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Abstract: In this study, we focus on modeling the local spread of COVID-19 infections. As the
pandemic continues and new variants or future pandemics can emerge, modelling the early stages
of infection spread becomes crucial, especially as limited medical data might be available initially.
Therefore, our aim is to gain a better understanding of the diffusion dynamics on smaller scales using
partial differential equation (PDE) models. Previous works have already presented various methods
to model the spatial spread of diseases, but, due to a lack of data on regional or even local scale,
few actually applied their models on real disease courses in order to describe the behaviour of the
disease or estimate parameters. We use medical data from both the Robert-Koch-Institute (RKI) and the
Birkenfeld district government for parameter estimation within a single German district, Birkenfeld in
Rhineland-Palatinate, during the second wave of the pandemic in autumn 2020 and winter 2020–21.
This district can be seen as a typical middle-European region, characterized by its (mainly) rural nature
and daily commuter movements towards metropolitan areas. A basic reaction-diffusion model used for
spatial COVID spread, which includes compartments for susceptibles, exposed, infected, recovered, and
the total population, is used to describe the spatio-temporal spread of infections. The transmission rate,
recovery rate, initial infected values, detection rate, and diffusivity rate are considered as parameters to
be estimated using the reported daily data and least square fit. This work also features an emphasis on
numerical methods which will be used to describe the diffusion on arbitrary two-dimensional domains.
Two numerical optimization techniques for parameter fitting are used: the Metropolis algorithm and
the adjoint method. Two different methods, the Crank-Nicholson method and a finite element method,
which are used according to the requirements of the respective optimization method are used to solve
the PDE system. This way, the two methods are compared and validated and provide similar results
with good approximation of the infected in both the district and the respective sub-districts.
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1. Introduction

At the beginning of January 2020, the COVID-19 virus began to spread throughout mainland China,
with the consequences that we all have experienced in the last three years. Initially, the number of
cases was limited to single clusters in a limited number of locations, but later on expanded throughout
the country. In previous studies, we have investigated the macroscopic impact of the epidemic using
an SIR-model for all cases in Germany. For this, we have used classical differential models such as
the SEIRD- (susceptible-exposed-infected-recovered-dead) models to describe the spread of infections
during the first wave (cf. Heidrich et al. [1]), as well as the impact of travelers on disease dynamics in
summer 2020 (cf. Schäfer et al. [2]), both with a strong emphasis on parameter estimation.

In this study, we aim to model the local spread of infections using PDE models to gain a better
understanding of the diffusion on smaller scales. Viguerie et al. [3] argue that their geographical model
simulations could be used to inform authorities to design effective measures and anticipate the allocation
of important medical resources. Wang and Yamamoto [4] provide a forecasting model for COVID-19
using Google mobility data and PDE models, as well as find acceptable validity results of their model
by comparison with COVID-19 data. Elsonbaty et al. [5] extend the classical models to a fractional
SITRS model, including treated persons, while Ahmed et al. [6] and Kuehn and Mölter [7] investigate
transport effects on epidemics using two coupled models, a static epidemic network and a dynamical
transport network, also with non-local, fractional transport dynamics. They find that transport processes
induce additional spreading ways and that way lowers the epidemic threshold; generalizing the process
to fractional or non-local dynamics, however, raises the epidemic threshold. Logeshwari et al. [8] also
provide a fractional PDE model of the spatial spread of COVID-19. Harris and Bodman [9] investigate
the spread through a country with different regions of different densities. Another diffusion-based,
non-international approach can be found in Berestycki et al. [10]. The authors find that fast diffusion
effects along major roads are an important factor of the spread of epidemics like COVID-19 in Italy and
HIV in the Democratic Republic of Congo. The work of Abboubakar et al. [11] does not only present
a reaction-diffusion model for COVID-19 transmission and also applied them on cumulated data for
the entire country of Germany, yet without comparison to local-scale data. Nawaz et al. [12] provide
an explicit unconditionally stable scheme for the solution of a PDE model designed for the spread of
COVID-19 and applied it on data for the Hubei province.

As we have seen, only few of the previous studies apply the theoretical models to practical examples, and
mostly do not make use of regional or even local based medical data. A comparable inclusion of diffusion
in compartmental models with a comparison to real data can be found in Grave et al. [13]. A general
challenge with diffusion-based PDE models is that diffusion of all compartments leads to unwanted
diffusion in the total population, which we aim to avoid. We also present two different numerical
methods in detail which are able to handle the diffusion on arbitrary 2D domains.

