
of shrubs and grasses that prevent water erosion and infiltrated
run-on water during rainfalls (Howard 2009), which promotes
surface water erosion more than other instability phenomena
such as landslides. The latter require water infiltration and
moisture storage of the sub surface to be triggered (Chevesich
et al., 2021).
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Fig. 7. Landslide susceptibility maps with the location of movements used for validation, a GIS Matrix Method map, b Frequency Ratio map.

Fig. 8. Noticeable impact of land use sub-classes in mitigating landslide susceptibility level of both maps FR and GMM; a effect of brushwood, b
effect of orchards, c effect of Badlands and brushwood, d location of the zooms a,b and c in the land use map.
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4.6 LSM validation

The DF values for the very low and low susceptibility
classes are 2% and 11% respectively for FR and GMM maps
while the values for the high and very high susceptibility
classes are 87,3% and 68% respectively (Fig. 8). In fact, the
quality of these landslide susceptibility maps tested by the
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degree of fit method shows good values for each landslide
susceptibility map, with a slight advantage for the FR method.

As for the AUC curves, they were plotted based on the
number of correctly classified pixels (true-positive) and the
number of the incorrectly identified pixels (false-positive). The
AUC values for FR and GMM methods were estimated as
0,743 and 0,752 respectively (Fig. 8). These comparable
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results show effective landslide susceptibility modelling,
knowing that AUC values between 0.7 and 0.9 indicate good
discrimination ability (Swets 1988).
5 Conclusion

In the present work a detailed analysis of the LSM input
database were conducted before computing the susceptibility
models in order to investigate how the causative factors impact
the landslide size-distribution and hence the hazard. In fact, the
anthropogenic factors turn out to be among the most effective
influencing parameters in MY region where the cereal farming
areas dominating the MY region were highly affected and
promoting small scale and shallow movements. The landslides
mapped in olive trees slopes and brushland were larger and
hence deeper processes. This highlights the role of human
practices such as land cover conversion from forest,
arboriculture areas and brushland to cereal farming crops in
controlling the landslides magnitude and typology. Apart from
that and based on the statistical analysis, TWI, slope
roughness, lithology, slope gradient, elevation and faults
proximity are all effective parameters promoting landslide
occurrence in the study area.

Moreover, we tried to map the susceptibility to land-
slides in a geomorphologically homogeneous context, where
influencing factors are monotonously repeated over almost
the entire study area. In this case, the most efficient method
is the one that is less influenced by this homogeneity and
gives liberating results with a little detail, this is recently
asserted in Sahrane et al. (2022a,b). Thus, according to the
results of the susceptibility maps produced (Fig. 6 and
Tab. 4), the FR model seems to amplify the level of
susceptibility and is less influenced by the variation of
factors especially the land use (Tab. 4 and Fig. 7). On the
other hand, the cartographic comparison shows that
the classes which, according to the statistical results
of the landslide affected area (Tab. 1), are supposed to
reduce the susceptibility to landslides, reduce it more in the
GMM map than in the FR map (e.g., brushwood, olive trees
and orchards, badlands) even in a detailed scale, despite the
relative monotony of these classes at a broad scale. This
confirms that the GMM model gives more liberative results.

This type of map constitutes an essential database to guide
urban planning and food production plans in the region.
However, the use of these data must seriously consider the
influencing parameters identified in this study. Thus, in areas
with high susceptibility levels, the risk mitigation could be
well oriented and effective while saving time and costs.
Furthermore, the models can trustfully be applied in other
regions with similar geomorphological and geological con-
texts, especially in the Pre-Rif region.

Based on the results of these two accurate and practical
methods, the future research could be directed towards
improving the accuracy of these models by testing different
combination of influencing parameters and comparing the
results at a regional scale. This method will allow to find the
most effective combination for accurate susceptibility results
and then, be reliably applied in similar regional contexts.
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List of acronyms
MY
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LIM
 Landslide inventory map

GMM
 GIS Matrix method

FR
 Frequency Ratio

LS
 Landslide susceptibility

LSM
 Landslide susceptibility map

TWI
 Topographic wetness index

G-K
 Good-man-Krustal

EFF
 Effective

NEF
 Non-effective

LSI
 Landslide susceptibility index

FAD
 Frequency Area Distribution

DP
 Double Paretto

ING
 Three Parameter Inverse Gamma

DF
 Degree of fit

AUC
 Area under the curve

MPI
 Measures of the parameter importance
Supplementary Material

Fig. A.1: Landslide influencing parameters in the study area.
TWI: Topographic wetness index.

Fig. B.1: Image board showing earthflows and their flow-like/
ductile appearance in the study area; a field mission photo
where the earth flowwas concealed by cereal farming; b, c, and
d earth flows mapped on google earth 2018’s image.

Fig. C.1: Landslides in olive areas a. deep and slow landslide
damaging the road section b. Large and eroded landslides
reactivated down the slope c. active slide (on right) and flow
(on left) affecting olive growing slopes d. and e. recent and
active landslide affecting brush area.

The Supplementary Material is available at https://www.bsgf.
fr/10.1051/bsgf/2023016/olm.
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