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Abstract: The fishery resource is a kind of important renewable resource and it is closely connected
with people’s production and life. However, fishery resources are not inexhaustible, so it has become
an important research topic to develop fishery resources reasonably and ensure their sustainability. In
the current study, considering the environment changes in the system, a fishery model with a variable
predator search rate and fuzzy biological parameters was established first and then two modes of capture
strategies were introduced to achieve fishery resource exploitation. For the fishery model in a continuous
capture mode, the dynamic properties were analyzed and the results show that predator search rate,
imprecision indexes and capture efforts have a certain impact on the existence and stability of the
coexistence equilibrium. The bionomic equilibrium and optimal capture strategy were also discussed.
For the fishery model in a state-dependent feedback capture mode, the complex dynamics including
the existence and stability of the periodic solutions were investigated. Besides the theoretical results,
numerical simulations were implemented step by step and the effects of predator search rate, fuzzy
biological parameters and capture efforts on the system were demonstrated. This study not only enriched
the related content of fishery dynamics, but also provided certain reference for the development and
utilization of fishery resources under the environment with uncertain parameters.

Keywords: fuzzy biological parameters; periodic solution; stability; switch capture strategy; variable
search rate

1. Introduction

In the natural ecosystem, forests, grasslands, wildlife and fishery resources are different important
components, providing rich natural resources for human production and life, and playing an important
role in promoting human development. Fishery resource, as a valuable renewable resource, is closely
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related to our daily life. The Food and Agriculture Organization of the United Nations (FAO) reported
in 2018 that the total world fisheries production recorded new highs, but nearly one third of fisheries
production was wasted. Meanwhile, overfishing is widespread, which poses a huge challenge to the
sustainability of the world’s fish supply [1]. The ocean is a large ecosystem, and the marine species
are complex and form both competition and predation relationships with each other. The research
on predator-prey interactions and their dynamic behavior among populations has long been a topic
of common interest to mathematicians and biologists. Especially in fishery, studying the rationality
behind the dynamic behavior of fish species can help humans develop and utilize fishery resources more
scientifically and rationally.

The essence of biomathematics is to transform a complex biological problem into a mathematical
problem by means of establishing mathematical models. The pioneer work investigating the predation
relationship was carried out by Lotka [2] and Volterra [3], which is widely referred to the Lotka-Volterra
model. Since then, many scholars have improved the classic Lotka-Volterra model to describe various
biological phenomena. For example, Gause et al. [4] introduced a Gause-type model with a general
form of uptake function. Smith [5] introduced a Smith model in which a species growth is low in the
presence of limited food and it is assumed that after the population reaches saturation, the population will
not increase any more and the food is only used to maintain the survival of the species. Compared with
the logistic growth function, the Smith growth function in some cases is more accurate in describing the
growth law. Based on this consideration, Sivakumar et al. [6] introduced a diffusive model with Smith
growth and analyzed the stability and hopf bifurcation. Han et al. [7] introduced a spatiotemporal discrete
model with Smith growth rate function and analyzed the bifurcation and turing instability. Feng et al. [8]
introduced a modified Leslie-Gower incorporated with the Smith growth rate and Beddington-DeAngelis
uptake function. Another aspect of the work to improve the model is reflected in the functional reaction
functions [9–12], among others the Holling-II type uptake function is widely applicable to many species,
and the model with the Holling-II type uptake function has been widely concerned by scholars. In
Holling-II uptake function, the search rate is often assumed to be constant. However, in the actual
system, the density of prey and the search environment of predators have obvious effects on the search
rate of predators. Based on the above biological background, Hassell and Comins [13] introduced a
saturated search rate, and subsequently Yu et al. [14] analyzed the predator-prey model with the variable
predator search rate and fear effect. In this study, we introduced a Smith growth predator-prey model
with the Holling-II functional response and a variable search rate.

With the change of the external environment, such as extreme environment and temperature, the
biological parameters of some species including the birth and death rates will show certain fluctuations,
which will further influence the dynamics of species populations. Some findings suggest that fish species
are more affected by climate change [15–17]. Kwon et al. [15] showed that climate changes can make
fish populations decrease. Although environmental factors are known to influence population change,
it is not clear how these factors affect population change due to certain fluctuations and uncertainties.
To describe this uncertainty, scholars introduced some specific representations in predator-prey models,
such as random disturbances [18–21], fuzzy numbers and fuzzy sets [22–32]. Pal et al. [22] introduced a
predator-prey model with fuzzy interval numbers represented by interval-valued function. Pal et al. [23]
investigated a fishery model with fuzzy parameters and human capture activities. Pal et al. [24] studied a
delayed predator-prey harvesting model with interval-valued imprecise parameters and presented a stability
and bifurcation analysis method. Yu et al. [25] analyzed a predator-prey capture model with interval-
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valued imprecise parameters considering the mutual interference between predators in the system as
well as the prey refuge effect. Das et al. [26] considered the phenomenon of pest disease transmission
in the system and studied a class of predator-prey models with interval-valued parameters. In most
of the above papers and related studies, the same index is used to describe different interval-valued
parameters. In order to describe different parameters, Xiao et al. [27] used interval-valued numbers with
different indexes to describe imprecise parameters and studied a two-species competitive model with
interval-valued fuzzy parameters. Tian et al. [28–30] used interval-valued fuzzy numbers with different
indicators to describe the parameters of different populations, and studied two fishery capture models
with parameters represented by species-dependent interval-valued functions. Yu et al. [31] investigated
a fuzzy predator-prey model with parameters represented by a triangular fuzzy number. Xu et al. [32]
developed a triangular fuzzy water hyacinth-fish model with a Kuznets curve effect.

Fishery resource is closely connected with people’s production and life, and fishery capture activity
is an indispensable link for humans to obtain natural resources, which can be divided into continuous
ways [33–38] or intermittent ways [39–45]. The continuous harvesting activity is easy to implement
in practice, and easy to simulate in the modeling process. However, this kind of harvesting method is
relatively ideal and does not take into account the fishery environment and the current situation of fish
resources. In order to realize the rational development and utilization of fish resources and promote
the healthy and sustainable development of fish resources, it is necessary to adopt more reasonable
and effective ways. Compared with continuous harvesting activity, intermittent harvesting activity,
which occurs at discrete moments, is more realistic in practice. Among the many types of intermittent
harvesting activities, state-dependent harvesting activity is a typical one, which takes full account of
the current situation of prey or predators and promotes the sustainable development of fish species
as far as possible. For such kinds of human interventions, impulsive differential equations presents
an effective description [46–59]. In the above studies, the models involved can be roughly divided
into four types: Prey-dependent [41, 45, 51–57], predator-dependent [39, 40], ratio-dependent [58]
and hybrid-dependent [42–44]. From the perspective of keeping ecological balance, setting certain
threshold values for both prey populations and predator populations is necessary. In this study, we
develop a switch capture strategy, where fishing activities can be carried out only if prey population
reaches or exceeds a preset threshold. At the same time, if predator populations are below a low value,
we will not only carry out fishing activities but also release some predator pups.