In this study, we use data down to local level for parameter estimation of the model. We focus our
numerical problem on a single district, the district of Birkenfeld in southwestern Germany within the
state of Rhineland-Palatinate. Approximately 81,000 people live there in an area of about 780 km2. The
largest city within the district is Idar-Oberstein, with about 28,000 inhabitants in an area of about 92 km2.
The remaining people live in the municipalities of Birkenfeld, Baumholder, and Herrstein-Rhaunen.
Within a 1.5 hour drive via federal highways and freeways, the following metropolitan areas can be
reached: Mainz, Trier, Koblenz, Kaiserslautern, Saarbrücken, and Frankfurt. In addition, the Frankfurt-
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Hahn airport is located in the neighboring Rhein-Hunsrück district to the northeast. The region is very
rural, with daily commuter movements common in the direction of the aforementioned metropolitan
areas. The region is also visited by tourists due to the gemstone industry and trade in Idar-Oberstein, the
numerous hiking routes, and the nearby Hunsrück-Hochwald-Nationalpark.

The first COVID-19 case in the district of Birkenfeld was confirmed in March 2020. Until the end
of June 2020, there were only 90 registered cases in the entire district. However, the number of cases
increased during the second wave in autumn/winter 2020/21, with a cumulative 2513 cases confirmed until
March 2021 [14]. As of October 2022, over 32,000 cases have been counted in the district. We restrict our
research to the data from the second wave, since there was only a limited number of previous infections,
but comparatively high infection numbers further on; also, no vaccines were available until the beginning
of 2021, as well as a very small amount of persons having been exposed to the disease multiple times.
Finally, the lockdown restrictions, particularly in November and December 2020, led to a slower mixing
of cases between different districts. This inter-district mobility is not taken into account by our models.
We consider daily infection data from the district and all of its municipalities in the time frame from
October 1, 2020 to February 25, 2021. the cumulative number of infections in the district is depicted in
Figure 1. In this figure, the first step visible in the data between the end of December and beginning of
January is mainly caused by a delay of registration of case numbers due to Christmas holidays. The
reasons for a second one in mid January are unknown and could be related to registration delays within
the district. Note that there is only one detected initial infection case on October 1, situated in the city
of Idar-Oberstein, so there were no detected cases in the rest of the entire district.

The possibility of new variants of the virus or future pandemics highlights the importance of modeling
the spread of infections, particularly in their early stages when limited medical data is available. The
accuracy of these models depends greatly on the used parameters and the corresponding data. In
this study, we present SEIRD-models, which are commonly used in simulations, and estimate their
parameters using data from the RKI [14] and private communications with the Birkenfeld district
government. We perform estimations using both adjoint and Metropolis methods and base them on a
least square fit between the model output and the reported data.
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Figure 1. Confirmed new daily cases (left) and cumulative cases (right) with COVID-19 in
Birkenfeld from October 1, 2020 until February 25, 2021 according to RKI [14].
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Structure of the paper. In chapter 2, we provide the relevant epidemiological models as well as two
schemes for the numerical solution of PDEs, the Crank-Nicholson method and a Finite Element Method.
In chapter 3, we perform the numerical discretisation and prepare the optimization of a specific target
function. Also, both the Metropolis algorithm and the adjoint method are presented which will be used
for the parameter estimation. In chapter 4, we present and compare the numerical solutions for both
methods. Finally, in chapter 5, the results of this paper are discussed.

2. Materials and methods

2.1. PDE models

To model the spatial COVID spread in the presented areas, we use an epidemiological reaction-
diffusion model. For this purpose, we consider a corresponding spatial area (x, y) ∈ Ω in a time period
t ∈ T := [0, tend]. We are looking for a function u : V → Rm with V = Ω × T , which is twice
continuously differentiable on Ω and once continuously differentiable on T , briefly u ∈ C(V,Rm)2,1. The
following PDE system has to be fulfilled:

∂tu = κ∆x,yu + f (u) , (2.1a)
u = u0 , t = 0 , (2.1b)
∂νu = 0 , (x, y) ∈ ∂Ω . (2.1c)

Here, ∂tu stands for the component–wise derivative of u in the direction of time, i.e.,
∂tu = (∂tu1, ..., ∂tum)T and ∆x,y =

