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Abstract: In this paper, we study the problem of optimal control of backward stochastic differential
equations with three delays (discrete delay, moving-average delay and noisy memory). We establish
the sufficient optimality condition for the stochastic system. We introduce two kinds of time-advanced
stochastic differential equations as the adjoint equations, which involve the partial derivatives of the
function f and its Malliavin derivatives. We also show that these two kinds of adjoint equations are
equivalent. Finally, as applications, we discuss a linear-quadratic backward stochastic system and
give an explicit optimal control. In particular, the stochastic differential equations with time delay are
simulated by means of discretization techniques, and the effect of time delay on the optimal control
result is explained.
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1. Introduction

The forward stochastic differential equation characterizes the dynamic changes of state processes
with given initial state trajectories. A backward stochastic differential equation (BSDE) can be seen as
an Itô stochastic differential equation in which the terminal rather than the initial condition is given.
BSDE will admit a pair of adapted process under some conditions on the coefficient and the terminal
value of the BSDE. A stochastic differential equation coupled with a BSDE that has both initial and
terminal conditions are known as forward-backward stochastic differential equations. In contrast to the
development of forward stochastic differential equations, the study of backward stochastic differential
equations (BSDEs) have been started in the last three decades. Pardoux and Peng [1] first proposed
BSDEs. Since then, BSDEs have been systematically studied due to their wide applications in social
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fields such as applied mathematics, engineering and finance [2–7]. A BSDE can be viewed as an Itô’s
stochastic differential equation, where the endpoints are given except for the initial conditions. It is
worth pointing out that the solution of BSDE includes two processes, which is the essential difference
from forward stochastic differential equation. Due to the wide-range of applications and the interesting
properties and structure of BSDE, it is valuable to study the optimal control problem of such equations.

There is a lot of research focused on stochastic optimal control problems. The stochastic optimal
control for BSDE was studied by Dokuchaer and Zhou [8]. Subsequently, Lim and Zhou [9] solved
the linear-quadratic control problem for BSDE, and two alternative expressions for optimal control are
obtained. Huang et al. [10] obtained a stochastic maximum principle for partial information control
problem of backward stochastic systems. Zhen et al. [11] discussed the optimal control for fully
coupled forward-backward stochastic control systems. They obtained the necessary and sufficient
stochastic maximum principles. [12] focused on nonzero sum differential games for BSDEs. They
established necessary and sufficient conditions for Nash equilibrium points (see [13] and [14] for the
game problems of BSDE). For the control problems of BSDEs, see also [15–20].

In the above problems, the BSDEs depend only on the value of the current time. Control sys-
tems with time-delay have existed for several decades, which are widely applied in financial areas.
For example, investment portfolio management, pricing, hedging problems and automobile traffic
model [21–23]. It will be more realistic for an investor to better strategize his investment when consid-
ering a delay factor. [24] introduced the time-advanced stochastic differential equations. [25] extended
for the first time the applicability of the optimal homotopy asymptotic method to find the algorithm of
approximate analytic solution of delay differential equations. However, the control system contained
only discrete delay. [26] generalized the results to partial information. Apart from the discrete delays,
it is more reasonable and practical to include moving average delays, which indicate that the current
situation depends on a past period of history in the form of an integral. As an example of an optimal
consumption problem, at time t, let x(t) and u(t) be wealth and consumption, respectively. It is rea-
sonable to assume that the incremental wealth is a combination of the present value x(t) plus some
sliding average of previous value

∫ 0

−δ
eλsx(t + s)ds and negative consumption amount u(t). Therefore,

it is meaningful to incorporate moving-average delays, which indicates that the current situation of the
system depends on a past period of history in integral form. Moreover, in [27], the authors introduced
another delay, the noisy memory or Browinan delay, which is an Itô’s integral over a past time pe-
riods. Indeed, noisy memories arise naturally in economics and finance, e.g., in modeling stochastic
volatility (see, e.g., [28]). [29] obtained necessary and sufficient conditions for mean-field BSDEs with
noisy memory over an infinite time span using Malliavin calculus technique. They also applied the
theoretical results to pension fund problem. Zhang [31] established the sufficient maximum principle
for optimal control problems with three delays and introduced a unified adjoint equation.

In this paper, we consider a BSDE with three delays: The discrete delay, the moving-average delay
and the noisy memory. Our work differs from the above in several ways.

1) Compared with [24] and [29], three kinds of delays are incorporated in the optimal control
problem: the discrete delay and the moving-average delay and noisy memory, resulting in two kinds
of adjoint equations, which will increase the difficulty of analyzing the maximum condition. Thus,
our optimal control system can describe more stochastic delay phenomena and cover more backward
stochastic delay optimization control problems.