Inspired by the above work, in the current study we propose two fishing models with variable
predator search speed and fuzzy parameters and discuss the effects of different predator search rates and
parameter imprecision indicators, as well as the dynamic behavior guided by different fishing methods.
We organize the article in the following way: In the subsequent section, we develop two fishery capture
models with variable search rate and triangular fuzzy biological parameters, followed by a presentation
of basic concepts of impulsive semi-continuous dynamic system. In section three, we mainly investigate
the system dynamics under continuous capture strategy and complex dynamic behaviour induced by
the switched capture strategy. In the next section, we conduct numerical simulations to illustrate the
conclusions of the previous section. At the end of the article, we make a brief summary of the research.
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2. Mathematical model and basic knowledge

In this work, we consider a Gause-type fishery model with Smith growth and Holling-II type uptake
function, i.e., 

dx
dt
= rx

( K − x
K + mx

)
−

sx
sHx + 1

y,
dy
dt
= −dy +

csx
sHx + 1

y,
(2.1)

in which x and y indicate the density of prey and predator species, respectively; parameters r and K are
intrinsic growth rate and maximum environmental capacity, respectively; the term rx(K − x)/(K +mx) is
the Smith growth function with maintenance constant m; H denotes the handling time of a prey by one
predator; d is the predator’s death rate; c denotes the conversion coefficient. The parameter s describes
the search rate of the predator and is generally taken as a constant. However, in a real system, the
predator’s search speed will depend on the density of the prey and the search environment. Considering
this phenomenon, Hassell and Comins [13] introduced the following type of search rate

s(x) =
ax

x + g
,

where a is the maximum search rate and g is a constant, then the extended form of Model (2.1) is
described as follows: 

dx
dt
= rx

( K − x
K + mx

)
−

ax2

aHx2 + x + g
y,

dy
dt
= −dy +

cax2

aHx2 + x + g
y.

(2.2)

In natural systems, biological species are inevitably affected by environmental changes, so it is meaning-
ful and necessary to consider biological models with imprecise parameters (2.2). In order to describe the
uncertainty of such parameters, we use triangular fuzzy number (TFN) [31]. For a triangular fuzzy number
Ũ ≡ (u1, u2, u3), the ω-cut set of Ũ is [Ul(ω),Ur(ω)], where Ul(ω) = {x : µŨ(x) ≥ ω} = u1 + ω (u2 − u1) and
Ur(ω) = {x : µŨ(x) ≥ ω} = u3 + ω (u3 − u2) for ω ∈ [0,1]. Considering that the mortality and conver-
sion rates of predators and prey are most susceptible to environmental changes, imprecisions of these
three parameters are assumed in this paper, and represented by triangular fuzzy number r̃ = (r1, r2, r3),
d̃ = (d1, d2, d3) and c̃ = (c1, c2, c3). Using theory of ω-cut fuzzy number, Model (2.2) can be expressed as



(
dx
dt

)
l(ω)

= rl(ω)x
( K − x
K + mx

)
−

ax2

aHx2 + x + g
y,(

dx
dt

)
r(ω)

= rr(ω)x
( K − x
K + mx

)
−

ax2

aHx2 + x + g
y,(

dy
dt

)
l(ω)

= −dr(ω)y +
cl(ω)ax2

aHx2 + x + g
y,(

dy
dt

)
r(ω)

= −dl(ω)y +
cr(ω)ax2

aHx2 + x + g
y.

(2.3)
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Using the utility function method (UFM) [23, 32], one can get
dx
dt
= w1

(
dx
dt

)
l(ω)
+ (1 − w1)

(
dx
dt

)
r(ω)

,

dy
dt
= w2

(
dy
dt

)
l(ω)
+ (1 − w2)

(
dy
dt

)
r(ω)

,
(2.4)

where 0 ≤ w1 ≤ 1, 0 ≤ w2 ≤ 1.
For convenience, let’s write: r̂ = w1rl(ω) + (1 −w1)rr(ω), d̂ = w2dr(ω) + (1 −w2)dl(ω), ĉ = w1cl(ω) + (1 −

w2)cr(ω). By combining formulas (2.3) and (2.4), we get
dx
dt
= r̂x

( K − x
K + mx

)
−

ax2

aHx2 + x + g
y,

dy
dt
= d̂y +

ĉax2

aHx2 + x + g
y.

(2.5)

In order to meet people’s daily life, it is necessary to capture two kinds of fish. Let q1 and E1 be the
capture rate and capture effort of the prey species, q2 and E2 be that of the predators. To analyze the
impact of different fishing strategies on the system, we consider two different forms of fishing strategies.
The first capture strategy is a continuous mode, and the fishery model based on the continuous capture
mode is formulated as follows:

dx
dt
= r̂x

( K − x
K + mx

)
−

ax2

aHx2 + x + g
y − q1E1x,

dy
dt
= −d̂y +

ĉax2

aHx2 + x + g
y − q2E2y.

(2.6)

The second is a state-dependent feedback capture strategy. Let xT be the prey’s reference threshold.
When the prey populations reach the threshold xT , a capture activity is implemented. In addition, to
maintain the balance of the ecosystem, it is also necessary to consider whether to release predator fish.
Let yT be the predator’s reference threshold. When the predator population is below the threshold yT ,
in addition to capture activity, a certain quantity of predators needs to be put into the system, which is
denoted by τ. Then, the fishery model based on the switch capture strategy is formulated as follows:

dx
dt
= r̂x

( K − x
K + mx

)
−

ax2

aHx2 + x + g
y

dy
dt
= −d̂y +

ĉax2

aHx2 + x + g
y

 x , xT ,

∆x = −q1E1x
∆y = −q2E2y

}
x = xT , y > yT ,

∆x = −q1E1x
∆y = −q2E2y + τ

}
x = xT , y ≤ yT .

(2.7)

The objective is to investigate the effects of variable search rate and imprecise biological parameters
on Model (2.5), while exploring the complex dynamic behavior of Models (2.6) and (2.7) under different
capture modes.
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2.1. Basic knowledge

2.1.1. Fuzzy set and ω-cut set

Definition 2.1 (Interval number [22]). A closed interval Ũ = [ul, ur] = {u|ul ≤ u ≤ ur, u ∈ R} is called
an interval number Ũ, in which ur and ul are upper and lower boundaries of Ũ, respectively.

Definition 2.2 (Fuzzy set [23, 32]). A fuzzy set Ũ is defined as Ũ =
{(

u, µŨ(u)
)

: u ∈ R
}
, where

µŨ : R→ [0, 1] is called the membership function of Ũ and µŨ(u) is the membership value.