(
∂xxu1 + ∂yyu1, ..., ∂xxum + ∂yyum

)T
for the Laplace operator in Ω. The

parameter κ describes the diffusivity of the system and the function f (u) contains the epidemiological
component(s). As an initial condition, at time t = 0 a function u0 : Ω → Rm is used with
u(x, y, t = 0) = u0(x, y). In addition, Neumann boundary conditions are used, where
∂νu = (∂νu1, ..., ∂νum)T stands for the derivative in the direction of the outward pointing unit normal ν
and ∂Ω stands for the boundary of Ω. In terms of context, the latter means that no individual can leave
or enter the territory Ω. This seems strange at first, since the district of Birkenfeld in practice can be left
or entered by land. On the other hand, we are looking at data sets from a period when profound
containment measures had already been taken in the region and social measures, including a significant
reduction inter-district mobility, were already implemented.

For epidemiological modelling, we make use of a variant of the SIR model introduced by Kermack
and McKendrick [15], the SEIR-model, and consider compartments as functions S , E, I,R ∈ C(V,R)2,1,
which have the following meanings:

• Susceptibles S : Depending on the transmission route, these individuals can become infected with
the infectious disease when contact occurs.
• Exposed E: The corresponding indiviuals have already ingested the pathogen, but are not yet

infectious because they are still in the latency period.
• Infected I: These individuals are infected with the disease and infectious. Contact with a susceptible

individual can therefore lead to transmission of the disease.
• Recovered R: After surviving an infection, individuals are considered recovered. These individuals

can no longer transmit the disease or get infected.
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For instance, I(x, y, t) indicates the number of infected individuals in the spatial coordinate (x, y) ∈ Ω
at time t ∈ T . The total population is then defined as N := S + E + I + R. Based on these presented
groups, different epidemiological models can now be derived. We present here the PDE systems of
three common models in Table 1.

Table 1. Basic examples of epidemiological compartment models with flow chart and PDE system.

Model Structure PDE system

SIS S I

β(t)
N

S I

γ I

∂tS = κS∆x,yS −
β(t)
N

S I + γI, S (t = 0) = S 0,

∂tI = κI∆x,yI +
β(t)
N

S I − γI, I(t = 0) = I0,

∂νS = ∂νI = 0, (x, y) ∈ ∂Ω,
N = S + I .

SIR S I R

β(t)
N

S I
γ I

∂tS = κS∆x,yS −
β(t)
N

S I, S (t = 0) = S 0,

∂tI = κI∆x,yI +
β(t)
N

S I − γI, I(t = 0) = I0,

∂tR = κR∆x,yR + γI, R(t = 0) = R0,

∂νS = ∂νI = ∂νR = 0, (x, y) ∈ ∂Ω,
N = S + I + R .

SEIR S E I R

β(t)
N

S I
ϑ E γ I

∂tS = κS∆x,yS −
β(t)
N

S I, S (t = 0) = S 0,

∂tE = κE∆x,yE +
β(t)
N

S I − ϑE, E(t = 0) = E0,

∂tI = κI∆x,yI + ϑE − γI, I(t = 0) = I0,

∂tR = κR∆x,yR + γI, R(t = 0) = R0,

∂νS = ∂νE = ∂νI = ∂νR = 0, (x, y) ∈ ∂Ω,
N = S + E + I + R .

The derivation and precise functioning of spatial epidemiological models will not be explained
in detail here; for this purpose, reference is made to e.g. Martcheva [16]. At the core of every
epidemiological model is the so–called incidence term β(t)

N S I, which indicates how many individuals are
newly infected with the disease in coordinate (x, y) at time t. The incidence term depends on a time
dependent transmission rate β : [0, tend] → R+. In simple models, this can also be assumed to be a
constant parameter, but we assume that the transmission rate may fluctuate over the observed periods
due to the stepwise restrictions on the population. The value of the transmission rate β is generally
unknown and must be adjusted using the data sets. Another parameter in the models is the recovery rate
γ. This is the reciprocal of the time required on average for an individual to recover from the disease.
Thus, if we assume that t is in days and an individual takes 10 days to recover, it holds γ = 1

10 . In
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addition, the SEIR-model contains the parameter ϑ, which is the reciprocal of the latency period, i.e. the
time between the uptake of the pathogen into the body and the onset of infectiousness. For example,
assuming three days, it holds ϑ = 1

3 . It should be noted here that the latency period does not have to be
congruent with the incubation period, as the latter indicates the period of time until the onset of the first
symptoms. With regard to COVID–19 in particular, it has been shown that infectivity sets in even before
the onset of symptoms (cf. He et al. [17]). Due to simplicity, we also chose κ = κS = κE = κI = κR. In
the following, we will only make use of the SEIR-model for later data fitting because it turns out to
reflect the epidemics closest.

