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Abstract: Cancer subtyping (or cancer subtypes identification) based on multi-omics data has played
an important role in advancing diagnosis, prognosis and treatment, which triggers the development of
advanced multi-view clustering algorithms. However, the high-dimension and heterogeneity of multi-
omics data make great effects on the performance of these methods. In this paper, we propose to learn
the informative latent representation based on autoencoder (AE) to naturally capture nonlinear omic
features in lower dimensions, which is helpful for identifying the similarity of patients. Moreover, to
take advantage of survival information or clinical information, a multi-omic survival analysis approach
is embedded when integrating the similarity graph of heterogeneous data at the multi-omics level.
Then, the clustering method is performed on the integrated similarity to generate subtype groups. In
the experimental part, the effectiveness of the proposed framework is confirmed by evaluating five
different multi-omics datasets, taken from The Cancer Genome Atlas. The results show that AE-
assisted multi-omics clustering method can identify clinically significant cancer subtypes.

Keywords: multi-omic data; cancer subtyping; multi-view clustering; autoencoder; latent space;
data integration

1. Introduction

Currently, the research and application of big data technologies have penetrated from the internet
fields to many other industries. Among which, the rapid development of high-throughput sequencing
technologies accelerates the speed of biological big data accumulation, which has triggered a multi-
faceted revolution in the research of advanced biology and medicine. Like other fields benefiting from
big data, these biological big datas bring new opportunities and challenges to bioinformatics as well.
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The key issue is how to discover some insightful knowledge from the biological big data efficiently,
which has attracted a lot of attention from both academia and industry.

Thanks to advanced sequencing technologies, multi-omics data are generated in large quantities [1],
which usually contain genomes, transcriptomes, proteomes, metabolomes, etc. It is worth noting that
multi-omics data can be regarded as a specific type of multi-view data. As analyzed in the survey [2],
in the past several years, more and more researchers have paid attention on analyzing multi-omics
data via machine learning methods with the aim to obtain new knowledge. The general framework of
Cox-regularized-model-based (or machine learning-based) multi-omics analysis is shown in Figure 1,
which visually shows that each omics is represented by a data matrix from the perspective of a specific
view. Although there are certain connections among each omic, the multi-source heterogeneity among
multiple omics through data integration brings more potentials for discovering new knowledge, which
is beneficial for disease identification and drug development. Also, some priori knowledge can be
used to enhance the performance of machine learning methods. For example, a priori information
about relationships between the different omics data can be considered, so as to diminish false-positive
results and enhance the relevance of true molecular interactions as well.

Figure 1. Multi-omics data analysis based on Cox-regularized models (or other machine
learning models).

Over the last decade, considerable efforts have been devoted to the development of numerous com-
putational methods for multi-omics data integration [3], which is the fundamental of knowledge dis-
covery. These approaches can be roughly categorized into three classes in terms of the major strategies
they used: Early, intermediate and late integration [4]. Early integration methods perform a simple
concatenation of features from the omic data into a single feature combination, while late integration
methods separately learn each omic layer and then merge the clustering results into a single solution.
Both early and late integration methods fail to model the interactions among the features in differ-
ent omics data levels. Instead, intermediate integration methods have gradually become mainstream,
which consolidate data by constructing a holistic model for joint dimensionality reduction and cluster-
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ing without simply concatenating features or merging results.

Nowadays, clustering of histology-oriented data has generated significant value for research in bi-
ology and medicine (e.g., disease typing, drug research, precision medicine, etc.) [5]. Among them,
multi-omics data clustering which considers connections among different omics, belonging to inter-
mediate data integration, can lead to more systematic discoveries [6]: 1) it can reduce the effects of
experimental and biological noise in the data; 2) different groups can reveal different cellular levels; 3)
even at the same molecular level, each group may contain data that are not available in other groups and
4) different groups can represent data from different levels of organisms. Although the existing multi-
omics clustering algorithms have gained progress during the past years [7–12], they still have a large
room of performance improvement by developing efficient algorithms based on advanced multi-view
learning techniques, especially for large-scale multi-omics data.

In this paper, we propose the autoencoder-assisted latent space learning for survival analysis and
multi-omics clustering (AELSMC) to identify meaningful cancer subtypes. First, the autoencoder
(AE) aims to obtain nonlinear high-dimensional omic features in the lower dimensional space, so as to
determine more accurate similarity of patients. Next, the clinical information assisted by embedding
a multi-omic survival analysis approach is incorporated to learn the similarity graph of heterogeneous
data at the multi-omics level. Then, we perform spectral clustering on the similarity matrix of patients
given a number of clusters, and hence, generate the result of subtype groups. The proposed method is
compared with some other representative algorithms on five multi-omics datasets. Experimental results
have validated the promising potential of AE in capturing multi-omics feature information in lower
dimensions, and the superiority of the proposed method in generating more distinguished subtypes.

