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Abstract: Oncology research has focused extensively on estrogen hormones and their function in
breast cancer proliferation. Mathematical modeling is essential for the analysis and simulation of
breast cancers. This research presents a novel approach to examine the therapeutic and inhibitory ef-
fects of hormone and estrogen therapies on the onset of breast cancer. Our proposed mathematical
model comprises a nonlinear coupled system of partial differential equations, capturing intricate in-
teractions among estrogen, cytotoxic T lymphocytes, dormant cancer cells, and active cancer cells.
The model’s parameters are meticulously estimated through experimental studies, and we conduct a
comprehensive global sensitivity analysis to assess the uncertainty of these parameter values. Remark-
ably, our findings underscore the pivotal role of hormone therapy in curtailing breast tumor growth by
blocking estrogen’s influence on cancer cells. Beyond this crucial insight, our proposed model offers an
integrated framework to delve into the complexity of tumor progression and immune response under
hormone therapy. We employ diverse experimental datasets encompassing gene expression profiles,
spatial tumor morphology, and cellular interactions. Integrating multidimensional experimental data
with mathematical models enhances our understanding of breast cancer dynamics and paves the way
for personalized treatment strategies. Our study advances our comprehension of estrogen receptor-
positive breast cancer and exemplifies a transformative approach that merges experimental data with
cutting-edge mathematical modeling. This framework promises to illuminate the complexities of can-
cer progression and therapy, with broad implications for oncology.
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1. Introduction

Breast cancer, the most prevalent disease among women globally, was responsible for over 2.3 mil-
lion diagnoses and 685,000 fatalities in 2020 [1]. It comprises different kinds that develop in the lobules
and ducts of breast tissue [2]. The most common kind is invasive ductal carcinoma, which starts in the
ducts and spreads to nearby breast tissue. Other types of breast cancer include inflammatory breast
cancer, which is aggressive in nature, and invasive lobular carcinoma, which starts in the lobules [3].
Although the precise etiology of the phenomenon is still unknown, it is widely believed that a com-
bination of genetic and environmental factors influences its manifestation [4]. Risk factors for breast
cancer include several characteristics, such as advanced age, familial and personal medical history,
breast density and particular genetic abnormalities [5]. Mutations in BRCA1 and BRCA2 genes sig-
nificantly increase the risk of breast cancer. These genes are responsible for repairing DNA damage,
and mutations can impair this function, leading to a higher likelihood of cancer development. A family
history of breast cancer, especially in first-degree relatives (mother, sister, daughter), can elevate an
individual’s risk. Specific genetic mutations passed down through families can be responsible for this
predisposition. Prolonged exposure to estrogen, either through early menstruation, late menopause or
the use of hormone replacement therapy, can increase the risk of breast cancer. Estrogen can promote
cell growth in breast tissue. The symptoms of breast cancer vary depending on the stage of the dis-
ease, including manifestations such as the presence of breast tumors, variations in breast form or size,
discharge from the nipple and modifications in the skin. The timely identification and intervention of
breast cancer afford a considerable likelihood of survival and the attainment of a state of well-being for
the majority of women affected by it [6].

Breast cancer is a complex disease that has numerous subtypes, including lobular carcinoma in situ
(LCIS), ductal carcinoma in situ (DCIS), inflammatory breast cancer (IBC) and metastatic cancer, each
with distinct morphological characteristics, biological behaviors and clinical consequences [7]. LCIS
is a precancerous disorder that may develop into invasive cancer, whereas invasive lobular carcinoma
spreads beyond breast lobules and may metastasize to other organs [8]. DCIS arises from the breast
ducts and remains confined to its original site without invading surrounding tissues [9]. In contrast,
IBC, a less common and highly aggressive subtype, is characterized by the infiltration of malignant
cells into the skin and lymphatic vessels of the breast [10]. Unlike other forms of breast cancer, IBC
often lacks a discernible lump. Consequently, prompt and aggressive treatment is imperative due to
its rapid growth and propensity for metastasis. The activation of both innate and adaptive immunity
significantly impacts the immune response to breast cancer. In particular, the activation of cytotoxic T
lymphocytes (CTLs) and helper T cells plays a critical role in defending against cancer growth [11].
Moreover, antigen-presenting cells play a crucial role in identifying tumors and presenting tumor frag-
ments to T cells. The immune system comprises organs, tissues, cells and molecules that all function
together to produce an immune response that protects us from microorganisms, removes toxins and
destroys cancer cells [12]. Numerous immunosuppressive chemicals may be found in the microenvi-
ronment of tumors with a high burden, which may be responsible for the suppression of the stimulation
and activation of immune responses. Tumor-associated macrophages, regulatory T cells and myeloid-
derived suppressor cells are significant cells that inhibit the creation of a robust immune response.
In addition to increasing the tumor’s invasiveness, the production of immunosuppressive cytokines
and chemicals, including interleukin-10, transforming growth factor-β and vascular endothelial growth
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factor, also makes the environment around the tumor more immunosuppressive [13].
The pathogenesis of breast cancer is profoundly influenced by estrogen, an essential hormone that is