In the first step, in order to omit a redundant equation, we substitute R = N − S − E − I and thus
reduce the system to an SEI-model. It should be noted, that also for N a PDE has to be solved:

∂tN = κ∆x,yN , (2.2a)
N = S 0 + E0 + I0 + R0 , t = 0 , (2.2b)
∂νN = 0 , (x, y) ∈ ∂Ω . (2.2c)

For this reason, we normalize the reduced SEI-model by dividing all rows by N, assuming that the
population density mathematically fulfills N(x, y, t) > 0 on V . Defining u1 := S

N , u2 := E
N , u3 := I

N and
u := (u1, u2, u3), we obtain a system as in (2.1) with

f : C(V,R3)2,1 → R3, f (u) =


−β(t)u1u3

β(t)u1u3 − ϑu2

ϑu2 − γu3

 . (2.3)

Table 2 summarizes the results for the presented models.

Table 2. Summary of f (u) for the reduced and normalized models.

SIS→ I f : C(V,R)2,1 → R, f (u) = β(t)(1 − u)u − γu

SIR→ SI f : C(V,R2)2,1 → R2, f (u) =
(
−β(t)u1u2

β(t)u1u2 − γu2

)
SEIR→ SEI f : C(V,R3)2,1 → R3, f (u) =


−β(t)u1u3

β(t)u1u3 − ϑu2

ϑu2 − γu3


To meaningfully include the biological context, it must hold γ, ϑ > 0 and κ ≥ 0 and, as initial

condition, u0 ≥ 0 in Ω. In addition, we assume that there are infected individuals in the area Ω, i.e.∫
Ω

I0 dω > 0. For the reduced and normalized SEI-model, it must then hold
∫
Ω

u3,0 dω > 0, using the
notation u j(x, y, 0) := u j,0. The notationN0 :=

∫
Ω

N(x, y, 0) dω represents the total number of individuals
at time t = 0 in Ω. It must be valid that N0 > 0. Moreover, we define the total population in the area Ω
at time t asN : [0, tend]→ (0,+∞) withN(t) :=

∫
Ω

N(x, y, t) dω. Due to Neumann boundary conditions,
we receive using the Gauss theorem

∂tN =

∫
Ω

∂tN dω =
∫
Ω

κ∆x,yN dω =
∫
∂Ω

κ ∂νN ds = 0. (2.4)
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Thus, the total population in the domain Ω is constant with respect to time. Analytically, there exists a
unique solution for each of the PDE systems (2.1) with the presented f (u) in Table 2 in conjunction
with the mentioned preconditions [18].

Due to the formulation using diffusion for the total population, an equilibrium will only set in when
the population density in the entire district is equal. Then, the temporal equilibrium will be analogous to
the equilibrium of the system without diffusion.

As already mentioned, certain parameters of the model are known, such as γ and ϑ. The transmission
rates β j and the diffusivity κ are usually unknown. For the transmission rate, we assume that the
time-dependancy is piecewise constant. Due to ‘light’ lockdown restrictions from November 2, 2020,
and ‘stricter’ restrictions from December 17, 2020 to the end of the observed time interval, we assume
three different time intervals as follows:

β(t) =


β0 , 0 ≤ t < t0 ,

β1 , t0 ≤ t < t1 ,

β2 , t1 ≤ t ≤ tend .

(2.5)

In addition, due to noisy data sets, the initial conditions u0 must also be adjusted. For that, we present
two approaches to solve this in the following sections.

2.2. Crank-Nicholson method for the SEIR-model

For this purpose, we discretize the region Ω in x and y directions in equal equidistant step sizes hx

and hy, respectively. Also, the time interval T = [0, tend] is divided into equidistant steps of length τ. In
the following we use the notation un

i, j = u(x j, yi, tn). The Laplacian is expressed by finite differences

∆un
i, j =

1
h2

x

[
un

i, j−1 − 2un
i, j + un

i, j+1

]
+

1
h2

y

[
un

i−1, j − 2un
i, j + un

i+1, j

]
(2.6)

and the Crank-Nicolson scheme reads as

un+1
i, j − un

i, j

τ
=

1
2

[
κ∆un+1

i, j + κ∆un
i, j + f (un+1

i, j ) + f (un
i, j)

]
. (2.7)

The goal is to transform this approach so that un+1
i, j can be solved with a linear system of equations.