2. Background

2.1. Survival prediction

Survival analysis is related to the time going by when an event begins until a censoring point. It is
usually used to estimate the survival time of the observed patient [13], namely, the time from diagnosis
of a disease to death. Nevertheless, it can be also concerned to any time-dependent event, which is
often termed as disease-free survival, such as time in hospital or time until a disease recurs. In the
literature, various survival prediction techniques are developed for clinical analysis of diseases, among
them some categories are widely-used, like multi-task learning based analysis [14], deep learning based
analysis model [15], and reweighted regression model [16].

Note that most of the existing survival prediction methods are developed based on a single type
of data. When there exists different types of data, multi-view learning can exploit the complemen-
tary information between them by the joint optimization model so as to improve the generalization
performance. Research on various multi-view learning techniques has gained a lot of attention [17],
however, the development of survival prediction methods based on multi-view learning on multi-omics
data is still under-explored. In view of this, we attempt to take full advantage of multi-view survival
prediction on multi-omics data, thereby facilitating to deal with the tasks (e.g., cancer subtyping) in
clinical analysis.
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2.2. Cancer subtyping based on multi-omics analysis

During the past decade, cancer subtyping (or cancer subtypes identification) has become one of
the vital steps for advancing diagnosis, prognosis and treatment. The essence of cancer subtyping is
to classify patient samples with similar features of omics data, which usually adopts unsupervised or
semi-supervised clustering methods.

In early time, the research of cancer subtyping focuses on clustering single omic data, such as gene
expression data, which is similar to that of survival prediction techniques. However, it is insufficient
today since a large quantity of multi-omics data has been generated quickly in this field. Under further
research, various multi-omics clustering methods were proposed and applied to cancer subtyping, e.g.,
[18–21], which can be briefly summarized into three main categories: Multi-view clustering (MvC)
methods, model-based methods, and similarity-based methods. Among them, MvC techniques seem to
be more prevalent, as witnessed in literature. For example, a novel multi-view clustering with low-rank
and sparsity constraints (MVCLRS) was proposed to capture both the global and the local structures
by integrating the multi-omics data [18]. A multi-view spectral clustering with latent representation
learning method was proposed in [20], which can deal with the incomplete multi-omics data with
missing values. Most existing cancer subtyping methods are developed in an unsupervised manner,
however, some knowledge like multi-view (omic) survival analysis (survival prediction) is very helpful
in the MvC [13, 16].

Generally, omics (or multi-omics) data have the characteristics of sample scarcity and high dimen-
sionality, hence dimension reduction or subspace learning techniques are very useful, as can be found
in some recent multi-omics clustering algorithms. For example, a learning vector quantized repre-
sentation based on vector-quantized variational autoEncoder was developed in [19]. The noise and
redundant information in high-dimensional omics data has been addressed by the latent representation
learning in [20]. The principal component analysis (PCA)-based feature extraction and singular value
decomposition (SVD) were utilized for latent subspace learning in [22]. To simultaneously deal with
the issues of high-level noise and high heterogeneity existing in multi-omics data, the deep latent space
fusion (DLSF) model [23] was proposed based on a cycle AE with a shared self-expressive layer, which
can learn consistent manifold in the sample latent space.

2.3. Multi-view clustering

In this section, we provide a more detailed discussion about MvC, owing to its predominance for
multi-omics analysis. The research of MvC algorithms is a hot topic in the field of unsupervised
learning, as clustering is performed by utilizing the heterogeneous perspectives of features in multi-
view data to achieve accurate and meaningful solutions. In recent years, various MvC algorithms
[24–27] have been proposed. Roughly, the existing MvC methods are mainly classified into three
categories: 1) matrix decomposition methods [24]; 2) subspace-based methods that identify consensus
low-dimensional subspaces [28] and 3) graph-based methods that utilize consensus nearest-neighbor
matrices in graphs [25, 27]. Meanwhile, based on the data information employed, they can be further
simply divided into two types [25]: Feature-driven methods (containing matrix decomposition and
subspace-based categories) and relation-driven methods (graph-based category). Among them, the
former one establishes explicit models via data features to estimate the distributions of data. The
latter types aim at analyzing the point-to-point relationships of data as commonly-presented in graphs,
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which seeks to apply various optimization methods [25, 29, 30] on the graphs to get high-quality data
partitioning.

As claimed in [25, 27], graph-based MvC methods have the advantages of simplicity and efficiency
(e.g., efficiently handling nonlinear data), which have gained more attention recently. In this study,
we employ the graph-based MvC technique for multi-omics clustering, for which a patient-to-patient
similarity graph is learned via the AE-assisted informative latent space. At the same time, the graph
learning and survival prediction are simultaneously optimized in the joint built on the latent embedding
space, as discussed in the next section.