imperative for the physiological development and functioning of the female reproductive system [14].
Several physiological functions, including the development of the mammary gland, depend critically
on estrogen. However, it is important to note that under certain conditions, estrogen may also play a
role in the onset and advancement of breast cancer [15]. This involvement primarily occurs through
the interaction of estrogen with estrogen receptors located on the surface of breast cancer cells. Upon
binding, estrogen activates a cascade of intracellular signaling pathways that can result in the stim-
ulation of key processes such as cell proliferation, survival and migration [16]. Consequently, these
cellular events can lead to the formation of breast tumors and their potential dissemination to distant
sites within the body. In the clinical management of estrogen-driven breast cancer, a range of therapeu-
tic interventions are employed to mitigate the oncogenic effects of estrogen. These strategies include
the use of fulvestrant, tamoxifen, aromatase inhibitors and selective estrogen receptor modulators, all
of which either block the actions of estrogen or reduce its production within the body. These inter-
ventions represent essential components of breast cancer treatment and prevention strategies, aiming
to disrupt the estrogen-driven pathways responsible for the disease’s development and progression.

Mathematical modeling is a powerful tool that can be used to understand the complex interactions
between estrogen and breast cancer cells. Mathematical models can predict how breast cancer cells will
respond to different treatments and identify new targets for drug development. One of the most im-
portant factors in the development of breast cancer is the presence of estrogen receptors on the surface
of breast cancer cells. Estrogen receptors are proteins that bind to estrogen and transmit signals that
stimulate the proliferation of breast cancer cells [17]. Mathematical models can be used to study the
effects of estrogen stimulation on breast cancer cells. These models can help researchers to understand
how estrogen promotes the growth of breast cancer cells and identify new ways to block the effects
of estrogen. Mathematical models can also be used to predict how breast cancer cells will respond to
different treatments. For example, mathematical models can predict how breast cancer cells respond
to chemotherapy, radiation therapy, or hormone therapy. This information can be used to develop
personalized treatment plans for breast cancer patients.

The use of ordinary differential equations has been employed in the study of tumor development and
decay, specifically in scenarios involving two or three cell populations consisting of tumor cells and
effector cells [18, 19]. Complex models, including populations of tumor-related cells and cytokines,
have been developed in order to investigate specific aspects of tumor biology [20, 21]. Mathematical
models focused on the examination of breast cancer development and therapy have introduced innova-
tive perspectives on the dynamics of breast cancer. Jarrett et al. [22] presented a mathematical model
to describe the dynamics of HER2-positive breast cancer in the presence of targeted treatment using
trastuzumab. According to the proposed mathematical model, the administration of trastuzumab might
lead to the stabilization of vasculature and subsequent reduction in tumor development. Wei [23] pro-
posed a theoretical framework for estrogen receptor-positive breast cancer. The numerical simulation
results demonstrated that the model had multistability, indicating the presence of three distinct phases
in the immunoediting process. The model was subsequently updated to include the incorporation of
AZD9496, a novel selective estrogen receptor degrader and palbociclib, a cyclin-dependent kinase 4
and 6 inhibitor [24]. The research posited that using monotherapy with a single medicine may prove
futile, but implementing combination treatment might have a synergistic impact. McKenna et al. [25]
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developed a mathematical model encompassing triple-negative breast cancer and its treatment with
doxorubicin chemotherapy. The model was used to examine the response to therapy.

In 2018, Oke et al. developed a deterministic compartmental model with four dimensions to track
the progression of breast cancer. The authors found that excess estrogen in the body affected the
formation of tumor cells and they emphasized the advantages of breast cancer alleviation policies
that combine anti-cancer medications and ketogenic diet techniques [26]. Mufudza et al. examined
the impact of estrogen, as a potential risk factor, on breast cancer dynamics [27]. A deterministic
mathematical model was developed that incorporates both the immune response and estrogen, aiming
to elucidate the general dynamics of breast cancer. Their results showed that a greater likelihood of
breast cancer growth was linked to an overabundance of estrogen. Ouifki and Oke have proposed a
novel ordinary differential equation-based mathematical model to describe the dynamics of interactions
between dormant and active breast cancer cells, estrogen and p53 [28]. The model was designed to
consider the association between estrogen and p53, as well as their respective contributions to the
activation of dormant breast cancer cells and the apoptosis of active tumor cells. The authors have
presented explicit conditions that may prevent paradoxical cancer recurrence as a result of prolonged
hormone deprivation therapy.

A comprehensive review of the literature revealed a lack of studies that incorporate mathematical
modeling and hormone therapy in estrogen-positive breast cancer. In this study, a mathematical model
using partial differential equations was developed to examine valuable insights into the underlying
mechanisms that govern tumor growth and the effects of estrogen on tumor cells. This mathemati-
cal model can incorporate various factors, such as the diffusion of estrogen in the breast tissue, the
proliferation of tumor cells and the response of these cells to estrogen. The developed model allows
researchers to investigate the interactions between estrogen and breast cancer cells and predict different
treatments’ impact on tumor growth. The model can provide insights into breast cancer development
and progression mechanisms by incorporating data from multiple sources, such as clinical trials and
laboratory experiments. Furthermore, it may help to elucidate hormone therapy’s effects and drive the
design of personalized treatment strategies for patients with breast cancer. Overall, the proposed math-
ematical model represents an important step toward improving our understanding of breast cancer and
developing more effective treatments for this disease.