The non-linearity of f (u) is solved by evolving f using Taylor expansion for small values τ around the
current iteration value un

i, j with f (un+1
i, j ) = f (ui, j(tn + τ)):

f (ui, j(tn + τ)) = f (un
i, j) + τ∂u f (un

i, j)∂tun
i, j + O(τ2)

≈ f (un
i, j) + τ∂u f (un

i, j)
[
κ∆un

i, j + f (un
i, j)

]
(2.8)

If we set rx := κτ/h2
x and ry := κτ/h2

y , this leads in Eq (2.7) using Eq (2.8) to

un+1
i, j −

1
2

rx

[
un+1

i, j−1 − 2un+1
i, j + un+1

i, j+1

]
−

1
2

ry

[
un+1

i−1, j − 2un+1
i, j + un+1

i+1, j

]
= un

i, j +
1
2

rx

[
un

i, j−1 − 2un
i, j + un

i, j+1

]
+

1
2

ry

[
un

i−1, j − 2un
i, j + un

i+1, j

]
+ τ f (un

i, j) +
τ2

2
∂u f (un

i, j)
[
κ∆un

i, j + f (un
i, j)

]
.

(2.9)
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Thus, τ
2

2 ∂u f (un
i, j)

[
κ∆un

i, j + f (un
i, j)

]
is negligible for small values of τ, which leads to the system

−
1
2

rxun+1
i, j−1 −

1
2

rxun+1
i, j+1 + (1 + rx + ry)un+1

i, j −
1
2

ryun+1
i−1, j −

1
2

ryun+1
i+1, j

=
1
2

rxun
i, j−1 +

1
2

rxun
i, j+1 + (1 − rx − ry)un

i, j +
1
2

ryun
i−1, j +

1
2

ryun
i+1, j + τ f (un

i, j) . (2.10)

The system (2.10) leads to a linear equation system

Aqn+1 = Bqn + τ fn with, e.g.,qn+1 =
(
[un+1

0,0 , ..., u
n+1
ly,0 ], [un+1

0,1 , ..., u
n+1
ly,1 ], ...., [un+1

0,lx
, ..., un+1

ly,lx
]
)T
. (2.11)

The vectors qn and fn are defined analogously, where lx and ly indicate the number of discretization
points in x and y direction with respect to Ω. The square and non singular matrices A and B are defined
to contain the Neumann boundary conditions, which are implemented by, e.g. un+1

k+1, j = un+1
k, j if un+1

k, j lies
on the boundary of the domain ∂Ω. The previous refers to the solution of the PDE system of the state
variable u. The adjoint system must be solved backwards in time, which leads to the approach

zn−1
i, j − zn

i, j

−τ
= −

1
2

[
κ∆zn−1

i, j + κ∆zn
i, j + p(un−1

i, j ) + p(un
i, j)

]
(2.12)

where the p(un
i, j) contains componentwise the corresponding discretized terms of ∂u jg +

∑m
k=1 zk∂u j fk.

Proceeding analogously as before yields the system

−
1
2

rxzn−1
i, j−1 −

1
2

rxzn−1
i, j+1 + (1 + rx + ry)zn−1

i, j −
1
2

ryzn−1
i−1, j −

1
2

ryzn−1
i+1, j

=
1
2

rxzn
i, j−1 +

1
2

rxzn
i, j+1 + (1 − rx − ry)zn

i, j +
1
2

ryzn
i−1, j +

1
2

ryzn
i+1, j + τp(un

i, j) . (2.13)

Thus, when solving the linear system of equations, the matrices A and B can also be used, due to the
same Neumann boundary conditions. Despite the variety of possible solutions to reaction–diffusion
problems, we have chosen the Crank–Nicolson method at this point in order to test the method with a
standard procedure. With regard to the stability of the procedure, reference is made to Oishi et al. [19].
Analogous investigations with Neumann boundary conditions indicate that the method is numerically
stable. Especially due to the fact, that in the case of our parameter sizes we have rx, ry <

1
2 .