3. The proposed methods

3.1. The workflow of the proposed framework and basic definitions

An overall workflow of the proposed framework on multi-omics cancer subtyping is illustrated in
Figure 2, and it has three major components. First, the more informative latent space representa-
tion (i.e., Z) is captured by training the AE neural network on the multi-view (multi-omics) dataset
X. Therefore, two tasks–i.e., the survival analysis and similarity graph learning, are integrated into
a unified optimization procedure based on the latent space representation. Finally, the cancer sub-
types can be obtained by performing the spectral clustering algorithm on the affinity matrix of the
patient-to-patient similarity graph, which can further provide insights for survival analysis and biolog-
ical enrichment.

Figure 2. Workflow of the proposed framework on multi-omics cancer subtyping.

Given a dataset X = {Xv
1, X

v
2, . . . , X

v
n} of n points, and there are m views, namely {v1, v2, . . . , vm}.

Then for the k-th view, the feature matrix of data is Xk ∈ Rpk×n, where pk is the number of features
in this view. Here, the multi-omics dataset of the k-th omic is defined as Dk = {dk

1, d
k
2, . . . , d

k
n}, where

dk
i = {X

k
i ,Ti, δi} denotes the i-th patient. Xk

i is the aforementioned feature matrix, Ti is the observation
time, and δi is the censoring indicator which indicates whether the patient is censored (δ = 0) or

Mathematical Biosciences and Engineering Volume 20, Issue 12, 21098–21119.



21103

observed (δ = 1). Thus, Ti is defined as follows:

Ti =

{
Oi if δi = 1
Ci if δi = 0,

(3.1)

where Oi denotes a survival time while Ci is a censored time.

3.2. Latent representation learning based on autoencoders

Generally, the number of samples is much less than the number of features in current biological
datasets. The AE, as an efficient dimension reduction tool, can map the high-dimensional data into the
low-dimensional hidden representation Zv

i , where “v” represents a particular view of the input data.
AEs, unsupervised neural networks, attempt to restore inputs from their outputs through the process

of encoding and decoding [31,32]. As shown in Figure 3, the general structure of an AE is made up of
three parts, i.e., encoder, code (bottleneck), and decoder. To be specific, an encoder is a function that
compresses the input into various latent representations, and thereby only useful information/features
can be left by squeezing the input through a bottleneck. Accordingly, a decoder attempts to reconstruct
the learned representation from the encoder back to the original format.

Here we adopt the minimization of reconstruction error as the training goal of an AE, i.e., calculat-
ing the difference between output X′ and input X. More specifically, each node Zv

j in the hidden layer
can be obtained as:

Zv
j = σ(av

j +
∑

i
Xv

i wv
i j), (3.2)

where σ(·) is the encode function, a and w are parameters of the encoder. Hence, data in the latent
space is represented as Z.

The decoder takes the hidden representation as input and tries to reconstruct the original input,
hence the value of each node Xv′

i in the output layer can be calculated as:

Xv′
i = σ(av′

i +
∑

j
Zv

jw
v′
ji), (3.3)

where σ(·) is the decode function, a
′

and w
′

are parameters of the decoder.

Figure 3. General structure of an AE.
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The goal of training an AE is to optimize a predefined loss function. Through minimizing the loss
function to reconstruct the input, the weight parameters can be updated. Regarding a particular view
“v”, the reconstruction loss (Lv

r) can be formulated as

Lv
r =

1
n

n∑
i=1

∥∥∥Xv
i − Xv′

i

∥∥∥2 . (3.4)

Therefore, the above loss function is used to update the weight parameters to reconstruct the original
data X, and the more informative latent space representation (i.e., Z) can be captured by training the
AE neural network. Then, either the survival analysis model or the similarity graph is generated from
the optimized latent embedding space of Z.

3.3. Survival analysis and similarity graph learning via the latent embedding space

As mentioned in Section 2.1, the survival information or clinical information is helpful for identify-
ing meaningful cancer subtypes from the biological perspectives, as also claimed in [13,16,20]. To be
more specific, the quality of the patient-to-patient similarity graph can be improved by simultaneously
optimizing the learning process of the survival analysis model and the similarity matrix. Therefore,
the two tasks, namely the survival analysis and similarity graph learning, are integrated into a unified
optimization procedure.

Here, we employ the multi-view (multi-omics) Cox model [33] to be the survival analysis function.
In addition, an omics-consistency co-regularization term [34] is introduced to explore consistent and
complementary information within different omics. It aims at shrinking the agreement of the prediction
between each pair of views among the multi-omic data, and hence, improves the learning performance.
Therefore, the regularized survival analysis model of multi-omic data is formulated as:

Lsurvival = min
w

m∑
k=1

− n∑
i=1

δi

Zk
i wk − log

∑
j∈Ri

exp(Zk
j w

k)


︸                                                ︷︷                                                ︸

Multi−view Cox model loss function

+ λ
∑
k, j

∥∥∥Zkwk − Z jw j
∥∥∥2

2︸                     ︷︷                     ︸
Co−regularization (data interation)

, (3.5)

where w = [w1,w2, . . . ,wm] is the survival prediction coefficient across all views (omics) and Ri denotes
the risk set of Ti, containing instances with observed time not less than Ti. Actually, function (3.5) is
optimized via the latent representation of data Z, rather than the original data X.