2. Mathematical model

This section aims to develop a mathematical model that provides a framework for analyzing the
complicated dynamics underlying estrogen receptor-positive breast cancer. The mathematical model
presented herein offers a complete framework for analyzing the complex dynamics underlying estro-
gen receptor-positive breast cancer. This model is fundamentally based on a carefully designed partial
differential equation system that captures the intricate interactions between estrogen, CTLs, dormant
cancer cells and active cancer cells within the tumor microenvironment. The progression of breast
cancer is significantly influenced by each component of this framework, with estrogen being a crucial
factor in cell proliferation and immune responses influencing tumor growth and regression. The ob-
jective of this mathematical framework is to elucidate the intricate connections among these elements,
providing insights into the effects of hormone treatment and estrogen inhibition on the dynamics of
breast tumors. For the reader’s convenience, we illustrate the mathematical framework by using a
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schematic diagram, as shown in Figure 1.
Let y1 denote the compartment of dormant cancer cells, and their logistic growth is defined by

the term c1y1

(
1 − y1

c2

)
, where c1 is the growth rate and c2 is the carrying capacity of dormant cancer

cells. The concept of “carrying capacity” is often used in the context of ecology to describe the maxi-
mum population size that a particular environment can sustainably support. However, when discussing
dormant breast cancer cells, the term is applied metaphorically and within the framework of cancer bi-
ology to describe a similar concept. Dormant breast cancer cells refer to cancer cells that have entered
a quiescent or inactive state within the body. These cells are not actively dividing and forming tumors
but they are still present in the body. In this context, carrying capacity refers to the limit or threshold
of dormant cancer cells that the body can tolerate without becoming actively proliferative and causing
disease progression. The growth rate of the dormant cancer cell population may be regulated nega-
tively by a factor c3y1y4, where y4 represents the density of estrogen hormones and c3 is the probability
rate for dormant cancer cell transformation into active cancer cells. The equation of dormant cancer
cells is given by

dy1

dt
= c1y1

(
1 −

y1

c2

)
− c3y1y4. (2.1)

Cancers of the breast, epidermis and cervix typically give rise to names that reflect the type of tissue
in which the DNA is altered. The 145 primary breast cancers that have been found are based on 51 cell
lines of malignancy that are divided into two principal strands: one with estrogen receptors, known as
the luminal type, and the other without estrogen receptors, which is known as the basal-like type [29].
We use the following equation to describe the dynamics of active breast cancer cells:

dy2

dt
= c3y1y4 + c4y2

(
1 −

y2

c5

)
− c6y2

(
y3

c7 + y3

)
+ c8y4. (2.2)

The term c3y1y4 defines the growth of active cancer cells due to dormant cancer cells with the aid
of estrogen. The logistic growth of active breast cancer cells is defined by the term c4y2

(
1 − y2

c5

)
, while

the term c6y2

(
y3

c7+y3

)
represents the degradation of cancer cells due to immune responses. Excessive

estrogen-induced DNA mutations will also repopulate active cancer cells by the factor c8y4.
There are different types of immune cells that have different roles in breast cancer. In our model, we

only consider the dynamics of CTLs and their role in breast cancer. We model the logistic growth of a
comprehensive immune response triggered by cancer cells. To characterize immune cells’ stimulation
by malignant cells, we introduce the term c9y3

(
1 − y3

c10

) (
y2

c11+y2

)
. This term shows the logistic growth of

immune cells and its activation by cancer cells in the Michaelis-Menten form. The natural degradation
of immune cells is denoted by c13y3 and the term c12y2y3 describes the deterioration of immune cells
after interaction with cancer cells. Overall, the equation of CTLs is given by

dy3

dt
= c9y3

(
1 −

y3

c10

) (
y2

c11 + y2

)
− c12y2y3 − c13y3. (2.3)

Adipocytes are primarily responsible for the production of estrogen. In postmenopausal women
with breast cancer, estrogen levels may be higher than the modest quantity. Typically, adipose tissues
in the breasts, brain, osteoblasts and numerous other tissues produce estrogen, circulating throughout
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the body. The volume of estrogen replicated in the body depends on the amount already present. This
study entails the use of c14 to model constant estrogen production throughout the body, and natural
degradation is represented by c15y4. The equation for estrogen is given by

dy4

dt
= c14 − c15y4. (2.4)

The schematic diagram of the whole modeling process is given in Figure 1.

Figure 1. A schematic diagram showing the interaction of dormant cancer cells, active cancer
cells, CTLs and estrogen.