Definition 2.3 (TFN [23, 32]). A TFN Ũ ≡ (u1, u2, u3) is a fuzzy set with µŨ : R→ [0, 1] defined as:

µŨ(u) =


u − u1

u2 − u1
, if u1 ≤ u ≤ u2,

u3 − u
u3 − u2

, if u2 ≤ u ≤ u3,

0, otherwise

Definition 2.4 (ω-cut set [23, 32]). For a fuzzy number Ã, the ω-cut set is defined as Ãω ={
x : µÃ(x) ≥ ω,ω ∈ (0, 1]

}
. For ω = 0, Ã0 is defined as Ã0 = {x : µÃ(x) ≥ 0}.

Undoubtedly, ω-cut set of TFN Ũ ≡ (a1, a2, a3) is a closed interval [Ul(ω),Ur(ω)], where Ul(ω) =

in f {u : µŨ(x) ≥ ω} = u1 + ω(u2 − u1),Ur(ω) = sup {u : µŨ(u) ≥ ω} = u3 + ω(u3 − u2).

Definition 2.5 (Utility function [23, 32]). For given items Ui, i = 1, 2, · · · , n, let wi be the weight
assigned to item Ui, then a utility function is defined based on the relative importance of item Ui, which
can be expressed by

U = Σn
i=1wiUi,

where wi ≥ 0 and Σn
i=1wi = 1.

2.1.2. Concept of impulsive semi-continuous dynamic systems

For a planar model 

dx
dt
= F(x, y)

dy
dt
= G(x, y)

 ϕ(x, y) , 0,

∆N = I1(x, y)
∆P = I2(x, y)

}
ϕ(x, y) = 0,

(2.8)

where F, G, ϕ, I1 and I2 are continuously differentiable functions of x and y, (x, y) ∈ Ω ⊂ R2
+. Let π = (π1, π2)

be the solution map. Given P ∈ Ω and t1, t2 ∈ R, π(P,0) = P, π(π(P, t1), t2) = π(P, t1 + t2), then (Ω, π; I,M)
is called an impulsive semi-continuous dynamic system, whereM ≜ {(x, y) | ϕ(x, y) = 0, (x, y) ∈ Ω} and
I ≜ 1 + (I1, I2).

The solution of (Ω, π; I,M) is represented by z(t) = (x(t), y(t))′, with orbit represented by γS 0(z) ≜
{z(t), t ≥ 0, z(0) = S 0}. Denote Σ ≜ {ti | i = 1, 2, · · · } as the time set of the impulses. Assume that the
first partial derivative of ϕ(x, y) with respect to x (or y) is constant, as illustrated in Figure 1.
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Figure 1. Schematic representation of the successor points.

Let L1 ∈ N ≜ I(M). DenoteN∩ x-axis = {O′}, γL1(z)∩M = {L3}, γL1(z)∩N = {L2} and L4 = I(L3).
In Figure 1, we can define the poincaré map on N by PM ≜ I · π, i.e., L4 = PM(L2) = PM(L1). Then
two types of successor functions are defined: f I

M
(L2) ≜ yP(L2) − yL2 and f II

M
(L1) ≜ yP(L1) − yL1 .

Definition 2.6 (Order-k periodic solution [28, 42, 43]). For a given ẑ(t) = (x̂(t), ŷ(t))′ with ẑ0 ∈ N , if
∃n ⩾ 1 such that ẑn = ẑ0, then ẑ(t) is said to be periodic. Let k ≜ min{l | 1 ≤ l ≤ n, ẑl = ẑ0}, then we call
ẑ(t) = (x̂(t), ŷ(t))′ ((i− 1)tk ≤ t ≤ itk) an order-k periodic solution. Moreover, if ∀ϵ > 0, ∃Uδ of ẑ such that
∀z ∈ Uδ, ∃t̂(t), there is | z(t) − ẑ(t̂(t)) |< ϵ, ∀t ≥ t0, then the orbit γ(ẑ) is orbitally asymptotically stable.

Lemma 2.1. [28, 42, 43] Assume that z̃(t) = (ξ(t), η(t))′ ((i − 1)T ≤ t ≤ iT ) is an order-k periodic
solution. If | µk |< 1, then the orbit γ(z̃) is orbitally asymptotically stable, where

µk =

k∏
j=1

∆ j exp
∫ T

0

(
∂F
∂x
+
∂G
∂y

)
|(ξ(t),η(t)) dt,

∆ j =
F+[(1 + I2y)ϕx − I2xϕy] +G+[(1 + I1x)ϕy − I1yϕx]

F0ϕx +G0ϕy
,

F+ = F(ξ(τ+j ), η(τ+j )), G+ = G(ξ(t+j ), η(t+j )) with (ξ(t+j ), η(t+j )) ∈ N; F0 = F(ξ(t j), η(t j)), G0 =

Q(ξ(t j), η(t j)) with (ξ(t j), η(t j)) ∈ M.

3. Main results

For convenience of description, let us denote E = (E1, E2) and define

KE ≜
(r̂ − q1E1)K
r̂ + mq1E1

,

x∗E ≜
−(d̂ + q2E2) −

√
(d̂ + q2E2)2 − 4(d̂aH + q2E2aH − ca)(d̂ + q2E2)g

2(d̂aH + q2E2aH − ca)
,

y∗E ≜

[
r̂
(

K−x∗E
K+mx∗E

)
− q1E1

] (
aHx∗E + x∗E + g

)
ax∗E

.
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3.1. Dynamic characteristics of Model (2.6)

3.1.1. Existence and stability of equilibrium

Theorem 3.1. For Model (2.6), an extinction equilibrium Q0(0, 0) always exists; Q1(KE, 0) exists
as long as 0 ≤ E1 < E1 ≜ r̂/q1; a coexistent equilibrium Q2(x∗E, y

∗
E) exists when 0 ≤ E1 < E1,

0 ≤ E2 < E2 ≜ (ĉ − Hd̂)/Hq2 and x∗E < KE.

Proof. The existence of trivial and predator extinction equilibria is evident. The coexistent equilibrium
should satisfy the following equations:

r̂
( K − x
K + mx

)
−

ax
aHx2 + x + g

y − q1E1 = 0,

−d̂ +
ĉax2

aHx2 + x + g
− q2E2 = 0.

(3.1)

From Eq (3.1), a quadratic equation can be obtained:

Ax2 + Bx +C = 0, (3.2)

where
A = d̂aH + q2E2aH − ca, B = d̂ + q2E2,C = (d̂ + q2E2)g.

It can be concluded that Eq (3.3) has a positive root x∗E if d̂aH + q2E2aH − ca < 0, i.e., 0 ≤ E2 < E2.
To ensure that y∗E is positive, x∗E should be in the range [0,KE) and E1should be in the range of [0, E1).