2.3. Finite element method for the SEIR-model

An alternative to the Crank-Nicholson method which is used in the adjoint method, we also present a
version of the finite element method which produces similar results. By plugging Eq (2.3) in Eq (2.1),
the PDE system reads as follows:

∂tu1 = κ∆x,yu1 − β(t)u1u3, (x, y) ∈ Ω; u1(t = 0)= u1,0; ∂νu1= 0 , (x, y) ∈ ∂Ω
(2.14a)

∂tu2 = κ∆x,yu2 + β(t)u1u3 − ϑu2, (x, y) ∈ Ω; u2(t = 0)= u2,0; ∂νu2= 0 , (x, y) ∈ ∂Ω
(2.14b)

∂tu3 = κ∆x,yu3 + ϑu2 − γu3, (x, y) ∈ Ω; u3(t = 0)= u3,0; ∂νu3= 0 , (x, y) ∈ ∂Ω
(2.14c)
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As the diffusion and ODE parts in Eq (2.14) are handled by two different schemes, we can make use
of an operator splitting (cf. MacNamara [20]) to solve the system. E.g., for one time step ∆t, this
procedure is as follows:

(1) Solve ∂tui = κ∆x,yui for t = ∆t
2 with the corresponding initial and boundary conditions for i = 1, 2, 3.

(2) Solve ∂tui = fi(u) for t = ∆t with the corresponding initial and boundary conditions for i = 1, 2, 3.
(3) Solve ∂tui = κ∆x,yui for t = ∆t

2 with the corresponding initial and boundary conditions for i = 1, 2, 3.

The equation in (2) is a simple ODE equation which can be solved by any standard solver, e.g. the
Euler method or the method of Runge-Kutta. To solve the equation in (1) and (3) on the domain Ω with
initial and homogeneous Neumann boundary conditions on ∂Ω, we consider its weak form gained by
multiplication with a test function v ∈ H1

0(Ω); this means, that v vanishes at the boundary, i.e., v ≡ 0 at ∂Ω.
The weak form reads as follows: Instead of u ∈ C2,1, we now aim to find a function ui ∈ H1(Ω) solving

a(ui, v) : =
∫
Ω

ui v dω +
∫
Ω

∇ui ∇v dω −
∫
∂Ω

ui v dλ

=

∫
Ω

ui v dω +
∫
Ω

∇ui ∇v dω

= 0. (2.15)

This infinite-dimensional problem has to be solved numerically by discretization. We aim to find a
solution ui,h in a finite-dimensional subspace Vh solving

a(ui,h, vh) = a1(ui,h, vh) + a2(ui,h, vh) =
∫
Ω

ui,h vh dω +
∫
Ω

∇ui,h ∇vh dω = 0 . (2.16)

We define the subspace Vh on the chosen grid and linearly independent basis functions φ j piecewise
over subregions Ωk = [x1, x2] × [y1, y2] ⊂ Ω:

Vh =

uh =
∑

k

4∑
j=1

c(k)
j φ

(k)
j (x, y)

 (2.17)

where

φ(k)
1 (x, y) =

(x − x2)(y − y2)
(x1 − x2)(y1 − y2)

(2.18a)

φ(k)
2 (x, y) =

(x − x2)(y − y1)
(x1 − x2)(y2 − y1)

(2.18b)

φ(k)
3 (x, y) =

(x − x1)(y − y2)
(x2 − x1)(y2 − y2)

(2.18c)

φ(k)
4 (x, y) =

(x − x1)(y − y1)
(x2 − x1)(y2 − y1)

(2.18d)

for (x, y) ∈ Ωk; otherwise, those functions vanish, i.e., φ(k)
j (x, y) ≡ 0 for (x, y) < Ωk, j = 1, 2, 3, 4. Then

the weak form a(ui,h, vh) = 0 reads as follows:

a(ui,h, vh) = a

∑
k

4∑
j=1

c(k)
j φ

(k)
j (x, y), φ(k∗)

j∗ (x, y)

 = 0. (2.19)
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Due to the linearity of a, ∑
k

4∑
j=1

a
(
φ(k)

j (x, y), φ(k∗)
j∗ (x, y)

)
c(k)

j = 0. (2.20)

Then the stiffness matrices A and B are defined by

Anm = a1

(
φ(k)

j (x, y), φ(k∗)
j∗ (x, y)

)
(2.21a)

Bnm = a2

(
φ(k)

j (x, y), φ(k∗)
j∗ (x, y)

)
(2.21b)

where n represents the row corresponding to ( j∗, k∗) and m the column corresponding to ( j, k), which
depends on the chosen order within the matrices. More information about this can e.g. be found in
Evans et al. [21]. The linear equation system with a mass matrix

A ∂tui + B ui = 0 (2.22)

can be solved by any scheme; e.g., a 4-step Runge-Kutta scheme; cf. e.g. Dormand and Prince [22].