Let S be the similarity matrix (or affinity matrix), which reflects the global structure of data. In S ,
si j is the similarity weight between the i-th and the j-th samples. A pair of similar data points can get
a large weight, and vice versa.

Note that, in clinical analysis, it is usually observed that patients grouped in the same disease sub-
types have similar distributions of features as well as similar survival times. Hence, a joint learning
model of patient-to-patient similarity graph and survival prediction tends to discover disease subtypes
more precisely. To this end, an adaptive affinity learning to measure the edge weights based on both
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the similarity of patient samples [35] and survival analysis [16] is defined as follows:

Lsimilarity =min
S
γ

n∑
i=1

n∑
j=1, j,i

(∥∥∥Zi − Z j

∥∥∥2 S i, j + µS 2
i, j

)
︸                                       ︷︷                                       ︸

Similarity of patient samples

+min
S
γ

n∑
i=1

n∑
j=1, j,i

∥∥∥Ziw − Z jw
∥∥∥2 S i, j︸                               ︷︷                               ︸

Survival prediction of patients

=min
S
γ

n∑
i=1

n∑
j=1, j,i

(∥∥∥Zi − Z j

∥∥∥2 + ∥∥∥Ziw − Z jw
∥∥∥2) S i, j + µS 2

i, j

s.t.
n∑

j=1, j,i

S i, j = 1, S i ⪰ 0; i = 1, 2, . . . , n,

(3.6)

where γ and µ are the tradeoff parameters. For simplicity, we set the value of γ and µ to 1. In the
affinity matrix, a larger weight value is assigned for two patients if they get a smaller distance and
similar prediction value.

It should be pointed out that the coefficient w is obtained by optimizing the survival prediction
model (i.e., Eq (3.5)), such that it cannot be estimated only based on Eq (3.6). To address this is-
sue, a collaborative learning model of survival prediction and graph affinity learning is developed by
combining Eqs (3.5) and (3.6) into a joint optimization model. Hence, the unified loss function is
formulated as:

Lunified = Lsurvival + Lsimilarity. (3.7)

Note that it is interesting to include the AE training step into the multi-view Cox model of Eq (3.5).
Specifically, a more unified optimization model can be built by adding Eq (3.4) to Eq (3.7). That is
to say, step 1 (AE training) and step 2 (unified optimization of survival analysis and similarity graph
learning) in Figure 2 are combined into a whole function. It needs additional theoretical analysis,
which is beyond the scope of this work, and we will attempt to explore it in the future.

Therefore, the two tasks of graph learning and survival analysis are simultaneously optimized. The
quality of similarity matrix S could be improved based on the distance of patient instances and predic-
tion time, in order to identify more reasonable results of disease subtypes. Meanwhile, the similarity
matrix S can in turn positively reinforce the survival analysis model. Consequently, the above two
tasks can improve each other. Specifically, through the joint alternating optimization strategy [13, 16],
the coefficient w of survival analysis model and the similarity matrix S iteratively update one while
keeping the other one fixed. In addition, the proximal gradient algorithm [36] and the Lagrange mul-
tipliers [35, 37] need to be adopted to obtain or approximately reach the closed-form solution of w
and S , respectively. For simplicity, the detailed formula derivation is not presented here, which can be
referred to [13, 16]. Instead, we directly provide the iterative solution of w and S .

The updating formulation of w is achieved by keeping S fixed in Lunified, and let h(w) be a part
of Lunified only regarding w, i.e., h(w) = Lsurvival + γ

∑n
i=1
∑n

j=1, j,n

∥∥∥Ziw − Z jw
∥∥∥2 S i, j. According to the

proximal gradient algorithm utilized in [36], w is calculated iteratively by:

w(t + 1) =minwh(w(t))+ < w(t + 1) − w(t),▽h(w(t)) > +
1
2
∥w(t + 1) − w(t)∥22

=minw
1
2
∥w − v∥22 ,

(3.8)
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where v = w(t) − (τ/2) ▽ h(w(t)) with learning step τ that can be estimated by linear search. Thus, the
coefficient vector w is updated based on the following closed form solution:

w(t + 1) = sign(v)(v − η)+, (3.9)

where (a)+ is the positive function.
Similarly, the updating formulation of S is obtained by keeping w fixed in Lunified (Lunified actually

equals to Lsimilarity in this case). In addition, let di j =
γ

µ

(∥∥∥Zi − Z j

∥∥∥2 + ∥∥∥Ziw − Z jw
∥∥∥2), then function

(3.7) can be redefined as min
S i

∑n
j=1, j,i S i, jdi, j + S 2

i, j with S i, j and S i subject to the constraint of Eq

(3.6). According to the Lagrange multipliers utilized in [35, 37], the closed-form solution of S is
approximately calculated by:

S i j =

1 +
∑n

j=1d̂i j

K
− di j


+

, (3.10)

where K ∈ (1, n) is a pre-specified constant value to control the neighbour size (K=20 is set here), d̂i is
obtained by sorting di in ascending order, and (A)+ is the positive function.