To sum up, if 0 ≤ E1 < E1, 0 ≤ E2 < E2 and x∗E < KE, Q2(x∗E, y
∗
E) is a coexistence equilibrium of

system (2.6). □

Define

F(x, y; w1,w2, ω, E1) ≜ r̂x
( K − x
K + mx

)
−

ax2

aHx2 + x + g
y − q1E1x,

G(x, y; w1,w2, ω, E2) ≜ d̂y +
ĉax2

aHx2 + x + g
y − q2E2y.

Theorem 3.2. When E1 > E1, Q0 (0, 0) is globally asymptotically stable; when 0 ≤ E1 < E1, 0 ≤ E2 <

E2, x∗E > KE or 0 ≤ E1 < E1, E2 > E2 hold, Q1(KE, 0) is locally asymptotically stable; when Γ1
E < 0,

Γ2
E < 0 hold simultaneously, Q2(x∗E, y

∗
E) is locally asymptotically stable, where

Γ1
E ≜ r̂

(
K − x∗E

K + mx∗E

)
− rx∗E

 (1 + m)K(
K + mx∗E

)2

 − 2ax
(
aHx∗E

2 + x∗E + g
)
− ax∗2E

(
2aHx∗E + 1

)
(
aHx∗E + x∗E + g

)2 y∗E − q1E1,

Γ2
E ≜ 2ĉax

(
aHx∗E

2 + x∗E + g
)
− ĉax∗2E

(
2aHx∗E + 1

)
.

Proof. At Q(x̄, ȳ), the Jacobian matrix J(Q) is

J
(
Q
)
=

(
Fx(x̄, ȳ) Fy(x̄, ȳ)
Gx(x̄, ȳ) Gy(x̄, ȳ)

)
.

For Q0, there is

J (Q0) =
(

r̂K − q1E1 0
0 −d̂ − q2E2

)
.
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The eigenvalues are λ1 = r̂K−q1E1 and λ2 = −d̂−q2E2 < 0. When E1 > E1, there is λ1 = r̂−q1E1 < 0,
hence Q0(0, 0) is locally asymptotically stable. Moreover, if E1 > E1, then dx/dt < 0, i.e., prey
populations decrease to zero, which causes the number of predators to decrease to zero as well.
Therefore, Q0(0, 0) is globally asymptotically stable.

For Q1, there is

J (Q1) =

 − r̂KE(1+mK)
(1+mKE)2

aKE
2

aHKE
2+KE+g

0 −d̂ − q2E2 +
ĉaKE

2

aHKE
2+KE+g

 .
The eigenvalues are

λ1 = −
r̂KE((1 + m)K)

(K + mKE)2 , λ2 = −d̂ − q2E2 +
ĉaKE

2

aHKE
2 + KE + g

.

Define

f (x) ≜ −d̂ − q2E2 +
ĉax2

aHx2 + x + g
,

then f ′(x) > 0. Caee i) x∗E exists, i.e., f (x∗E) = 0, which means 0 ≤ E2 < E2, if KE < x∗E, f (KE) will
be less than zero; Case ii) E2 > E2, i.e., d̂ + q2E2 > ĉ/H. Since limx→∞ f (x) = −d̂ − q2E2 + ĉ/H, then
f (KE) < 0. Combine cases i) and ii) with the existence condition of KE, i.e., 0 ≤ E1 < E1, and it can be
derived that λ1 < 0 and λ2 < 0, thus, Q1(K(E1,E2)), 0) is locally asymptotically stable.

For Q2, there is

J (Q2) =
(

C21 C22

C23 C24

)
,

where

C21 = r̂
(

K − x∗E
K + mx∗E

)
− rx∗E

 (1 + m)k(
K + mx∗E

)2

 − 2ax∗E
(
aHx∗E

2 + x∗E + g
)
− ax∗2E

(
2aHx∗E + 1

)
(
aHx∗E + x∗E + g

)2 y∗E − q1E1,

C22 =
d̂ + q2E2

ĉ
,

C23 =
2ĉax

(
aHx∗E

2 + x∗E + g
)
− ĉax∗2E

(
2aHx∗E + 1

)
(
aHx∗E + x∗E + g

)2 y∗E,

C24 = 0.

Since Tr(J(Q2) = C21 and Det(J(Q2) = −C22C23, when Γ1
E < 0, Γ2

E < 0 hold simultaneously, Q2(x∗E, y
∗
E)

is locally asymptotically stable. □

3.1.2. Bionomic equilibrium

Economic benefit is important for human activities; thus, it is meaningful to combine biological
balance with economic benefit balance. Let s1 and s2 be the selling price of prey and predator, c1 and
c2 be the costs per unit od capture effort accordingly, then the net profit of the capture process can be
characterized as

Profnet = (q1s1x − c1) E1 + (q2s2y − c2) E2.
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The bionomic equilibrium (xr, xr, E1r, E2r) satisfies that

r̂
( K − x
K + mx

)
−

ax
aHx2 + x + g

y − q1E1 = 0, (3.3)

−d̂ +
ĉax2

aHx2 + x + g
− q2E2 = 0, (3.4)

Profnet = (s1q1x − c1) E1 + (s2q2y − c2) E2 = 0. (3.5)

To determine a bionomic equilibrium (xr, yr, E1r, E2r), we will discuss it in four cases:

Case 1: c2 > s2q2y. In this case, the predator’s fishing costs outweigh its benefits, which
means that E2r = 0. Thus, only the prey stocks are fished and (c1 < s1q1x), then xr = c1/s1q1

and (yr, E1r) satisfy

r̂
q1s1K − c1

q1s1K + mc1
−

ac1q1s1

aHc1
2 + c1q1s1 + gq1

2s1
2 y − q1E1 = 0. (3.6)

Case 2: c1 > s1q1x. In this case, the prey’s fishing costs outweigh its benefits, which means
that E1r = 0. Thus, only the prey stocks are fished and (c2 < s2q2y), then we have yr = c2/s2q2.
Substituting yr, E1r for y, E1 respectively in Eq (3.3) yields that

r̂
( K − x
K + mx

)
−

ax
aHx2 + x + g

c2

s2q2
= 0. (3.7)

If there exists positive solution of Eq (3.7), denoted as xr, then we have

E2r =
1
q2

(
−d̂ +

ĉaxr
2

aHxr
2 + xr + g

)
.

Thus, E2r > 0 in the case of d̂ < ĉaxr
2/(aHxr

2 + xr + g).

Case 3: If c1 > s1q1x and c2 > s2q2y, fishery activities for both prey and predator will be quit.