2.1. Zero dimensional mathematical model

Combining all of the equations, the proposed zero-dimensional mathematical model is given by

dy1

dt
= c1y1

(
1 −

y1

c2

)
− c3y1y4, (2.5)

dy2

dt
= c3y1y4 + c4y2

(
1 −

y2

c5

)
− c6y2

(
y3

c7 + y3

)
+ c8y4, (2.6)

dy3

dt
= c9y3

(
1 −

y3

c10

) (
y2

c11 + y2

)
− c12y2y3 − c13y3, (2.7)

dy4

dt
= c14 − c15y4, (2.8)

where c1, c2, ..., c15 are positive constants. The model equations are non-dimensionalized by using

y1(t) =
Y1(τ)

k1
, y2(t) =

Y2(τ)
k2
, y3(t) =

Y3(τ)
k3
, y4(t) =

Y4(τ)
k4
, τ = k5t,

where k5 = k1c6. The values of k1, k2 and k5 are taken as suggested by [30] while the values of k3 and
k4 are taken accordingly. After the simplification and replacement of τ by t, the dimensionless model
of the system given by (2.5)–(2.8) is as follows:

dY1

dt
= α1Y1

(
1 −

Y1

α2

)
− α3Y1Y4, (2.9)
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dY2

dt
= α4Y1Y4 + α5Y2

(
1 −

Y2

α6

)
− α7Y2

(
Y3

α8 + Y3

)
+ α9Y4, (2.10)

dY3

dt
= α10Y3

(
1 −

Y3

α11

) (
Y2

α12 + Y2

)
− α13Y2Y3 − α14Y3, (2.11)

dY4

dt
= α15 − α16Y4, (2.12)

where the values of αi (i = 1, 2, 3, ..., 16) are given by

α1 =
c1

k5
, α2 = c2k1, α3 =

c3

k4k5
, α4 =

c3k2

k1k4k5
,

α5 =
c4

k5
, α6 = c5k2, α7 =

c6

k5
, α8 = c7k3,

α9 =
c8k2

k4k5
, α10 =

c9

k5
, α11 = c10k3, α12 = c11k2,

α13 =
c12

k2k5
, α14 =

c13

k5
, α15 =

c14k4

k5
, α16 =

c15

k5
.

2.2. One dimensional mathematical model

We extended the concept of breast tumors to include an implicit spatial dimension under a site on
breast tissue. Therefore, we developed a diffusion model in a spatial domain to integrate more aspects
of spatial variability. The proposed one-dimensional mathematical model is given by

∂Y1(r, t)
∂t

= σ1
1
r2

∂

∂r

(
r2∂Y1(r, t)

∂r

)
+ α1Y1(r, t)

(
1 −

Y1(r, t)
α2

)
− α3Y1(r, t)Y4(r, t), (2.13)

∂Y2(r, t)
∂t

= σ2
1
r2

∂

∂r

(
r2∂Y2(r, t)

∂r

)
+ α3Y1(r, t)Y4(r, t) + α4Y2(r, t)

(
1 −

Y2(r, t)
α5

)
− α6Y2(r, t)

(
Y3(r, t)

α7 + Y3(r, t)

)
+ α8Y4(r, t), (2.14)

∂Y3(r, t)
∂t

= σ3
1
r2

∂

∂r

(
r2∂Y3(r, t)

∂r

)
+ α9Y3(r, t)

(
1 −

Y3(r, t)
α10

) (
Y2

α11 + Y2

)
− α12Y2Y3 − α13Y3, (2.15)

∂Y4(r, t)
∂t

= σ4
1
r2

∂

∂r

(
r2∂Y4(r, t)

∂r

)
+ α14 − α15Y4(r, t), (2.16)

where Y1(r, t) is the population of dormant cancer cells in the spatial domain r, Y2(r, t) is the population
of active cancer cells in the spatial domain r, Y3(r, t) is the number of immune cells in the spatial
domain r and Y4(r, t) is the density of estrogen hormones in the spatial domain r. We consider the
radially symmetric case, with the tumor environment being a ball {0 ≤ r < L}.

2.3. Drug modeling

Hormone therapy may be classified as the primary treatment for estrogen-positive breast cancer,
and it functions by inhibiting estrogen’s effects on cancer cells. Hormone therapy includes tamoxifen,
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aromatase inhibitors, fulvestrant and ovarian suppression. In this article, we model the effect of ful-
vestrant on estrogen and active cancer cells. Fulvestrant is a medication used to treat certain types of
breast cancer, including hormone receptor-positive metastatic breast cancer. It works by blocking the
estrogen receptor, which is a protein that allows estrogen to bind and activate breast cancer cells. By
blocking this receptor, fulvestrant can slow or stop the growth of cancer cells. Fulvestrant is adminis-
tered as an injection into the muscle. The dosage and frequency of injections depend on the individual
patient and the stage of their breast cancer. The administration of the fulvestrant drug can be modeled
by the equation given by

∂R
∂t
= σ5

1
r2

∂

∂r

(
r2∂R
∂r

)
+ f (t) − α16R, (2.17)

where f (t) is a function used to describe the intermittent input of fulvestrant injections. The intermittent
injections are administered at a fixed dose of 25 mg for several weeks [31]. The effect of hormone
therapy is modeled by a term (1− ϵ) and it is added to the dynamics of active cancer cells and estrogen
as follows:

∂Y2

∂t
= σ2

1
r2

∂

∂r

(
r2∂Y2

∂r

)
+ α3Y1Y4 + α4Y2

(
1 −

Y2

α5

)
− α6Y2

(
Y3

α7 + Y3

)
+ α8(1 − ϵ)Y4, (2.18)

∂Y4

∂t
= σ4

1
r2

∂

∂r

(
r2∂Y4

∂r

)
+ α14(1 − ϵ) − α15Y4. (2.19)

The initial and boundary conditions of the one-dimensional model are given by
Y1(0, r) = Y0

1 ,
∂
∂r Y1(t, 0) = 0, ∂

∂r Y1(t, 1) = 0,
Y2(0, r) = Y0

2 ,
∂
∂r Y2(t, 0) = 0, ∂

∂r Y2(t, 1) = 0,
Y3(0, r) = Y0

3 ,
∂
∂r Y3(t, 0) = 0, ∂

∂r Y3(t, 1) = 0,
Y4(0, r) = Y0

4 ,
∂
∂r Y4(t, 0) = 0, ∂

∂r Y4(t, 1) = 0.

(2.20)

3. Numerical methods

3.1. Parameter estimation

We use several experimental breast cancer studies to quantify the parametric values of the proposed
model. An experimental study based on three xenograft models of endocrine therapy-resistant breast
cancer [31] has been used to estimate the parametric values for the logistic component involved in
active cancer cell dynamics. We use the MATLAB GUI program “GRABIT” to extract the data from
[31]; we then used this data for parameter estimation. The experimental data provided in [32] were
used to estimate the values of the cytolysis term. Similarly, the parameters of immune cell dynamics
were estimated by using clinical data obtained from the analysis of tumor cells and T lymphocytes in
breast cancer patients [33]. Complete details of the parametric values are given in Table 1.

The parameter estimation technique used in this study is summarized in Figure 2. First, a reasonable
guess was made to estimate the values of these parameters. Then, the ordinary differential equation
system was solved to obtain the estimated values of the tumor dynamics presented by Ypar. We then
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constructed an error expression (EPar) as the sum of the squared differences between the calculated val-
ues (Ypar) and the experimental data (Ydata). The regression approach is the preferred way of finding a
local minimum via unconstrained nonlinear optimization methods such as the Nelder-Mead algorithm.
This technique minimizes the value of a function by evaluating the function directly without using any
derivatives. The process is terminated and the parameter values are chosen as the optimum values if
the error EPar does not exceed the user-specified tolerance (TOL). If this is not the case, the parameters’
values are changed and the process is repeated. The process is repeated continuously until convergence
occurs. The formula for the minimized objective function is as follows

EPar =

N∑
i=1

(
Y(i)

par − Y(i)
data

)2
, (3.1)

where EPar denotes the difference between the value of active cancer cells (Ypar) estimated from simu-
lations and the observed data (Ydata) over N observations.

Figure 2. Description of the parameter estimation process.

3.2. Finite-difference scheme

The model given by (2.13)–(2.19) constitutes nonlinearly coupled partial differential equations with
initial and boundary conditions given by (2.20). We solve these equations by using the forward-time
centred-space (FTCS) finite-difference method. We apply forward difference to the time and central
difference for the space variable, i.e., 

∂Y
∂t =

Y (i, j+1)−Y (i, j)

∆t ,
∂Y
∂r =

Y (i+1, j)−Y (i−1, j)

2(∆r) ,

∂2Y
∂r2 =

Y (i+1, j)−2Y (i, j)+Y(i−1, j)

(∆r)2 .

(3.2)
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After discretization, we get the following algebraic equations

Y (i, j+1)
1 =

[
σ1(∆t)
(∆r)2 +

σ1(∆t)
ri(∆r)

]
Y (i+1, j)

1 +

[
σ1(∆t)
(∆r)2 +

σ1(∆t)
ri(∆r)

]
Y (i−1, j)

1

+

1 + 2σ1(∆t
(∆r)2 + α1(∆t)

1 − Y (i, j)
1

α2

 − α3(∆t)Y (i, j)
4

 Y (i, j)
1 , (3.3)

Y (i, j+1)
2 =

[
σ2(∆t)
(∆r)2 +

σ2(∆t)
ri(∆r)

]
Y (i+1, j)

2 +

[
σ2(∆t)
(∆r)2 +

σ2(∆t)
ri(∆r)

]
Y (i−1, j)

2

+

1 + 2σ2(∆t
(∆r)2 + α4(∆t)

1 − Y (i, j)
2

α5

 − α6(∆t)

 Y (i, j)
3

α7 + Y (i, j)
3


+α8(1 − ϵ)(∆t)

]
Y (i, j)

2 + α3(∆t)Y (i, j)
1 Y (i, j)

4 , (3.4)

Y (i, j+1)
3 =

[
σ3(∆t)
(∆r)2 +

σ3(∆t)
ri(∆r)

]
Y (i+1, j)

3 +

[
σ3(∆t)
(∆r)2 +

σ3(∆t)
ri(∆r)

]
Y (i−1, j)

3

+

1 + 2σ3(∆t
(∆r)2 − α3(∆t) + α9(∆t)