2) We give one kind of a 2-dimensional time-advanced stochastic differential equation as our adjoint
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equation in a straightforward form. More importantly, we show that the two kinds of adjoint equations
are equivalent. It is also emphasized that only the solution P1(t) of (3.2) is needed in the theory of the
sufficient maximum principle, while P2(t) is an auxiliary process.

3) As we know from [30], the four-step scheme is used to investigate the adapted solutions for
forward-backward stochastic differential equations. Unfortunately, we study the optimal control prob-
lem for the state governed by BSDE with delay, that is to say, the state is past-dependence, so the
system is not Markovian, and we cannot derive a certain system to get the explicit solution of the state
Y and Z. In order to obtain the effect of delay, we divide the interval according to the delay, and then
continue to subdivide each subinterval to get the numerical solution using Euler method or improved
Euler method.

This paper is organized as follows. Section 2 presents the problem statement and some preliminar-
ies. In Section 3, we introduce two kinds of adjoint equations, obtain the sufficient maximum principle
in Section 4. In Section 5, we apply the theoretical results to linear-quadratic systems and derive
explicit expressions for the optimal control. In addition, we study an optimal consumption problem.
Finally, we conclude the paper with concluding remarks.

2. Preliminary results

Assume that T is a finite time horizon, λ is a constant, and δ is a positive constant time delay such
that δ < T . Let (Ω,F , (Ft)0≤t≤T , P) be a complete filtered probability space on which one-dimensional
standard Brownian motion is defined. Moveover, it is also assumed that {Ft}0≤t≤T is a natural filtration
generated by W(t) and FT = F . Let E[·] be the expectation under P. Denote Et[·] = E[·|Ft] for each
t ∈ [0,T ].

Throughout this paper, we denote by L2(Ft;R) the space of R-valued Ft-measurable random vari-
ables η satisfying E|η|2 < +∞, by L2

F
(r, s;R) the space of R-valued Ft-adapted process ψ(·) sat-

isfying E
∫ s

r
|ψ(t)|2dt < +∞. Let ϕ(·) : [−δ, 0] → R be given deterministic functions such that

sup−δ≤t≤0 |ϕ(t)|2 < +∞. Let U be a nonempty convex control subset of R. We introduce the admis-
sible control setU = {u(·) ∈ L2

F
(0,T ;R)|u(t) ∈ U, t ∈ [0,T ]}.

Consider the following BSDE with delay: − dy(t) = f (t, y(t), z(t), u(t))dt − z(t)dW(t),
y(T ) = ξ, y(t) = ϕ(t), t ∈ [−δ, 0),

(2.1)

where y(t) := (y(t), y1(t), y2(t), y3(t)), y1(t) :=
∫ t

t−δ
eλ(s−t)y(s)ds, y2(t) :=

∫ t

t−δ
y(s)dW(s) and y3(t) :=

y(t − δ). y1(t), y2(t), y3(t) are called the moving-average delayed state, the noisy memory process and
the discrete delayed state, respectively. Here f : Ω×R×R×R×R×R×R→ R is a given continuous
function in (t, y, y1, y2, y3, z, u), ξ ∈ L2(FT ,R), ϕ(t) is a deterministic function.

The following assumption will be inforce.
(H1) f is continuously differentiable in (y, y1, y2, y3, z, u). Moreover, the partial derivatives

fy, fy1 , fy2 , fy3 , fz, fu of f are uniformly bounded.
We give the corresponding functional

J(u(t)) = E
{ ∫ T

0
l(t, y(t), z(t), u(t))dt + g(y(0))

}
, (2.2)
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where l and g satisfy the following condition:
(H2) The functions l and g are differentiable in (y, y1, y2, y3, z, u) and y, respectively, and all the

derivatives are bounded.
The following is a stochastic optimal control problem.
Problem (BSO) Find an admissible control that maximizes J(u(·)) over u ∈ U.
Any admissible control that solves Problem (BSO) is called an optimal control. Assume that

ū(·) ∈ U is an admissible control. For convenience, we use the following notations throughout the
paper. f (t, ū) = f (t, ȳ, z, ū), f (t, u) = f (t, y, z, u), l(t, ū) = f (t, y, z, ū), l(t, u) = l(t, y, z, u), and for
k = y, y1, y2, y3, z, u, we use fk(t) =

∂ f
∂k (ȳ, ȳ1, ȳ2, ȳ3, z̄, ū) and for j = y, z, u, we use l j(t) = ∂l

∂ j (ȳ, z̄, ū).