Case 4: If c1 < s1q1x and c2 < s2q2y, there are xr = c1/s1q1 and yr = c2/s2q2. Substituting into
Eqs (3.3) and (3.4), one can get

E1r =
1
q1

[
r̂

q1s1K − c1

q1s1K + mc1
−

ac1q1s1

aHc1
2 + c1q1s1 + gq1

2s1
2

c2

s2q2

]
,

E2r =
1
q2

[
−d̂ +

cac1
2

aHc1
2 + c1q1s1 + gq1

2s1
2

]
.

Therefore, E1r > 0 if

r̂
q1s1K − c1

q1s1K + mc1
>

ac1q1s1

aHc1
2 + c1q1s1 + gq1

2s1
2

c2

s2q2
, (3.8)

and E2r > 0 if
ĉac1

2

aHc1
2 + c1q1s1 + gq1

2s1
2 > d̂. (3.9)

Therefore, it can be concluded that the nontrivial bionomic equilibrium point (xr, yr, E1r, E2r) exists
if inequations (3.8) and (3.9) hold.
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3.1.3. Optimal harvesting strategy

Let δ be the discount rate, then the net profit J (E) is defined as

J(E1, E2) =
∫ ∞

0
e−δt

[
(q1s1x − c1) E1(t) + (q2s2y − c2) E2(t)

]
dt, (3.10)

where E1 min ≤ E1(t) ≤ E1 max and E2 min ≤ E2(t) ≤ E2 max. According to Pontryagin’s maximal
principle [60], denote

H = e−δt[ (q1s1x − c1) E1 + (q2s2y − c2) E2
]
+ λ1F(x, y; E1) + λ2G(x, y; E2),

in which λ1 and λ2 are to be determined.
clearly, H is linear dependent on E1 and E2. We suppose that the control are not bangbang ones,

which means the optimal harvesting efforts would not be Ei min or Ei max, and the singular control is
obtained by

∂H
∂E1
= e−δt (q1s1x − c1) − λ1q1x = 0⇒ λ1 = e−δt

(
s1 −

c1

q1x

)
,

∂H
∂E2
= e−δt (q2s2y − c2) − λ2q2y = 0⇒ λ2 = e−δt

(
s2 −

c2

q2y

)
.

The adjoint equations are

dλ1

dt
= −

∂H
∂x
= −

{
e−δtq1s1E1 + λ1Fx(x, y; w1,w2, ω, E1) + λ2Gy(x, y; w1,w2, ω, E2)

}
, (3.11)

dλ2

dt
= −

∂H
∂y
= −

{
e−δtq2s2E2 + λ1Fx(x, y; w1,w2, ω, E1) + λ2Gy(x, y; w1,w2, ω, E2)

}
. (3.12)

Substituting λ1 and λ2 into Eq (3.11) and simplifying, there is

δ(s1 −
c1

q1 x ) = q1s1E1 +
(
s1 −

c1
q1 x

) {
r̂
(

K−x
K+mx

)
− r̂x

(
(1+m)K
(K+mx)2

)
−

2ax(aHx2+x+g)−ax2(2aHx+1)

(aHx2+x+g)2 y − q1E1

}
+

(
s2 −

c2
q2y

) {2ĉax(aHx2+x+g)−ĉax2(2aHx+1)

(aHx2+x+g)2 y
}
.

(3.13)
Substituting λ1 and λ2 into Eq (3.12) and simplifying, there is

δ(s2 −
c2

q2y
) = q2s2E2 −

(
s1 −

c1

q1x

)
ax2

aHx2 + x + g
+

(
s2 −

c2

q2y

) {
−d̂ − q2E2 +

ĉax2

aHx2 + x + g

}
. (3.14)

Solving steady state Eqs (3.3) and (3.4) together with Eqs (3.13) and (3.14), we will find the optimal
state (xδ, yδ) and the optimal capture efforts Eiδ, i = 1, 2.

3.2. Complex dynamics of Model (2.7)

Define

M1 = {(x, y) ∈ R+2 | x = xT , yT < y ≤ yL(xT )},M2 = {(x, y) ∈ R+2 | x = xT , 0 ≤ y ≤ yT },

N1 = I(M1) = {(x, y) | x = (1 − q1E1)xT , (1 − q2E2)yT < y ≤ (1 − q2E2)yL(xT )},

N2 = I(M2) = {(x, y) | x = (1 − q1E1)xT , τ ≤ y ≤ (1 − q2E2)yT + τ}.
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3.2.1. Predator-extinction periodic solution

For any given w1,w2, ω ∈ [0, 1], if y(0) = 0, then y(t) ≡ 0 ∀t ≥ 0 in the case of τ = 0. Therefore,
Model (2.7) reduces to 

dx
dt
= r̂x

( K − x
K + mx

)
dy
dt
= 0

 x < xT ,

∆x = −q1E1x
∆y = 0

}
x = xT .

(3.15)

Define

T0 ≜
1
r̂

ln
(

1
(1 − q1E1)

)
−

1 + m
r̂

ln
(

K − xT

K − (1 − q1E1)xT

)
.

Let x = ψ(t; w1,w2, ω) be the solution determined by the following equation

x
(K − x)1+m =

(1 − q1E1)xT

(K − (1 − q1E1)xT )1+m exp (r̂t).

Φ(u) ≜
(K − uxT )(K + mxT )
(K + umxT )(K − xT )

· exp
∫ T0

0

[
−

r̂(1 + m)Kx
K + mx

+
ĉax2

aHx2 + x + g
− d̂

]
ψ(t;w1,w2,ω)

dt


Theorem 3.3. For any given w1,w2, ω ∈ [0, 1], if 0 < xT < KE, then a predator-extinction periodic
solution z(t) = (ψ(t − ( j − 1)T0; w1,w2, ω), 0) (( j − 1)T0 ≤ t ≤ jT0) exists in Model (2.7), which is
orbitally asymptotically stable when E2 > Ẽ2(E1) ≜ max{0, 1 − Φ−1(1 − q1E1)}/q2.

Proof. Let x0 = x(0) ≜ (1 − q1E1)xT , then for ( j − 1)T0 ≤ t ≤ jT0, there is

x(t)
(K − x(t))1+m =

(1 − q1E1)xT exp (r̂K(t − ( j − 1)T0))
(K − (1 − q1E1)xT )1+m .

clearly, z(t) = (ψ(t − ( j − 1)T0; w1,w2, ω), 0) (( j − 1)T0 ≤ t ≤ jT0) is a periodic solution.
Since

F(x, y; w1,w2, ω) = r̂x
( K − x
K + mx

)
−

ax2

aHx2 + x + g
y,G(x, y; w1,w2, ω) = −d̂y +

ĉax2

aHx2 + x + g
y,

ϕ(x, y) = x − xT , I2(x, y) = −q2E2y, I1(x, y) = −q1E1x,

then
∂F
∂x
= r̂

( K − x
K + mx

)
− rx

(
(1 + m)K
(K + mx)2

)
−

2ax
(
aHx2 + x + g

)
− ax2 (2aHx + 1)(

aHx2 + x + g
)2 y,

∂G
∂y
= −d̂ +

ĉax2

aHx2 + x + g
,

∂I1

∂x
= −q1E1,

∂I2

∂x
= 0,

∂ϕ

∂x
= 1,

∂I1

∂y
= 0,

∂I2

∂y
= −q2E2,

∂ϕ

∂y
= 0.