1 − Y (i, j)
3

α10

  Y (i, j)
2

α11 + Y (i, j)
2


−α12(∆t)Y (i, j)

2

]
Y (i, j)

3 , (3.5)

Y (i, j+1)
4 =

[
σ4(∆t)
(∆r)2 +

σ4(∆t)
ri(∆r)

]
Y (i+1, j)

4 +

[
σ4(∆t)
(∆r)2 +

σ4(∆t)
ri(∆r)

]
Y (i−1, j)

4

+

[
1 +

2σ4(∆t
(∆r)2 − α14(1 − ϵ)(∆t) − α15(∆t)

]
Y (i, j)

4 , (3.6)

R(i, j+1) =

[
σ5(∆t)
(∆r)2 +

σ5(∆t)
ri(∆r)

]
R(i+1, j) +

[
σ5(∆t)
(∆r)2 +

σ5(∆t)
ri(∆r)

]
R(i−1, j)

+

[
1 +

2σ5(∆t
(∆r)2 − α16(∆t) + f (t j)

]
R(i, j). (3.7)

The stability and convergence of the FTCS scheme completely depend on ∆t and ∆r [34]. The stability
condition for FTCS is given by

σ∆t
(∆r)2 ≤

1
2
. (3.8)

Thus, we should choose appropriate values of σ, ∆t and ∆r to satisfy the stability condition of the
FTCS scheme.

The finite difference approach is well recognized for its numerical stability and precision, especially
in the context of solving partial differential equations that include intricate boundary conditions and
irregular geometries. These characteristics distinguish the FTCS scheme from other methods [35, 36]
and are critical to accurately characterizing the spatial dynamics of breast cancer growth in the tumor
microenvironment, which is characterized by variable features and irregular tumor forms. Our study
focuses on modeling breast cancer dynamics in a spatially complex environment, requiring an effi-
cient approach that is capable of addressing multiple challenges. The finite difference method readily
extends to higher dimensions, making it suitable for our spatial modeling approach.
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3.3. Sensitivity analysis

Global sensitivity analysis is a technique used to analyze the behavior of a mathematical model
by considering the impact of varying input parameters simultaneously and uniformly across their full
range of possible values [37]. It provides a quantitative measure of how much the model’s output
changes with variations in the input parameters. This analysis is essential in understanding the behavior
of complex models and can help to distinguish key parameters that should be prioritized for further
study or optimization. Monte Carlo global sensitivity analysis is a powerful method for assessing
input variables’ impact on a mathematical model’s output. It combines the Monte Carlo method,
which involves generating random samples of input values, with global sensitivity analysis, which
quantifies the importance of input variables and their interactions with respect to the model output.
This approach can provide a comprehensive view of the influence of input variables on the model
output, allowing researchers to identify the most critical parameters and prioritize further analysis or
optimization. However, it can also be computationally intensive, particularly for models with high-
dimensional input spaces.

We performed sensitivity analysis before conducting numerical simulations to determine the impact
of various parameters on the dynamics of active tumor cells. We evaluated the uncertainty of six
parameters, including α3, α4, α8, α9, α12 and α14. A uniform probability distribution was used to
generate a sample of 100 values for each parameter. Results from the sensitivity analysis were included
in the numerical simulation to monitor parameter values and enhance the performance and reliability
of the model.

4. Results and discussion

The rank correlation coefficients were computed by using the Kendall correlation technique and
displayed by using a tornado plot (see Figure 3a). The tornado plot shows that the population of
active cancer cells is very sensitive to the parameters α3 and α8. It also shows that four parameters
directly impact the population of active cancer cells, while two parameters have an inverse impact.
The respective influences of α3 and α8 are plotted separately in Figure 3b and 3c. It can be observed
that increasing the α3 and α8 values increases the population of active cancer cells.

Breast cancer is a complex medical disorder distinguished by aberrant cellular proliferation and
division within the tissue of the mammary gland. The carrying capacity of the tissue around it may be
reached if breast cancer cells continue to proliferate uncontrolled and advance unabatedly. This, in turn,
can result in the development of a tumor and the metastasis of cancerous cells to other parts of the body.
The present study deals with the dynamics of active cancer cells and CTLs in the presence of estrogen.
Figure 4 shows the dynamics of active cancer cells and CTLs without hormone therapy. Notably,
the population of both cellular components approaches the carrying capacity limit in the absence of
hormone therapy. Breast cancer cells reaching their carrying capacity may develop into tumors, which
can be detected by imaging or a physical exam as a palpable mass or lump. Furthermore, when breast
cancer cells proliferate beyond their capability, they may become more invasive and spread to nearby
lymph nodes or distant organs via the lymphatic or circulatory systems. This process, commonly
referred to as metastasis, poses a formidable obstacle to the treatment of breast cancer and significantly
diminishes a patient’s chances of survival.