Remark 2.1. In contrast to [29], the present optimal control problem can also include moving-average
delay and noisy memory. Thus,the model can cover more stochastic phenomena and stochastic opti-
mization problems.

3. The adjoint equations

The adjoint equation plays a key role in the theory of maximum principle. In this section, we
introduce some adjoint equations. Then, we decompose the two-dimensional adjoint equation (3.1)
into two one-dimensional systems of equations and give the equivalent adjoint equation (3.6), which is
called a unified one since it connects the two kinds of adjoint equations (3.2), (3.3) and (3.6).

3.1. A primer of Malliavin derivative

A general reference to Malliavin derivative Dt for Lévy processes is the book (Di Nunno et al. [32]).
See also Nualart [33] and Di Nunno et al. [34].

For all F ∈ L2(FT , P), we have DtF ∈ (S)∗ and (t, ω) 7→ E[DtF|Ft] belongs to L2(FT , λ × P), where
(S)∗ ⊇ L2(P) denotes the Hida space of stochastic distributions and λ denotes the Lebesgue measure
on [0,T ]. Moreover, the following generalized Clark-Ocone theorem holds:

F = E[F] +
∫ T

0
E[DtF|Ft]dW(t).

As also noted in Dahl et al. [27], we can also apply the Clark-Ocone theorem to show that:

Proposition 3.1. (The generalized duality formula). Let F ∈ L2(FT , P) and let φ(t) ∈ L2(λ × P) be
adapted. Then

E
[
F

∫ T

0
φ(t)dB(t)

]
= E

[ ∫ T

0
E[DtF|Ft]φ(t)dt

]
.

Proof. By Clark-Ocone theorem and the Itô isometry we have

E
[
F

∫ T

0
φ(t)dB(t)

]
= E

[(
E[F] +

∫ T

0
E[DtF|Ft]dW(t)

)( ∫ T

0
φ(t)dW(t)

)]
= E

[( ∫ T

0
E[DtF|Ft]dW(t)

)( ∫ T

0
φ(t)dW(t)

)]
= E

[ ∫ T

0
E[DtF|Ft]φ(t)dt

]
.
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3.2. The first version of the adjoint equations

In this section, we will give two adjoint equations and prove that they are equivalent.
The adjoint equations for Problem (BSO) is given by

dP(t) =
{
A1(t)P(t) + Et[A2(s)P(s)]|s=t+δχ[0,T−δ](t) + Et

∫ t+δ

t
Dt(B1(s)P(s))ds

+ b̃1(t)
}
dt + (B2(t)P(t) + b̃2(t))dW(t),

P(0) = ζ, P(t) = 0, t ∈ (T,T + δ],

(3.1)

where

A1(t) =
(

fy(t) 1
fy1(t) λ

)
, A2(s) =

(
fy3(s) −e−λδ

0 0

)
, B1(s) =

(
fy2(s) 0

0 0

)
,

B2(t) =
(

fz(t) 0
0 0

)
, b̃1(t) =

(
−ly(t)

0

)
, b̃2(t) =

(
−lz(t)
q2(t)

)
, ζ =

(
−gy(ȳ(0))

0

)
.

Here and in what follows, χ denotes the indicator function.

3.3. The decomposition of the adjoint equation

In this section, we decompose the two-dimensional adjoint equation (3.1) into two one-dimensional
systems of equations.

Define the solution P(·) of the adjoint equation (3.1) by

P(t) =
(

P1(t)
P2(t)

)
.

Then by (3.1), it is easy to check that

dP1(t) = { fy(t)P1(t) + Et[ fy3(t + δ)P1(t + δ)]χ[0,T−δ](t) − ly(t)

+

∫ t+δ

t
E[Dt fy2(s)P1(s)|Ft]ds + P2(t) − e−λδEt[P2(t + δ)]χ[0,T−δ](t)}dt

+ { fz(t)P1(t) − lz(t))}dW(t)
P1(0) = −gy(ȳ(0)),

(3.2)

dP2(t) = { fy1(t)P1(t) + λP2(t)}dt − q2(t)dW(t)
P2(0) = 0,

(3.3)

Remark 3.2. Note that, (3.2) and (3.3) is a system of coupled equations, where P1(·) depends on P2(·).
We will show that P1(·) satisfies an independent time-advanced BSDE involving Malliavin derivatives
(see (3.6)).
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3.4. The second version of the adjoint equations

Note that, it is difficult to derive the adjoint equations P1(·) and P2(·) by focusing on the coupled
equations (3.2) and (3.3). We will give the equivalent adjoint equation to show that P1(·) satisfies an
independent time-advanced BSDE involving Malliavin derivatives (see (3.6)). We call it a unified one
since it connects the two kinds of adjoint equations (3.2), (3.3) and (3.6).