For z(t) = (ξ(t; w1,w2, ω), 0), there is

∆1 = (1 − q2E2)
F((1 − q1E1)xT , 0)

F(xT , 0)
= (1 − q2E2)(1 − q1E1)

[K − (1 − q1E1)xT ](K + mxT )
[K + m(1 − q1E1)xT ](K − xT )
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and

exp
(∫ T0

0

[(
∂F
∂x
+
∂G
∂y

)
|(ψ(t;w1,w2,ω),0)

]
dt

)
=

1
1 − q1E1

exp
∫ T0

0

[
−

r̂(1 + m)Kx
K + mx

+
ĉax2

aHx2 + x + g
− d̂

]
ψ(t;w1,w2,ω)

dt
 ,

then by Lemma 2.1, there is µ1 = (1 − q2E2)Φ(1 − q1E1). Therefore, when E2 > Ẽ2(E1), the predator
extinction periodic solution z(t) = (ψ(t − ( j − 1)T0; w1,w2, ω), 0) (( j − 1)T0 ≤ t ≤ jT0) is orbitally
asymptotically stable. □

3.2.2. Coexisting order-1 periodic solution

Define

yL(x) ≜ r̂
( K − x
K + mx

) aHx2 + x + g
ax

, 0 ≤ x ≤ K.

Denote A((1 − q1E1)xT , yL((1 − q1E1)xT )), B(xT , yL(xT )), D(xT , yT ) and G((1 − q1E1)xT , τ). Define

xmax
T ≜ max{xT | γA(z) ∩M2 , ∅}.

For 0 < xT < xmax
T , denote C((1 − q1E1)xT , yC) ∈ N with γC(z) ∩M1 = {D} and γA(z) ∩M1 = {A−}.

Theorem 3.4. For 0 < xT ≤ xmax
T , if i) yA−(xT ) ≤ yT or ii) yA−(xT ) > yT , τ ≤ τ ≜ yC − (1 − q2E2)yT

holds, system (2.7) has a coexistence order-1 periodic solution; if iii) yA−(xT ) > yT , E2 > max{0, (1 −
yC/yA−)/q2} and yC ≤ τ ≤ yL(xT )− (1−q2E2)yT , Model (2.7) has a coexistence order-2 periodic solution.

Proof. To show the existence of the order-1 periodic solution, it is only necessary to find a point S ∈ N2

satisfying f I
M2

(S ) = 0 or f II
M2

(S ) = 0.

i) yA−(xT ) ≤ yT , as shown in Figure 2(a). Clearly, f I
M2

(G) = yG+ − yG = (1 − q2E2)G− > 0. If
τ ≤ τ̂ ≜ yL((1 − q1E1)xT ) − (1 − q2E2)yA− , then f I

M2
(A) = yA+ − yA ≤ 0. Thus, ∃S ∈ AG, satisfying

f I
M2

(S ) = 0. For τ > τ̂, there is f I
M2

(A) > 0, then f II
M2

(A+) = yA++ − yA+ = (1−q2E2)(yA+− − yA−) < 0.
Define ϵ = (yA+ − yA)/3. For 0 < δ < ϵ and Â ∈ Uo(A, δ) ∩ N , there is 0 < yA+ − yÂ+ < ϵ. Thus,
f II
M2

(Â) = yÂ+ − yÂ > 0, and ∃S ∈ AG satisfies f II
M2

(S ) = 0.

ii) yA−(xT ) > yT , τ ≤ τ ≜ yC − (1 − q2E2)yT , there is f I
M2

(A) = yA+ − yA ≤ 0. Together with
f I
M2

(G) = yG+ − yG = (1 − q2E2)G− > 0, it deduces that ∃S ∈ GG2 ⊂ N2 with f II
M2

(S ) = 0.

iii) yA−(xT ) > yT , E2 > max{0, (1 − yC/yA−)/q2} and yC ≤ τ ≤ yL(xT ) − (1 − q2E2)yT , as shown in
Figure 2(b). Since f I

M2
(C) = (1−q2E2)yT +τ−yC > 0 and f I

M1
(C+) = (1−q2E2)yC+−−yC+ < 0, then

PM1 · PM2(C) < 0. Similarly, PM1 · PM2(G) < 0, then ∃S ∈ CG ⊂ N2 such that PM1 · PM2(S ) = S .

To sum up, for case i) or ii), ∃S ∈ N2 with f I
M2

(S ) = 0 or f II
M2

(S ) = 0, which means the existence of
coexistence order-1 periodic solutions; for case iii), ∃S ∈ N2 with PM1 · PM2(S ) = S , which means the
existence of coexistence order-2 periodic solution. □

Let z̃(t) = (ξ̃(t; w1,w2, ω), η̃(t; w1,w2, ω)) (( j − 1)T ≤ t ≤ jT ) be the coexistence order-1 periodic
solution. For the sake of simplification, let’s denote

ξ̃0 ≜ ξ̃(0; w1,w2, ω), ξ̃1 ≜ ξ̃(T ; w1,w2, ω), η̃0 ≜ η̃(0; w1,w2, ω), η̃1 ≜ η̃(T ; w1,w2, ω)
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Figure 2. System trajectory trend diagram: a) yA−(xT ) ≤ yT ; b) yA−(xT ) > yT , E2 > max{0, (1−
yC/yA−)/q2} and yC ≤ τ ≤ yL(xT ) − (1 − q2E2)yT .

and
F0 = F(ξ̃0, η̃0; w1,w2, ω), F1 = F(ξ̃1, η̃1; w1,w2, ω),

G0 = G(ξ̃0, η̃0; w1,w2, ω),G1 = G(ξ̃1, η̃1; w1,w2, ω).

The coexistence order-2 periodic solution is denoted by

ẑ2(t) =
{

(ξ̂1(t; w1,w2, ω), η̂1(t; w1,w2, ω)), ( j − 1)T1 ≤ t ≤ jT1,

(ξ̂2(t; w1,w2, ω), η̂2(t; w1,w2, ω)), jT1 ≤ t ≤ j(T1 + T2).