Hormone treatment is a well-recognized therapeutic option for breast cancer that works by either
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Figure 3. The results of sensitivity analysis, depicting the influence of different parameters
on active cancer cells.
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inhibiting estrogen’s effects or reducing estrogen levels in the body. Cancer cell proliferation may be
successfully inhibited or decreased by using this treatment. In this study, we chose to use the pharma-
cokinetics and pharmacodynamics of fulvestrant to treat estrogen-positive breast cancer. Fulvestrant,
a selective estrogen receptor degrader, stops breast cancer cells from signaling with estrogen. We ap-
plied intermittent administration of fulvestrant, which entails administering hormone therapy dosage
periodically followed by intervals. This strategy is based on the premise that continuous hormone ther-
apy administration can lead to treatment resistance and a diminishing therapeutic response over time.
In our simulations, we applied a fixed dose of 25 mg of fulvestrant administered intermittently over
15 weeks. Figure 5 illustrates the dynamics of active cancer cells and CTLs in response to hormone
therapy, depicting cyclic behavior in their population.

Breast cancer cells exhibit cyclic behavior in their activity patterns, with periods of rapid growth
followed by periods of slow growth or dormancy. This cyclic behavior is known as the cancer cell
cycle, characterized by different phases, including the G0, G1, S, G2 and M phases. The G0 phase
is considered dormant, as the cells are not actively dividing, allowing them to evade detection and
treatment. The G1 phase is the preparatory phase, where the cells prepare for DNA synthesis. The
S phase is the phase where DNA replication occurs. The G2 phase is where the cells prepare for
mitosis, and the M phase is where cell division occurs. Breast cancer cells can remain in the G0 phase
for extended periods of time, allowing them to evade detection and treatment. However, they can
also enter a highly proliferative phase, leading to the rapid growth and spread of the tumor. On the
other hand, CTLs, i.e., specialized immune cells that target and eliminate cancer cells, exhibit periodic
behavior in their activity patterns. This cyclic behavior is likely due to the influence of the body’s
internal clock, which regulates various physiological processes. In addition to their circadian rhythm,
CTLs exhibit periodic behavior in their activity cycles, with periods of activation followed by rest
periods. This allows them to conserve energy and maintain their effectiveness in targeting cancer cells
over extended periods of time. The cyclic behavior of breast cancer cells and CTLs was studied by
using mathematical modeling and phase plane analysis. Understanding the cyclic behavior of cancer
cells and CTLs is essential for the development of effective treatments for breast cancer.

The phase-plane dynamics of active cancer cells and CTLs presented in Figure 6 provide insight
into the complex interplay between breast tumor cells and the immune system. CTLs have the ability
to recognize and eliminate cancer cells, but tumors can evade detection by reducing antigen expression
or by upregulating immune checkpoints. This leads to a dynamic balance between tumor cells and
CTLs, with periodic fluctuations in the immune response. In addition, the irregular behavior observed
may be influenced by the cell cycle of tumor cells. Breast tumor cells can grow and divide at varying
rates, resulting in fluctuations in their numbers over time. These fluctuations can significantly impact
the immune response, as CTLs may have more or fewer targets to attack depending on the cell cycle
phase of the tumor cells. Therefore, understanding the phase-plane dynamics of breast tumor cells and
CTLs is crucial for the development of effective treatments for breast cancer.

Phase plane analysis has been recognized as a valuable tool for examining the dynamics of a system
under diverse treatment conditions. Specifically, it has been demonstrated that the system’s dynamics
rely on the immune response’s strength and the cells’ proliferation rate. When the immune response
is vigorous, and hormone therapy is administered, the trajectories in the phase plane tend to converge
to a stable equilibrium point, corresponding to the complete elimination of cancer cells, as presented
in Figure 6. However, in the case of a typical immune response, the trajectories tend to spiral towards
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a limited cycle, indicating the system’s cyclic behavior and the persistence of cancer cells, as shown
in Figure 7a. On the other hand, when the immune response weakens, the trajectories tend to grow
exponentially, which results in the cancer cells reaching their maximum carrying capacity, as illustrated
in Figure 7b. The proposed mathematical model predicts three distinct states of a breast tumor. With
hormone therapy and a robust immune response, a breast tumor can be eradicated entirely or reduced
to a minimal size where it poses no harm. According to several studies [38–40], a small tumor never
develops into an aggressive type and is termed “cancer without disease.” With hormone therapy and
a typical immune response, a breast tumor can exist to a limited extent and may grow at the end of
treatment. Similarly, when the immune response is below average, breast cancer cells grow quickly
despite hormone therapy, reaching their maximum carrying capacity. In our proposed model, the
immune response is contingent on the growth rate of CTLs. We have chosen a high value of CTL
growth rate for a robust immune response, a median value for an average immune response and a low
value for a weakened immune response. All values for the CTL growth were taken from the estimated
interval as given in Table 1.

The present study presents a mathematical model that elucidates the intricate dynamics of estro-
gen hormones and their implications in breast cancer progression. The proposed model considers the
effects of hormone therapy on reducing the amount of estrogen in the body or inhibiting its impact
on breast cancer cells. The graphical representation of estrogen hormones is depicted in Figure 8.
Specifically, Figure 8a demonstrates the progression of estrogen without any treatment, while Figure
8b illustrates estrogen dynamics under hormone therapy’s influence. The findings suggest that the
hormone therapy intervention leads to a decline in the population of estrogen, signifying its potential
therapeutic role in breast cancer treatment. Overall, the proposed mathematical model provides a com-
prehensive understanding of the underlying mechanisms involved in breast tumor progression and the
effects of hormone therapy. Furthermore, this model can serve as a valuable tool for identifying novel
therapeutic approaches that may be more efficacious than the current therapies.