After obtaining the similarity matrix (S ) of the patient-to-patient graph via the latent embedding
space, we can perform spectral clustering on S with a given number of clusters, and hence, generate
the clustering result, namely the subtype groups.

The complete optimization procedure of the AELSMC algorithm is presented as Algorithm 1. The
source code of AELSMC is freely available at https://github.com/ShuweiZhu/AELSMC.git.

Algorithm 1: The complete optimization procedure of the AELSMC algorithm
Input: Multi-omics dataset: X; Parameters: λ, β, and the number of subtypes k
Output: The identified subtypes (clustering result).

1 Train autoencoder on multi-omics dataset X to generate the latent space representation Z.
2 Set t = 0, and initialize model coefficient w and similarity matrix S .
3 while the unified model not converge do
4 Step 1. Suvival analysis.
5 Fix S and estimate w̃ by proximal gradient algorithm, i.e., repeat:
6 Compute the gradient ▽h(w(t)) and let v = w(t) − (τ/2) ▽ h(w(t)).
7 Update w̃ = sign(v)(v − η)+ and increase the learning rate of τ.
8 Update w(t + 1) = w̃.
9 Step 2. Similarity learning.

10 Estimate S by fixing w: Compute di j =
γ

µ

(∥∥∥Zi − Z j

∥∥∥2 + ∥∥∥Ziw − Z jw
∥∥∥2) and update each

element of S by Eq(3.10).
11 t = t + 1.
12 end
13 Perform spectral clustering algorithm based on the similarity matrix S to generate k subtypes.
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3.4. Clustering ensemble for a consensus solution

As mentioned in Section 1, late integration strategy can take advantage of a set of clustering so-
lutions (based solutions) from different perspectives, such as using different methods, parameters and
subspaces. As a typical late integration strategy, clustering ensemble is performed to fuse these base
solutions, aiming at generating a consensus clustering [38, 39]. Usually, such a consensus clustering
is beneficial from the complementary information of multiple views of omics data while making up
their shortcomings. For example, a graph-based multi-method and multi-source consensus clustering
strategy [12], named as ClustOmics, has been proposed based on evidence accumulation clustering
(EAC) [40] to improve the robustness of predictions. A clustering ensemble method is usually com-
posed of two main components: 1) clustering generation, and 2) consensus function. For the former,
the quality and diversity of the generated clusterings are two key factors. During the last two decades, a
majority number of clustering ensemble methods have been proposed, and among them, three consen-
sus methods proposed in [41], the hyper-graph partitioning algorithm (HGPA), cluster-based similarity
partitioning algorithm (CSPA) and meta-clustering algorithm (MCLA), are the most classical but still
prevalent, due to their efficiency and efficacy.

In this study, we propose to take advantage of the cluster ensemble strategy by integrating useful
information of multiple solutions from different perspectives, for example, to set different parameters.
To do this, the powerful locally weighted clustering ensemble algorithm named LWGP [42] is used
here. First, a set of clustering candidates is generated as the ensemble pool. Note that the dimension
of latent space for each omic is set to be β × d, where β is the control parameter of the size for latent
space, and it takes value from interval B = [0.01, 0.02, . . . , 0.1]. Thus, we can get the ensemble pool by
setting different values of β in the proposed framework. Thereafter, the LWGP algorithm is executed
on the ensemble pool to obtain the final solution.

4. Experimental results and analysis

In this section, we present the experimental settings, the comparison with the competitive methods
of five multi-omics datasets, and the corresponding analysis (effectiveness verification and parameter
analysis of the proposed framework).

4.1. Experimental settings

The proposed AELSMC algorithm is evaluated on five multi-omics datasets from the can-
cer genome atlas (TCGA) repository: Breast invasive carcinoma (BIC), colon adenocarcinoma
(COAD), kidney renal clear cell carcinoma (KRCCC), lung squamous cell carcinoma (LSCC),
glioblastoma multiforme (GBM), ovarian serous cystadenocarcinoma (OV), skim cutaneous melanoma
(SKCM) and sarcoma (SARC), which are commonly used in the literature [13, 22, 43]. There
are three views in these datasets—i.e., miRNA expression, mRNA expression and DNA methy-
lation. In this study, the preprocessed datasets provided by [6] are adopted and the original
dataset can be found at https://gdac.broadinstitute.org/. (All the processed raw data are available at
http://acgt.cs.tau.ac.il/multi omic benchmark/download.html.) In addition, it is worth pointing out that
more different omics data can be further explored via [44–46].

Table 1 shows the properties of these multi-omics datasets, where the number of samples, censored
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times and the dimension of three omics (miRNA, mRNA, methylation) is presented, respectively. Note
that, the Z-score standard normalization is adopted to map the original data X to the normal distribution
with a mean of 0 and a standard deviation of 1, as defined below:

Xstand =
X −mean(X)

standard deviation(X)
. (4.1)

Table 1. Properties of the multi-omics datasets.