Lemma 3.3. Under (H1), it holds that

P2(t) − e−λδEt[P2(t + δ)]χ[0,T−δ](t)

=

∫ (t+δ)∧(T−δ)

t
Et[eλ(t−s)(ly1(s) − P1(s) fy1(s))]ds. (3.4)

Proof. Given (3.3), applying Itô’s formula to e−λsP2(s), 0 ≤ s ≤ t yields

P2(t) = −
∫ t

0
Et[eλ(t−s)(ly1(s) − P1(s) fy1(s))]ds. (3.5)

Set Σ(t) = P2(t) − e−λδEt[P2(t + δ)]χ[0,T−δ](t). Then by (3.5), we have

Σ(t) =
∫ t

0
−Et[eλ(t−s)(ly1(s) − P1(s) fy1(s))]ds

+

∫ t+δ

0
Et[eλ(t−s)(ly1(s) − P1(s) fy1(s))]dsχ[0,T−δ](t).

(i) We first consider the case: t + δ < T − δ, Σ(t) =
∫ t+δ

t
Et[eλ(t−s)(ly1(s) − P1(s) fy1(s))]ds.

(ii) Otherwise, Σ(t) =
∫ T−δ

t
Et[eλ(t−s)(ly1(s) − P1(s) fy1(s))]ds.

Therefore, we have Σ(t) =
∫ (t+δ)∧(T−δ)

t
Et[eλ(t−s)(ly1(s) − P1(s) fy1(s))]ds.

Thus, the proof is complete.
Substituting (3.4) into (3.2), we get the following equivalent adjoint equation

dP1(t) = { fy(t)P1(t) + Et[ fy3(t + δ)P1(t + δ)]χ[0,T−δ](t) − ly(t)

+

∫ t+δ

t
E[Dt fy2(s)P1(s)|Ft]ds

+

∫ (t+δ)∧(T−δ)

t
Et[eλ(t−s)(ly1(s) − P1(s) fy1(s))]ds}dt

+ { fz(t)P1(t) − lz(t))}dW(t)
P1(0) = −gy(ȳ(0)).

(3.6)

Remark 3.4. Three types of delays of the state are incorporated in Problem (BSO). Let us consider
some special cases.

(a) If the moving-average delayed state y1(·) vanishes, then it holds that P2(t) = 0, (3.6) degenerates
to 

dP1(t) = { fy(t)P1(t) + Et[ fy3(t + δ)P1(t + δ)]χ[0,T−δ](t) − ly(t)

+

∫ t+δ

t
E[Dt fy2(s)P1(s)|Ft]ds}dt

+ { fz(t)P1(t) − lz(t))}dW(t)
P1(0) = −gy(ȳ(0)).
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This is the case studied in [35] without mean-field term and on finite time horizon.
(b) If the noisy memory y2(·) vanishes, then (3.6) degenerates to

dP1(t) = { fy(t)P1(t) + Et[ fy3(t + δ)P1(t + δ)]χ[0,T−δ](t) − ly(t)

+

∫ (t+δ)∧(T−δ)

t
Et[eλ(t−s)(ly1(s) − P1(s) fy1(s))]ds}dt

+ { fz(t)P1(t) − lz(t))}dW(t)
P1(0) = −gy(ȳ(0)).

This is the case studied in [36] without mean-field term and on finite time horizon. Note that,
in [36], the discrete delay is not considered.

(c) If the discrete state y3(·) vanishes, then (3.6) degenerates to

dP1(t) = { fy(t)P1(t) − ly(t) +
∫ t+δ

t
E[Dt fy2(s)P1(s)|Ft]ds

+

∫ (t+δ)∧(T−δ)

t
Et[eλ(t−s)(ly1(s) − P1(s) fy1(s))]ds}dt

+ { fz(t)P1(t) − lz(t))}dW(t)
P1(0) = −gy(ȳ(0)).

This case has not been studied before.
(d) If both y1(·) and y2(·) vanish, then (3.6) degenerates to

dP1(t) = { fy(t)P1(t) + Et[ fy3(t + δ)P1(t + δ)]χ[0,T−δ](t) − ly(t)}dt

+ { fz(t)P1(t) − lz(t))}dW(t)
P1(0) = −gy(ȳ(0)).

This is the case studied in [37] with full information.

4. The sufficient maximum principle

Define the Hamiltonian function H by

H(t, y, y1, y2, y3, z, u, P1, P2) = l(t, y, z, u) − f (t, y, y1, y2, y3, z, u)P1

− (y − λy1 − e−λδy3)P2.