Similarly, denote

ξ̂10 ≜ ξ̂1(0; w1,w2, ω), ξ̂11 ≜ ξ̂1(T1; w1,w2, ω), η̂10 ≜ η̂1(0; w1,w2, ω), η̂11 ≜ η̂1(T1; w1,w2, ω),

ξ̂20 ≜ ξ̂2(T1; w1,w2, ω), ξ̂21 ≜ ξ̂2(T1 + T2; w1,w2, ω), η̂20 ≜ η̂2(T1; w1,w2, ω), η̂21 ≜ η̂2(T1 + T2; w1,w2, ω)

and
F10 = F(ξ̂10, η̂10; w1,w2, ω), F11 = F(ξ̂11, η̂11; w1,w2, ω),

G10 = G(ξ̂10, η̂10; w1,w2, ω),G11 = G(ξ̂11, η̂11; w1,w2, ω),

F20 = F(ξ̂20, η̂20; w1,w2, ω), F21 = F(ξ̂21, η̂21; w1,w2, ω),

G20 = G(ξ̂20, η̂20; w1,w2, ω),G21 = G(ξ̂21, η̂21; w1,w2, ω).

Define

Θ1 ≜ exp
(∫ T

0

[
r̂
( K − x
K + mx

)
− rx

(
(1 + m)K
(K + mx)2

)
− d̂ +

ĉax2

aHx2 + x + g

]
|(ξ̃(t;w1,w2,ω),η̃(t;w1,w2,ω)) dt

)
.

Denote

Θ2 ≜ exp
(∫ T1

0

[
r̂
( K − x
K + mx

)
− rx

(
(1 + m)K
(K + mx)2

)
− d̂ +

ĉax2

aHx2 + x + g

]
|(ξ̂1(t;w1,w2,ω),η̂1(t;w1,w2,ω)) dt

)
· exp

(∫ T2

T1

[
r̂
( K − x
K + mx

)
− rx

(
(1 + m)K
(K + mx)2

)
− d̂ +

ĉax2

aHx2 + x + g

]
|(ξ̂2(t;w1,w2,ω),η̂2(t;w1,w2,ω)) dt

)
.
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Theorem 3.5. The coexistence order-1 periodic solution z̃(t) = (ξ̃(t; w1,w2, ω), η̃(t; w1,w2, ω))((k−1)T ≤
t ≤ kT ) is orbitally asymptotically stable if (1 − q2E2)Θ1F0/F1 < 1; the coexistence order-2 periodic
solution ẑ(t) is orbitally asymptotically stable if (1 − q2E2)2Θ2F10F20/F11F22 < 1.

Proof. Similar to the proof of Theorem , there is

∆1 = (1 − q2E2)
F20

F11
, ∆2 = (1 − q2E2)

F10

F21

and

exp
(∫ T

0

[(
∂F
∂x
+
∂G
∂y

)
|(ξ(t;w1,w2,ω),η(t;w1,w2,ω))

]
dt

)
= exp

(∫ T

0

[
r̂
( K − x
K + mx

)
− rx

(
(1 + m)K
(K + mx)2

)
− d̂ +

ĉax2

aHx2 + x + g

]
|(ξ(t;w1,w2,ω),η(t;w1,w2,ω)) dt

)
,

exp
(∫ T1

0

[(
∂F
∂x
+
∂G
∂y

)
|(ξ̂(t;w1,w2,ω),η̂(t;w1,w2,ω))

]
dt +

∫ T1+T2

T1

[(
∂F
∂x
+
∂G
∂y

)
|(ξ̃(t;w1,w2,ω),η̃(t;w1,w2,ω))

]
dt

)
= exp

(∫ T1

0

[
r̂
( K − x
K + mx

)
− rx

(
(1 + m)K
(K + mx)2

)
− d̂ +

ĉax2

aHx2 + x + g

]
|(ξ̂(t;w1,w2,ω),η̂(t;w1,w2,ω)) dt

)
· exp

(∫ T1+T2

T1

[
r̂
( K − x
K + mx

)
− rx

(
(1 + m)K
(K + mx)2

)
− d̂ +

ĉax2

aHx2 + x + g

]
|(ξ̃(t;w1,w2,ω),η̃(t;w1,w2,ω)) dt

)
.

Therefore, it can be concluded that the coexistence order-1 periodic solution z̃(t) =

(ξ̃(t; w1,w2, ω), η̃(t; w1,w2, ω))((k − 1)T ≤ t ≤ kT ) is orbitally asymptotically stable if (1 −
q2E2)Θ1F0/F1 < 1; the coexistence order-2 periodic solution ẑ(t) is orbitally asymptotically stable if
(1 − q2E2)2Θ2F10F20/F11F22 < 1. □

4. Numerical simulations and discussion

To illustrate the theoretical results, the model parameters are assumed to be K = 50, m = 1, a = 0.005,
H = 2. The capture rates are set to be q1 = 0.1, q2 = 0.02. The parameters r, d and c are set to be the
TFNs r̃ = (0.18, 0.20, 0.22), d̃ = (0.04, 0.05, 0.06), c̃ = (0.30, 0.33, 0.36).

4.1. Simulations for Model (2.6)

We will illustrate the effects of the imprecision indicators w1,w2, ω, search rate constant g and
capture efforts E = (E1, E2) on the system, respectively.

First, we illustrate the impact of the imprecision indicators w1,w2, ω on Model (2.6). For g = 0.05,
E = 0 and (x0, y0) = (10, 4), the time series and stable steady states for different w1, w2, ω are presented
in Figures 3–5 and Table 1.
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Figure 3. Impact of imprecision indicators on Model (2.6): Time series for different (w1,w2)
when ω = 0.1, where the density of prey is marked blue and the density of predators is
marked red.
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Figure 4. Impact of imprecision indicators on Model (2.6): Time series for different (w1,w2)
when ω = 0.5, where the density of prey is marked blue and the density of predators is
marked red.
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Figure 5. Impact of imprecision indicators on Model (2.6): Time series for different (w1,w2)
when ω = 0.9, where the density of prey is marked blue and the density of predators is
marked red.

Table 1. The impact of w1,w2, ω on coexistence equilibrium Q2.

w1 w2 Q2(x∗E, y
∗
E)

ω = 0.1 ω = 0.5 ω = 0.9
0.1 (31.78,12.81) (34.23,11.37) (36.61,9.89)

0.1 0.5 (44.21,3.87) (46.86,2.15) (49.42,0.41)
0.9 Nonexistence Nonexistence Nonexistence
0.1 (31.78,11.87) (34.23,10.57) (36.61,9.22)

0.5 0.5 (44.21,3.59) (46.86,2.00) (49.42,0.38)
0.9 Nonexistence Nonexistence Nonexistence
0.1 (31.78,10.93) (34.23,9.76) (36.61,8.54)

0.9 0.5 (44.21,3.30) (46.86,1.85) (49.42,0.35)
0.9 Nonexistence Nonexistence Nonexistence

From Figures 3–5 and Table 1 it can be concluded that: 1) When w1 is increasing, x∗E doesn’t change,
while y∗E decreases; 2) when w2 is increasing, x∗E is increasing, while y∗E is decreasing; 3) when ω

is increasing, x∗E is also increasing, while y∗E is decreasing; 4) as w2 decreases to a certain level, the
coexistence equilibrium Q2 disappears and the predator species goes extinct.