Samples Censored miRNA mRNA methylation
BIC 105 18 354 17,814 23,094
COAD 92 9 312 17,814 23,088
GBM 215 199 534 12,042 1305
KRCCC 122 33 329 17,899 24,960
LSCC 106 66 352 12,042 23,074
OV 290 174 705 5000 25,031
SARC 260 98 1046 5000 25,031
SKCM 439 213 1046 5000 25,031

The proposed AELSMC method is compared with several competing approaches: affinity network
fusion (ANF) [7], similarity regression fusion (SRF) [8], similarity network fusion (SNF) [47], sub-
space Merging (SM) [9], DLSF [23], AutoCox [48], survival supervised graph clustering (S2GC) [13]
and SparseAE (note that the author has not defined the algorithm name, here we define it as SparseAE
for convenience) [43]. We conduct experiments on a PC with an Intel Core i7-1065G7 CPU and 16
GB RAM. Moreover, the Cox log-rank test (or -ln of log-rank’s test p-value) [6] and the widely-used
internal validity index–Silhouette [49] are adopted to evaluate the clustering performance.

Firstly, the -ln of log-rank’s test p-value can measure whether the survival time is significantly
different among subgroups. The log-rank test is defined as:

χ2
subgroups =

c∑
k=1

(Ok − Ek)2

Ek
, (4.2)

where c denotes the number of clusters. Ok is the number of identified instances in the k-th subgroup
while Ek is the number of expected instances. A smaller value of the p-value indicates a better result.

The Silhouette index [49] can quantify the goodness of clustering solutions by measuring the com-
pactness within clusters and the separation between clusters [38, 39, 50], since no standard clustering
result is available for the multi-omics datasets. It takes value from [-1, 1], and a larger value of the
Silhouette indicates a better result.

4.2. Comparison with the state-of-the-art methods

The experimental results are obtained by using the source code provided by the authors or the
results reported in the papers in the case that the source code is not available. For example, the codes
of DLSF and S2GC are provided by the authors, which is very helpful for us. For convenience, the
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control parameter β of the size for latent space is set as 0.05 here, but the sensitivity analysis of β is
presented in later subsection. Note that, it is necessary to make comparison experiments under the
same conditions, so in this subsection the number of clusters k keeps consistent for all the methods on
each dataset, i.e., k = 5 for BIC, k = 3 for COAD, k = 3 for GBM, k = 4 for KRCCC, k = 4 for LSCC,
k = 3 for OV, k = 2 for SARC and k = 3 for SKCM, as suggested or used in literature [13, 43].

The clustering performance of different cancer subtype identification methods in terms of Cox log-
rank test p-value is shown in Table 2, where the best and the second best for each dataset is shown
with a dark (in bold type) and light gray background, respectively. For the competitive algorithms, the
S2GC algorithm obtains the best result on dataset LSCC and the two second best results; SparseAE
obtains the best result on datasets KRCCC and OV. Thus, it is observed that among the nine state-of-
the-art cancer subtyping algorithms, no one can significantly outperform the others in all cases. For our
AELSMC method, there are significant differences between the cancer subtypes identified, as the Cox
log-rank test p-values for all datasets are quite low. Overall, the proposed AELSMC method shows
very obvious superiority over other cancer subtyping algorithms, since it obtains the best result on 5 out
of 8 datasets and the second best for the remaining 3 dataset LSCC. All these observations demonstrate
the effectiveness of the proposed AELSMC model. It deserves noticing that AELSMC can obtain a
much lower result (p-value=4.7E-12) than the others on the GBM dataset, which may be owing to the
high-quality similarity graph learned via the latent embedding space.

Table 2. Clustering performance of different cancer subtype identification methods in terms
of Cox log-rank test p-value.