3. Optimization and numerical methods

3.1. Discretization of the domain

To define the domain Ω for the partial differential equation model, we consider the geographical data
for the district (D), the association communities (AC) and the municipalities (M). Using the free online
data filtering tool Overpass Turbo [23] from OpenStreetMap, we extracted the relevant geographical data
and created the relevant matrices assuming the map segment as rectangular, which appears reasonable
due to the very small size of the investigated window. The relevant data for the starting values of the
locations are then equally distributed across all relevant subdomains of Ω. The size of the window is
Lx × Ly = 39.23 × 56.05 km. Using a step size of hx =

Lx
100 and hy =

Ly

100 , the discretization of the area
yields 101 × 101 matrices as depicted in Figures 2 and 3.

Figure 2. Left: Discretizations of the whole district. Right: Discretization of the association
communities.
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VG Baumholder VG Birkenfeld

VG Herrstein-Rhaunen Idar-Oberstein

Figure 3. Discretization of all municipialities in the district of Birkenfeld; upper left: VG
Baumholder, upper right: VG Birkenfeld, lower left: VG Herrstein-Rhaunen, lower right: city
of Idar-Oberstein, which is classified as one municipiality.

3.2. Target function

In the following, we present the analysis for the reduced SEI-model. The derivation for the other
models is analogous. Furthermore, in order to avoid confusion, we rename (uS , uE, uI) := (u1, u2, u3).
The objective of this section is to present two methods for data fitting of the presented models to the
dataset of Birkenfeld County in Germany.

Therefore, we introduce an objective function J : Rd × C(Ω,Rm)2,1 defined by

J (χ, u0) =
w0

2
∥δβ(t)uS uI − udata

I ∥
2
L2

V
+

w1

2
∥χ − χ̃∥22 +

w2

2

m∑
j=1

∥uI, j,0 − udata
I, j,0∥

2
L2
Ω

. (3.1)

This type of objective function has already proven to be effective in previous studies for adapting
reaction–diffusion models to corresponding data sets, see Heidrich et al. [24]. On the one hand we
make use of the L2-norm with respect to V and Ω, defined for example by ∥g∥L2

X
=

(∫
X

g2dx
)1/2

, on

the other hand we use the Euclidean norm ∥x∥2 =
(∑d

j=1 x2
j

)1/2
. The L2

V-norm in J involves fitting the
model u to the respective data sets, whereby udata

I : V → Rm is an interpolation through the data points.
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Interpolation is performed linearly with respect to the time axis for each grid point. We decided to fit
the model to the data point by point in the L2

V norm. The reason for this is the necessary analysis in the
adjoint method in Subsection 3.5.

The Euclidean norm in the objective function corresponds to a regularization term and contains the
parameters of the model u, which have to be fitted to the data. For example, if we assume an unknown
constant transmission rate β(t) ≡ β and a diffusivity κ, we have χ = (β, κ, δ). The L2

Ω
-norms are to match

the initial conditions of u to the corresponding initial guess udata
j,0 , which is in the following simulations

assumed to be 0. The same applies to the initial guess of χ̃. In addition, the objective function includes
weights w j with j = 0, 1, 2, whose choice will be explained later. The goal is now to minimize J while
satisfying the model constraints, i.e.

min
χ,u0

J , subject to PDE system (2.1) . (3.2)

Note, that we only use informations concerning the daily reported new infected individuals. Thus, the
data include the percentage of daily new infected individuals which shall be fitted to the incidence term
β(t)uS uI in the reduced and normalized SEI-model. In addition, one must assume that only a fraction of
those actually infected are reported. Therefore, we introduce a detection rate δ, which is unknown.