Second, we illustrate the impact of predator search rate on Model (2.6). Here, the parameter g
is selected as the relative size of predator search rate. For w1 = 0.2, w2 = 0.2, ω = 0.5, (E1, E2) =
(0.015, 0.001) and (x0, y0) = (10, 4), the impact of g on Model (2.6) is presented in Figure 6 and Table 2.
It can be observed that the predator search rate has a certain impact on the stability of the coexistence
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equilibrium Q2. As g increases, i.e., predator search speed decreases, x∗E increases and y∗E decreases.
Especially, when g increases to a certain level, the predator search rate becomes extremely small and
leads to the extinction of predator species.

Third, we illustrate the impact of (E1,E2) on Model (2.6). For g = 0.05,w1 = 0.2,w2 = 0.2, ω = 0.5,
the impact of (E1, E2) on the system with the initial value (x0 = 10, y0 = 4) is presented in Figure 7. It
can be observed that the fishing activities contribute to the stability of the system. Moreover, as long
as the fishing intensity is appropriate, the system can achieve a coexistence steady state. However, if
the fishing effort is too large, especially if the capture effort of the prey population exceeds the given
threshold, the system will become extinct. These observations and the conclusion are consistent with
Theorem 1.

Next, we illustrate the impact of the imprecision indicators w1,w2, ω on bionomic equilibrium. For
s1 = 0.5, s2 = 20, c1 = 1.8, c1 = 2, the impact of w1,w2, ω on bionomic equilibrium (if existing) is
presented in Table 3. It can be observed that bionomic equilibrium does not exist unconditionally and
needs to satisfy inequalities (3.8) and (3.9).

Lastly, we illustrate the optimal harvesting policy. Let q1 = 0.1, q2 = 0.02, s1 = 1, s2 = 20, c1 = 1.8, c1 = 2,
δ = 0.008 and imprecision indexes w1 = 0.1, w2 = 0.1, α = 0.5, then we obtain the optimal equilibrium
(42.00, 8.51) and the optimal harvesting efforts E1 = 0.12, E2 = 0.38.
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Figure 6. Impact of predator search speed g on the Model (2.6): the density of prey is marked
blue and the density of predators is marked red.

Table 2. The impact of predator search speed on coexistence equilibrium Q2.

g Coexistence equilibrium Nature
0.001 (37.00, 8.68) Globally asymptotically stable
1 (37.98, 8.11) Globally asymptotically stable
10 (45.19, 3.25) Globally asymptotically stable
25 Nonexistence -
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Figure 7. Impact of capture effects (E1, E2) on Model (2.6): the density of prey is marked
blue and the density of predators is marked red.

Table 3. The impact of w1,w2, ω on bionomic equilibria.

w1 w2 Bionomic equilibrium (xr, yr, E1r, E2r)
ω = 0.1 ω = 0.5 ω = 0.9

0.1 (36,5,0.1712,0.2101) (36,5,0.1843,0.0894) Nonexistence
0.1 0.5 Nonexistence Nonexistence Nonexistence

0.9 Nonexistence Nonexistence Nonexistence
0.1 (36,5,0.1452,0.2101) (36,5,0.1582,0.0894) Nonexistence

0.5 0.5 Nonexistence Nonexistence Nonexistence
0.9 Nonexistence Nonexistence Nonexistence
0.1 (36,5,0.1192,0.2101) (36,5,0.1322,0.0894) Nonexistence

0.9 0.5 Nonexistence Nonexistence Nonexistence
0.9 Nonexistence Nonexistence Nonexistence

4.2. Simulations for Model (2.7)

Here, the dynamic behavior of Model (2.7) induced by the switch capture strategy is presented. For
w1 = 0.2, w2 = 0.2, ω = 0.5, xT = 28, yT = 2.3, E1 = 5, E2 = 40 and other parameters presented at the
beginning of section four, it can be observed from Figure 8 that Model (2.7) has a predator-extinction
periodic solution.

For w1 = 0.2, w2 = 0.2, ω = 0.5, xT = 28, yT = 2.3, E1 = 5, E2 = 10, Model (2.7) has a different
coexistence periodic solution, as shown in Figures 9–12. It can be observed that the periodic solution
depends on the value of τ.
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Figure 8. Time series and phase diagram of the predator-extinction periodic solution in case
of τ = 0.
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Figure 9. Time series and phase diagram of the coexistence order-1 periodic solution in case
of τ = 0.5.
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Figure 10. Time series and phase diagram of the coexistence order-2 periodic solution in case
of τ = 1.2.
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Figure 11. Time series and phase diagram of the coexistence order-3 periodic solution in case
of τ = 1.
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Figure 12. Time series and phase diagram of the coexistence order-9 periodic solution in case
of τ = 0.7.

5. Conclusions

Considering that some biological parameters of different species in an ecosystem fluctuate to a certain
extent due to changes in the external environment, it is of practical significance to study biological
models with imprecise parameters. In addition, the search rate of predators varies rather than is fixed in
response to changes in the environment and the distribution of prey. In view of the above phenomena,
we proposed a Gause-type fishery model incorporated with the Smith growth function, variable search
rate and triangular fuzzy biological parameters. Moreover, from the perspective of rational exploitation
of fishery resources, we introduced two fishing strategies into the system and analyzed the effects of
different fishing strategies on fish resources.

For the continuous type capture system, we figured out the effects of variable predator search speed
and imprecision indicators on the system’s dynamics (Theorems 1–2, Tables 1,2 and Figures 3–6).
The results show that when the parameters change obviously, the imprecise indicators have a certain
influence on the dynamic characteristics of the system. This is reasonable since the gradual change of
the environment will not change the related characteristics of biological species, but dramatic changes
will change its living habits to adapt to this change. In addition, for the sake of maximizing economic
benefit of the capture process, we discussed the bionomic equilibrium of the system (Table 3) and the
optimal capture strategy.

For the switch capture system, we provided the existence and stability conditions of predator-
extinction periodic solution and coexistence order-1 or 2 periodic solution. To prevent predators
from going extinct, predator populations should not be captured too aggressively. Through computer
simulations, we found different order coexistence periodic solutions. This further indicates that the
ecological balance of species can be achieved with the switch capture strategy.

The research indicated that the triangular imprecise biological parameters, variable predator search
rate and capture activities further enriched the dynamic characteristics of the biological system, and also
provided a theoretical reference basis for scientific and effective exploitation and utilization of fishery
resources under uncertain parameter environments.
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