In this section, we form sufficient condition of optimality based on some concavity assumptions on H
and g.

The following assumption will also be needed.
(H3) The functions H(t, y, y1, y2, y3, z, u, P1, P2) and g(y) are concave with respect to the correspond-

ing variables, for t ∈ [0,T ] and given P1, P2.
For simplicity, we use (y(t), u(t)) and (ȳ(t), ū(t)) to denote the state trajectories of system (2.1)

correspongding to u(t) and ū(t). We denote by H̄(t) = H(t, ȳ, ȳ1, ȳ2, ȳ3, z̄, ū, P1, P2), H(t) =
H(t, y, y1, y2, y3, z, u, P1, P2) and the similar definitions for f̄ (t) and f (t). We give the sufficient maxi-
mum principle now.
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Theorem 4.1. Let (H1) − (H3) hold. If an admissible control ū(·) satisfies the following condition:

(ū − u)Hu(t) ≥ 0,

then ū(·) is an optimal control.

Proof. We write J(ū(·)) − J(u(·)) = I1 + I2 with

I1 = E

∫ T

0

{
l(t, ȳ(t), z̄(t), ū(t)) − l(t, y(t), z(t), u(t))

}
dt, (4.1)

I2 = E[g(ȳ(0)) − g(y(0))].

Since g is concave on y, we have

I2 ≥ E[gy(ȳ(0))(ȳ(0) − y(0))]. (4.2)

Applying Itô’s formula to P1(t)(ȳ(t) − y(t)) and taking expectation, we get

E(gy(ȳ(0))(ȳ(0) − y(0)) = E
∫ T

0

{
(ȳ(t) − y(t))( fy(t)P1(t) + Et[ fy3(t + δ)P1(t + δ)]χ[0,T−δ](t)

− ly(t) +
∫ t+δ

t
E[Dt fy2(s)P1(s)|Ft]ds + P2(t) − e−λδEt[P2(t + δ)]χ[0,T−δ](t))

}
dt

+ E

∫ T

0

{
P1(t)(−( f (t, ȳ(t), z̄(t), ū(t)) − f (t, y(t), z(t), u(t))))

}
dt

+ E

∫ T

0

{
(z̄(t) − z(t))( fz(t)P1(t) − lz(t))

}
dt. (4.3)

By the definition H, it holds that

I1 = E

∫ T

0

{
H̄(t) − H(t) + ( f̄ (t) − f (t))P1(t)

− (ȳ(t) − y(t) − λ(ȳ1(t) − y1(t)) − e−λδ(ȳ3(t) − y3(t)))P2(t)
}
dt. (4.4)

Noting that

dy1(t) = [y(t) − λy1(t) − e−λδy3(t)], t ∈ [0,T ].

Using Itô’s formula to P2(t)(ȳ1(t) − y1(t)) and integrating from 0 to T , and noticing P2(0) = 0 and
ȳ1(T ) − y1(T ) = 0, we get

E[P2(T )(ȳ1(T ) − y1(T ))] − E[P2(0)(ȳ1(0) − y1(0))]

= E

∫ T

0

{
− ly1(t) + P1(t) fy1(t) + λP2(t))(ȳ1(t) − y1(t)

}
dt

+ E

∫ T

0

{
P2(t)(ȳ(t) − y(t) − λ(ȳ1(t) − y1(t)) − e−λδ(ȳ3(t) − y3(t)))

}
dt

= 0. (4.5)
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Inserting (4.5) into (4.4), we have

I1 = E

∫ T

0

{
H̄(t) − H(t) + ( f̄ (t) − f (t))P1(t)

+ (−ly1(t) + P1(t) fy1(t) + λP2(t))(ȳ1(t) − y1(t))
}
dt. (4.6)

Since H is concave, and from (4.2), (4.3) and (4.6), we can obtain

J(ū) − J(u) ≥ E
∫ T

0

{
− fy3(t)(ȳ3(t) − y3(t))P1(t)

+ Et[ fy3(t + δ)P1(t + δ)]χ[0,T−δ](t)(ȳ(t) − y(t))
}
dt

+ E

∫ T

0

{
− e−λδEt[P2(t + δ)]χ[0,T−δ](t)(ȳ(t) − y(t)) + e−λδ(ȳ3(t) − y3(t))P2(t)

}
dt

+ E

∫ T

0

{
− fy2(t)(ȳ2(t) − y2(t))P1(t) +

∫ t+δ

t
E[Dt fy2(s)P1(s)|Ft]ds(ȳ(t) − y(t))

+ lu(t)(ū(t) − u(t)) − fu(t)(ū(t) − u(t))P1(t)
}
dt

= J1 + J2 + J3 + J5.