Dataset ANF SRF SNF SM DLSF AutoCox S2GC SparseAE AELSMC

BIC 7.6E-04 1.2E-06 1.1E-03 2.0E-04 4.0E-04 2.0E-02 3.1E-03 2.7E-05 1.1E-07

COAD 3.9E-02 1.9E-03 8.8E-04 7.3E-03 3.0E-01 8.1E-02 6.4E-02 4.2E-02 1.2E-09

GBM 1.7E-02 2.7E-04 2.0E-04 4.3E-03 1.0E-03 2.5E-02 4.0E-05 2.1E-04 4.7E-12

KRCCC 2.8E-02 4.6E-02 2.9E-02 2.8E-02 1.0E+00 3.0E-01 3.7E-03 5.8E-10 1.0E-06

LSCC 1.8E-02 2.0E-03 1.2E-02 8.4E-03 2.0E-02 6.1E-02 1.4E-05 4.4E-04 2.2E-05

OV 3.9E-02 5.1E-03 3.2E-03 6.7E-03 4.2E-03 1.9E-02 2.9E-04 5.2E-06 1.6E-05

SARC 7.8E-03 2.2E-03 1.8E-03 2.4E-03 2.1E-03 1.4E-02 2.9E-06 8.3E-08 2.1E-08

SKCM 3.3E-03 4.2E-02 7.1E-03 1.3E-03 1.5E-02 3.4E-01 4.4E-08 2.9E-04 3.5E-10

By using the Kaplan-Meier survival analysis, the survival curves of AELSMC on five multi-omics
datasets are generated as shown in Figure 4. Note that Kaplan-Meier probability is a commonly used
approach to discriminate the survival time of different groups. It is observed from Figure 4 that the
subtypes of all the datasets can mostly be well distinguished, except for two subtypes of the COAD
dataset. That is to say, in most cases there is a significant difference between the survival probability
curves of various clusters identified by our AELSMC method. To take the BIC dataset as an example,
among all the five subtypes, subtype 5 has the longest average survival time, followed by subtypes 1
and 2. The prognosis of subtypes 3 and 4 is relatively poor. For the other four datasets, the prognosis
of different subtypes can be observed in the similar way.

Moreover, the average values of Silhouette obtained by six multi-omics clustering methods, SRF,
SNF, DLSF, S2GC, SparseAE and AELSMC are presented in Table 3, where the best score is high-
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lighted in bold. We can observe that the proposed AELSMC method achieves the best result on 5
out of all 8 multi-omics datasets, and for the remaining three multi-omics datasets, it can still achieve
relatively good results.
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Figure 4. Kaplan-Meier survival curves of AELSMC on five multi-omics datasets.
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Table 3. Comparative cluster evaluation of average Silhouette.

Dataset SRF SNF DLSF S2GC SparseAE AELSMC
BIC 0.593 0.237 0.529 0.558 0.614 0.679
COAD 0.335 0.444 0.348 0.376 0.603 0.656
GBM 0.429 0.491 0.372 0.763 0.747 0.826
KRCCC 0.399 0.425 0.724 0.755 0.911 0.892
LSCC 0.437 0.326 0.576 0.704 0.653 0.686
OV 0.636 0.611 0.647 0.686 0.708 0.733
SARC 0.603 0.627 0.596 0.610 0.720 0.704
SKCM 0.561 0.523 0.549 0.614 0.592 0.643

4.3. Effectiveness verification

First, we present the effectiveness verification of the AE in our proposed framework. To take dataset
GBM as an example, the training process of an AE on the view of mRNA and methylation, respectively,
is shown in Figure 5. The loss function of an AE is the mean square error with L2 regular term and
sparse regular term (msesparse for short), and the total number of epochs is set as 100 here. It is obvious
that the AE can quickly converge toward a low value of msesparse, which shows the effectiveness and
efficiency of the latent space learned by the AE model. Also, the decreasing trend of both msesparses
becomes slower at the late stage, such that it is not necessary to set a large value for the total number of
epochs. Generally, we suggest to set the number of total epochs as less than 100, and sometimes 50 or
smaller is enough. From Figure 5(a) the msesparse of epoch = 50 approximately reaches 0.75, while
that of epoch = 100 is 0.49; and from Figure 5(b) the msesparse of epoch = 50 approximately reaches
1.0, while that of epoch = 100 is 0.79. Hence, there is actually no significant difference between the
learned latent spaces in the cases of epoch = 50 and epoch = 100 here.
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Figure 5. Training process of AE on BIC dataset.
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The number of clusters k was set in the interval from 2 to 9 and we conduct our AELSMC method
on the five datasets, respectively, by setting the control parameter of the size for latent space as 0.05.
Figure 6 shows the -log10(p-value) of the AELSMC method with varying k. We can see that an
appropriate k is helpful for obtaining more significant cancer subtypes. If the number of subgroups of
AELSMC is based on the value of Cox log-rank test p-value, we can generate better results than that
of Table 2, which shows the promising potential of AELSMC.
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Figure 6. The -log10(p-value) of the AELSMC method on five multi-omics datasets with
varying number of subtypes.

Table 4. Performances comparison of the AELSMC method (Integration) on multi-omic
datasets with that of the framework on each single omic type and simply concatenating the
encoder features (Concatenation) in terms of Cox log-rank test p-value.