5. Conclusions

Breast cancer is the leading cause of death among women worldwide. Inhibiting or decreasing the
estrogen production rate is one potential way to increase survival rates and enhance the quality of life
for estrogen receptor-positive breast cancer patients. This paper examines the interaction between es-
trogen and the cancer-immune response in a deterministic setting. We have reviewed recent articles on
the mathematical modeling of estrogen and breast cancer cells. We have developed a partial differential
equation model based on breast cancer and estrogen pathology to investigate and predict the response
to hormone therapy. The key findings of the proposed mathematical model simulation are given below:

• Estrogen increases the growth of cancer cells.
• An intermittent hormone therapy dose controls breast cancer cells’ growth rate.
• At early stages, a robust immune response with intermittent hormone therapy can eliminate a

breast tumor or reduce it to a minimal size where it poses no harm.
• With hormone therapy and a typical immune response, a breast tumor can exist to a limited extent

and may grow at the end of treatment.
• Sometimes, the immune response is not activated or weakens, and this leads to the breast tumor

growing rapidly.
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(a)

(b)

Figure 4. Populations of active cancer cells and CTLs without hormone therapy.
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(a)

(b)

Figure 5. Populations of active cancer cells and CTLs with effects of hormone therapy.
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(a) (b)

Figure 6. Phase-plane analysis of active cancer cells and CTLs with hormone therapy and a
strong immune response.

(a) (b)

Figure 7. Phase-plane analysis of active cancer cells and CTLs with hormone therapy and a
weak immune response.
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Table 1. Values and descriptions of parameters used in the model.

Parameter Description Value Reference
α1 Logistic growth rate of dor-

mant cancer cells
0.5140 Extracted

from [41]
α2 Carrying capacity of dormant

cancer cells
103 Assumed

α3 Conversion rate for dormant
cancer cells into active cancer
cells

0.08 − 0.4 Assumed

α4 Logistic growth rate of active
cancer cells

0.4 − 0.8 Estimated
from [31]

α5 Carrying capacity of active
cancer cells

103 Extracted
from [42]

α6 Cytolysis rate 1 [11]
α7 Michaelis constant of

Michaelis–Menten kinetics
1 × 101 − −2 ×
102

Assumed

α8 Growth of active cancer cells
due to estrogen

0.05 − −0.2 Varies

α9 Logistic growth rate of CTLs 3.7 − 5.8 Estimated
from [33]

α10 Carrying capacity of CTLs 103 [11]
α11 Michaelis constant of

Michaelis–Menten kinetics
1×101−2×102 [11]

α12 Inactivation rate of CTLs af-
ter interaction with active
cancer cells

7.812 × 10−5 [11]

α13 Natural degradation rate of
CTLs

0.8729 [11]

α14 Supply of estrogen 102 − 103 Varies
α15 Natural degradation of estro-

gen hormones
0.03 − 0.07 Extracted

from [43]
σ1 Diffusion coefficient for dor-

mant cancer cells
1.25 × 10−3 [44]

σ2 Diffusion coefficient for ac-
tive cells

1.25 × 10−3 [44]

σ3 Diffusion coefficient for
CTLs

1.25 × 10−3 [44]

σ4 Diffusion coefficient for es-
trogen hormones

1.25 × 10−3 [44]
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(a) Without hormone therapy (b) With hormone therapy

Figure 8. Population of estrogen with and without hormone therapy.

The developed model only takes the effects of CTLs and ignores the dynamics of other immune
responses. An extension of this model would be to include the dynamics of helper T cells and in-
nate immunity responses. Moreover, the proposed model is limited to only the hormone therapy
response. However, in the future, we are interested in upgrading the model to include chemother-
apy/immunotherapy or a combination of both. Nevertheless, our research provides new opportunities
for understanding the molecular mechanisms underlying estrogen and breast cancer cells, and it will
help to analyze personalized therapeutic possibilities.

We may investigate the following options for future developments and uses of our approach as part
of our continuing research activities. The spatial modeling methodology used in this work incorpo-
rates experimental data and mathematical modeling, which enables its use as a tool to investigate the
dynamics of various cancer types within their distinct tumor microenvironments. Further research may
be directed towards the application of our developed technique to other subtypes of cancer, taking
into account the heterogeneity of the tumor microenvironment and the intricacies of the immune re-
sponse. Building upon our investigation into hormone therapy for breast cancer, we intend to explore
the optimization of treatment strategies in other cancer contexts. This could include the development
of personalized treatment regimens and the assessment of therapeutic interventions in diverse cancer
types. Our methodology can be extended to assess the efficacy of various drugs and treatment com-
binations in controlling cancer growth. This may be particularly relevant in the context of precision
medicine and the development of targeted therapies. Future directions may involve translating our
research findings into clinically relevant applications, potentially informing treatment decisions and
strategies in oncology.
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