Based on the definition of y3 and through transformation of variables, we have

E

∫ T

0
fy3(t)(ȳ3(t) − y3(t))P1(t)dt

= E

∫ T

0
fy3(t)(ȳ(t − δ) − y(t − δ))P1(t)dt

= E

∫ T−δ

−δ

fy3(t + δ)(ȳ(t) − y(t))P1(t + δ)dt.

On the other hand,

E

∫ T

0
Et[ fy3(t + δ)P1(t + δ)]χ[0,T−δ](t)(ȳ(t) − y(t))dt

= E

∫ T+δ

δ

fy3(t)(ȳ(t − δ) − y(t − δ))P1(t)dt.

Therefore,

J1 = −E

∫ T

0
fy3(t)(ȳ(t − δ) − y(t − δ))P1(t)dt + E

∫ T+δ

δ

fy3(t)(ȳ(t − δ) − y(t − δ))P1(t)dt

= −E

∫ δ

0
fy3(t)(ȳ(t − δ) − y(t − δ))P1(t)dt − E

∫ T

δ

fy3(t)(ȳ(t − δ) − y(t − δ))P1(t)dt

+ E

∫ T+δ

δ

fy3(t)(ȳ(t − δ) − y(t − δ))P1(t)dt

= −E

∫ δ

0
fy3(t)(ȳ(t − δ) − y(t − δ))P1(t)dt + E

∫ T+δ

T
fy3(t)(ȳ(t − δ) − y(t − δ))P1(t)dt.

By (2.1), we have ȳ(t − δ) − y(t − δ) = 0 when t ∈ [0, δ). So
∫ δ

0
fy3(t)(ȳ(t − δ) − y(t − δ))P1(t)dt=0. By

(3.1), P1(t) = 0, t ∈ (T,T + δ], we get E
∫ T+δ

T
fy3(t)(ȳ(t − δ) − y(t − δ))P1(t)dt. Then, we obtain J1 = 0.

J3 = E

∫ T

0

{
− fy2(t)(ȳ2(t) − y2(t))P1(t) +

∫ t+δ

t
E[Dt fy2(s)P1(s)|Ft]ds(ȳ(t) − y(t))

}
dt.
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Using Fubini’s theorem and the definition of y2, as well as the duality formula for Malliavin derivatives,
we get

E

∫ T

0
fy2(t)(ȳ2(t) − y2(t))P1(t)dt

= E

∫ T

0
fy2(t)

( ∫ t

t−δ
ȳ(s) − y(s)dW(s)

)
P1(t)dt

=

∫ T

0
E
[ ∫ t

t−δ
E[Ds( fy2(t)P1(t))|Fs](ȳ(s) − y(s))ds

]
dt

= E

∫ T

0

∫ s+δ

s
E[Ds( fy2(t)P1(t))|Fs](ȳ(s) − y(s))dtds.

So, J3 = 0. In the similar ways, we can show that J2 = 0. This implies

J(ū) − J(u) ≥
∫ T

0
E[Hu(t)(ū(t) − u(t))]dt

≥ 0.

From this, it can be seen that ū(t) is an optimal control. We conclude.

5. Applications

5.1. A linear-quadratic problem

In this section, applying the results obtained in the previous section, we derive an explicit optimal
control of the linear-quadratic optimal control with delayed BSDE.

We give the following linear BSDE:
− dy(t) = {a(t)y(t) + b(t)y3(t) + c(t)y1(t) + d(t)y2(t) + e(t)u(t)}dt

− z(t)dW(t),
y(T ) = ξ, y(t) = φ(t), t ∈ [−δ, 0)

and the performance functional

J(u(t)) = −
1
2
E[

∫ T

0
a0(t)y2(t) + b0(t)z2(t) + r(t)u2(t)]dt −

1
2
E[y2(0)],

where a(t), b(t), c(t), d(t), e(t) are deterministic functions, with y1(t) :=
∫ t

t−δ
eλ(s−t)y(s)ds, y2(t) :=∫ t

t−δ
y(s)dW(s) and y3(t) := y(t − δ).