Dataset mRNA miRNA Methylation Concatenation Integration
BIC 1.7E-02 6.9E-05 5.7E-04 6.6E-03 1.1E-07
COAD 4.1E-02 7.1E-02 1.7E-03 4.7E-02 1.2E-09
GBM 7.2E-04 8.6E-07 1.9E-11 3.2E-05 4.7E-12
KRCCC 7.4E-03 1.8E-06 1.1E-02 3.6E-06 1.0E-06
LSCC 1.0E-03 6.2E-02 1.3E-04 1.8E-02 2.2E-05
OV 1.2E-04 2.3E-07 4.1E-06 3.3E-06 2.9E-09
SARC 9.5E-07 2.0E-07 3.2E-01 1.8E-06 2.9E-08
SKCM 3.9E-04 8.4E-08 8.5E-01 2.5E-05 4.4E-08
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To better investigate the effectiveness of the AELSMC method, we compare the result of integrating
all three omic types with that of our framework using each single omic type as well as simply concate-
nating the encoder features. The comparison result is shown in Table 4, where the best result in each
case is shown in bold type. It is obvious that our AELSMC method of integrating multi-views obtains
much better results than that of using only a single view. Moreover, the results of simply concatenating
the encoder features shown in the concatenation column can obviously demonstrate the advantages of
the proposed method in practice, since the p-value on each dataset is much worse than that in the inte-
gration column. Hence, we can conclude that the proposed data integration technique can significantly
improve clustering performance and generate different survival profiles.

4.4. Parameter analysis

In this section, the analysis of parameter sensitivity is presented. To be specific, the parameter
sensitivity of an AE and cancer subtyping process are investigated, respectively.
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Figure 7. Performances comparison of setting different values of parameter β for AE-assisted
latent representation learning on five multi-omics datasets in terms of -log10(p-value).

For the latent representation learning based on an AE, the dimension of reduced space is set to be β
× d, where β takes its value from interval B = [0.01, 0.02, . . . , 0.1]. Figure 7 shows the performance of
the AELSMC method on five multi-omics datasets in terms of -log10(p-value) under the given number
of clusters. As we can see, neither a high value nor a low value of β is capable of obtaining desirable
results in most cases. For example, the result on dataset LSCC is very poor by setting β with a higher
value, while the result on datasets COAD and KRCCC is relatively poor by setting β with a lower
value. It may be owing to the fact that the over-reduced latent space loses too much information of the
original dataset, while a relatively high-dimensional latent space is not very beneficial for learning the
similarity matrix of datasets. On the contrary, a moderate value of β (i.e., in the middle of interval B)
can usually generate a desirable result, even though not the best one among the 10 cases (|B| = 10)
for each dataset. Note that a worse result (which takes a value around 12) is obtained by setting the
moderate value of β on dataset GBM. However, the performance in this case is still much better than
other comparative algorithms since the second best -log10(p-value) is just 3.01 generated by S2GC
from Table 2. Hence, we suggest to set β with a moderate value in interval B, e.g., β = 0.05 as the
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default value. However, it still needs more investigation of exploring how to set the best value of β for
each multi-omics dataset.

For the survival analysis, the parameter λ needs to be set in Eq (3.5), which may play a signifi-
cant impact on the final performance. In view of this, we provide the performances comparison of the
AELSMC on five multi-omic datasets with different values of λ in terms of -log10(p-value), as illus-
trated in Figure 8, where λ takes the value from set {0.1, 0.5, 1, 5, 10}. We can observe that the results
of setting λ = 1 are desirable in general, and it especially shows obvious superiority on datasets COAD
and GBM by λ = 1 over that of setting other λ values. Hence, λ = 1 is suggested in our proposed
method for analyzing the multi-omics datasets.
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Figure 8. Performances comparison of the AELSMC method on five multi-omics datasets
with different values of λ in terms of -log10(p-value).

Additionally, it is interesting to develop multi-objective clustering methods [38,39] for multi-omics
cancer subtyping, since they can take advantage of multi-objective evolutionary algorithms [29, 30]
to simultaneously balance multiple clustering objectives in terms of clustering quality from different
perspectives (or views/omics). Meanwhile, some parameters may not be needed in the optimization
model, like Eq (3.7).

5. Conclusions

To deal with multi-omics data characterised by high-dimension and heterogeneity, we propose an
AE-assisted latent representation learning method for survival prediction and multi-omics clustering.
The role of AEs benefits to capture nonlinear omic features in a lower-dimensional space, so as to
identify the similarity of patients. Moreover, we make full use of survival information or clinical
information by the means of embedding a multi-omic survival analysis approach when integrating
the similarity graph of heterogeneous data at the multi-omics level. To validate its superiority, the
performance of our method has been compared with other state-of-the-art algorithms on five multi-
omics datasets. The experimental results reveal that the proposed AELSMC algorithm is a highly
competitive method to deal with cancer subtype identification under the condition of biological big
data. The promising performance of AEs encourages that more deep learning methods [51, 52] can be
further investigated to advance the development of biology and medicine.
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In addition, it is worth pointing out that more different omics data can be further explored via
[44–46], and these datasets help discover some insightful knowledge that facilitates to deal with the
tasks in clinical analysis. For example, the use of blood bioenergetics and metabolomics can be predic-
tive biomarkers of patient response to immune checkpoint inhibitor therapy [45], which plays an im-
portant role in guiding treatment decisions and developing approaches to the treatment of therapeutic
resistance. Moreover, OmicsDI [44] is an open-source platform that can be used to access, discover and
disseminate omics. It can integrate proteomics, genomics, metabolomics and transcriptomics datasets,
which has great potential for our further study.
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