We give the following assumption:
(H4) a0(t) and b0(t) are non-negative bounded deterministic functions. Moreover, r(t), r−1(t) are

deterministic positive bounded functions.
The Hamiltonian function is

H(t, y, y1, y2, y3, z, u, P1, P2) = −
1
2

(
a0(t)y2(t) + b0(t)z2(t) + r(t)u2(t)

)
Mathematical Biosciences and Engineering Volume 20, Issue 12, 21211–21228.
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−

(
a(t)y(t) + b(t)y3(t) + c(t)y1(t) + d(t)y2(t) + e(t)u(t)

)
P1(t)

− (y(t) − λy1(t) − e−λδy3(t))P2(t)

and the adjoint equation satisfies
dP(t) = {A1(t)P(t) + Et[A2(s)P(s)]|s=t+δχ[0,T−δ](t) + Et

∫ t+δ

t
Dt(B1(s)P(s))dt

+ b̃1(t)}dt + (B2(t)P(t) + b̃2(t))dW(t),
P(0) = ζ,

where

A1(t) =
(

a(t) 1
c(t) λ

)
, A2(s) =

(
b(s) −e−λδ

0 0

)
, B1(s) =

(
d(s) 0

0 0

)
,

B2(t) =
(

0 0
0 0

)
, b̃1(t) =

(
a0(t)

0

)
, b̃2(t) =

(
b0(t)
q2(t)

)
, ζ =

(
E[y(0)]

0

)
.

Our objective is to maximize the performance functional overU.
According to Theorem 4.1, we can derive the following result.

Theorem 5.1. Under (H4), if the admissible control ū(t) satisfies

ū(t) = −r−1(t)e(t)P1(t), (5.1)

then it is an optimal control.

Proof. Let ū(t) be a control given by (5.1), ȳ(t) and z̄(t) be the corresponding state equation. By (5.1),
(ȳ(t), z̄(t), ū(t)) satisfies the optimality condition in Theorem 4.1, which means E[Hu(t)(ū(t)−u(t))] ≥ 0.
From (H4), it is easy to check that all other conditions in Theorem 5.1 are satisfied, so ū is optimal.

5.2. Optimal investment problem with delay

We consider a financial market with two investment possibilities. One is a risk-free asset with price
S 0(t) and the other is a risky asset with price S 1(t). They satisfies:dS 0(t) = µ(t)S 0(t)dt,

S 0(0) = 0,

where µ(t) is a bonded deterministic function.dS 1(t) = S 1(t)(b(t)dt + σ(t)dW(t)),
S 1(0) = 0,

(5.2)

where b(t), σ(t) are bounded deterministic functions.
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Suppose someone invests in bonds and stocks. They want to achieve their wealth goal ξ at time T .
Moreover, the investor wants to maximize his utility function J.

We denote by π(t) the proportion of fund that the investor invests in the stock. c(t) is the instan-
taneous consumption rate of investor. In real life, usually there are different levels of consumption.
For simplicity, there is only one level. For example, c(t) ∈ U = [0, a1], that is we only consider the
ultra-low consumption. Here a1 is a constant such that a1 > (E[eγtP1(t)]

L )−
1
R . y(t) is the wealth process of

the investor at time t and k(y(t) − y(t − δ) −
∫ t

t−δ
y(s)dW(s)) −

∫ t

t−δ
eλ(s−t)y(s)ds is the surplus premium.

We propose a wealth process with delay, which is caused by the instantaneous capital inflow or
outflow from the investor’s current wealth.

Now the investor’s wealth process is governed by the following BSDE:
− dy(t) = [(µ − k)y(t) + ky(t − δ) + k

∫ t

t−δ
y(s)dW(s)

+ k1

∫ t

t−δ
e−λ(s−t)y(s)ds − c(t) + λz(t)]dt − z(t)dW(t),

y(T ) = ξ, y(t) = 0, t ∈ [−δ, 0).

(5.3)

We give the corresponding cost functional:

J(c(t)) = E
{ ∫ T

0
Le−γt (c(t))1−R

1 − R
dt − My(0)

}
, (5.4)

where L > 0,K > 0,M > 0, γ > 0, and 0 < R < 1.
Here is the Hamiltonian function

H(t, y, y1, y2, y3, z, c, P1, P2)

= Le−γt (c(t))1−R

1 − R
−

(
(µ − k)y(t) + ky3(t) + ky2(t) + k1y1(t)

− c(t) + λz(t)
)
P1(t) − (y(t) − λy1(t) − e−λδy2(t))P2(t),

where y1(t) :=
∫ t

t−δ
eλ(s−t)y(s)ds, y2(t) :=

∫ t

t−δ
y(s)dW(s) and y3(t) := y(t − δ).

The corresponding adjoint equation satisfies the following:
dP(t) = {A1(t)P(t) + Et[A2(s)P(s)]|s=t+δχ[0,T−δ](t)

+ Et
∫ t+δ

t
Dt(B1(s)P(s))ds + b̃1(t)dt} + (B2(t)P(t) + b̃2(t))dW(t),

P(0) = ζ,

where

A1(t) =
(
µ − k 1
−k1 λ

)
, A2(s) =

(
−k −e−λδ

0 0

)
, B1(s) =

(
−k 0
0 0

)
,

B2(t) =
(
λ 0
0 0

)
, b̃1(t) =

(
0
0

)
, b̃2(t) =

(
0

q2(t)

)
, ζ =

(
M
0

)
.
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Proposition 5.2. Suppose that (5.2), (5.3) and the adjoint process P(t) satisfy the conditions in Theo-
rem 4.1. Then the optimal consumption c(t) is given by (E[eγtP1(t)]

L )−
1
R .

Finally, let’s look at a numerical example. Take δ1 = 0.1, δ2 = 0.15, δ3 = 0.2, δ4 = 0.23, δ5 = 0.26,
λ = 0.4, µ = 0.6, k = 0, k1 = 1, γ = 0.3,M = 1,R = 0.5,T = 3 and L = 3.

Figure 1. The solution P1(t) with different time delays.

Figure 2. The optimal consumption c(t) with different time-delays.

In order to obtain the effect of delay, we can divide the time horizon according to the delay, and
then continue to subdivide each subinterval to get the numerical solution using the Euler method or
improved Euler method. The corresponding parameter values are: δ1 = 0.1, δ2 = 0.15, δ3 = 0.2, δ4 =

0.23, δ5 = 0.26. Figure 1 plots the solution P1(t) for different time delays. We observe that the solution
is very sensitive to δ, i.e., the smaller δ is, the larger P1(t) is.

Figure 2 shows the optimal consumption c(t) for different time delays. We find that the smaller δ
is, the lower the consumption rate is. Furthermore, it can be seen from Figure 2 that no matter what
value δ, the optimal consumption strategy is close to almost the same number. This is because, for
convenience, we consider only one level of consumption: Ultra-low consumption.
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For a more comprehensive analysis of the factors affecting the optimal control, we will show how
the terminal condition y(T ) = ξ affects the optimal control result. Here k = k1 = 0, µ = 1. The state
process satisfies the following BSDE − dy(t) = (y(t) − c(t) + z(t))dt − z(t)dW(t),

y(T ) = ξ.

The cost function is given by

J(c(t)) = E
{ ∫ T

0
Le−γt (c(t))1−R

1 − R
dt − y2(0)

}
.

and the adjoint equation (3.2) is reduced to the following formdP1(t) = P1(t)dt,

P1(0) = 2ȳ(0).

By Proposition 5.2, the optimal consumption c(t) is given by (E[eγtP1(t)]
L )−

1
R .

The following is the numerical result. Figure 3 plots the optimal consumption c(t) with different
terminal conditions. The parameter values used in the calculations are: γ = 0.3, R = 0.5, T =
3, L = 3, ξ1 = 1, ξ2 = 3, ξ3 = 5. We observe that the smaller terminal condition will lead to a
smaller consumption.

Figure 3. The optimal consumption c(t) with different terminal conditions.

6. Conclusions

Motivated by some interesting financial and economic phenomena, we study the optimal control
problem for BSDE with three delays. Some new-type adjoint equations are introduced for the first
time in the literature. More especially, we obtain a sufficient condition for BSDE with three delays.
The major features of this work include the introduction of a unified adjoint equation as well as the
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new type of the adjoint equations. The theoretical results established here are applied to solve a linear-
quadratic optimal control problem and a financial problem. Then, a linear-quadratic optimal control
and an optimal investment strategy are derived, respectively. There are several interesting issues that
deserve further study.

One could consider more complicated optimal control problems, such as problems with mean-field
term and partial information rather than full information.

On the one hand, the mean-field stochastic differential equation (SDE) was introduced to study
physical systems with a large number of interacting particles. The mean-field models have many
applications in economics and finance. Stochastic maximum principle for the optimal control system
of mean-field type has become a popular topic. When considering mean-field terms, some new mean-
field stochastic differential equations will be introduced as the adjoint equations and the maximum
principle is generalized to the mean-field framework.

On the other hand, in general, controllers can get only partial information in most cases. For exam-
ple, we consider a cash flow process for an insurance firm, where due to the discreteness of account
information, it is impossible for the firm to fully observe the cash flow. Unlike the system with full
information, we will give a noisy process Y for partially observed optimal control problem. In addition,
an extra adjoint equation will be introduced to obtain stochastic maximum principle, which does not
appear in the full information case. The optimal control will contain the filtering of adjoint process
which will increase the difficulty of analyzing the maximum condition and improve the skills of pure
mathematical calculation. We plan to discuss these problems in the future.
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