3.3. Parameter bounds and initial values

Allowing the following respective constraints of the fitted parameters:

[β j, κ, u0, δ] ∈ [R+, [0, 1],R4
+, [0, 1]], (3.3)

the starting values at time t0 for the detected cumulated infected u3
0 can be taken from the statistics, while

we assume no initial recovered person u4
0 = 0 and, for the initial amount of exposed persons, u2

0 = u3
0/2

with similar reasoning as in [1]. The initial number of infected is then defined as I0 = u1
0 + u2

0 + u3
0 + u4

0.

3.4. Metropolis algorithm

The first presented method makes use of a Metropolis algorithm (cf. Metropolis et al. [25], Gelman
et al. [26] or Gilks et al. [27]) for estimation of parameters in the PDE system (2.14) according to the
procedure described in Schäfer and Götz [28] and Heidrich et al. [1]. Using the parameter set u0 as
of Table 3 as starting conditions, we assign random draws unew from a normally distributed (and thus
symmetric) proposal function q, i.e. unew ∼ q(unew|ui−1), in every iteration i.

Table 3. Orders of magnitude of the initial values for adapting the model to the available data,
which are chosen from pretesting several parameter choices.

param. β j δ κ u1
0 u2

0 u3
0 u4

0
init. val. 0.1 0.5 0.1 1/N1 1/N2 1/N3 3/N4

Using the previously defined Ĵ(u) as of Eq (3.1) as the target distribution, we calculate the
approximative distribution by

π(u) = c · exp
(
−

Ĵ(û)2

2σ2

)
, (3.4)
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whereby c is an arbitrary real value. For the acceptance probability, it follows

p(ûnew|ui−1) = min
{

1,
π(ûnew) · q(ui−1|ui)
π(ûi) · q(ûi|ûi−1))

}
= min

{
1,
π(ûnew)
π(ui)

}
. (3.5)

In Eq (3.5), we can see that the value of c is redundant, as it cancels out in the division. If the sample
is accepted with the probability p, we set ûi = ûnew; with the probability 1 − p, the sample is declined,
meaning û = ûi−1 according to Rusatsi [29] or Schäfer and Götz [28].

For parameter estimation using the Metropolis algorithm, we use Algorithm 1.

Algorithm 1 Pseudocode for the Metropolis algorithm.

1: π, ûdata ← load initial values for π and data
2: x, z← solve PDE for state variable
3: Ĵ ← compute objective function regarding π
4: σ← standard distribution of the solution, i.e. I over time
5: s← set step size (standard deviation) for the algorithm, e.g. s := π/100
6: repeat
7: πold ← π from previous draw
8: πnew ← π ∼ N(πold, s)
9: x, z, J(π̂new)← update depending on π

10: α← min
{
1, exp

(
Ĵ(πold)2 − Ĵ(πnew)2/2σ2

)}
11: πnew ← π̂new with probability α and πnew := π with probability 1 − α
12: until maximum value of draws is reached
13: π∗, x∗, Ĵ∗ ← means of all π, x, J

3.5. Parameter estimation via adjoint functions

For parameter estimation via adjoint functions z ∈ C(V,Rm)2,1 we use them in conjunction with a
Lagrange function defined as L : Rd × C(Ω,Rm)2,1 × C(V,Rm)2,1 × C(V,Rm)2,1 → R, fulfilling

L(χ, u0, u, z) = J(χ, u0) +
m∑

j=1

∫
V

z j

(
f j(u) + κ∆x,y,u j − ∂tu j

)
dωdt . (3.6)

At a possible minimum (χ∗, u0∗, u∗, z∗) of problem (3.2) must apply

0 = ∇L =
(
∂χ1L, ..., ∂χdL, ∂u1,0L, . . . , ∂um,0L, ∂u1L, . . . , ∂umL, ∂z1L, . . . , ∂zmL

)
. (3.7)

The derivatives in directions representing functions are determined with the help of Gâteaux derivatives.
The application of the optimal control theory and Pontryagin’s maximum (minimum) principle provide
the following optimality conditions:
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(i) 0 = ∂χkL, k = 1, . . . , d,
(Scalar Optimality Conditions)

(ii) u j,0 = udata
j,0 −

z j(x,y,0)
w2

, j = 1, . . . ,m,
(Optimal Initial Conditions)

(iii) ∂tz j = −
(
∂u jg +

∑m
k=1 zk∂u j fk + κ∆x,yz j

)
, g := w0

2

(
δβ(t)uS uI − udata

I

)2

(Adjoint Equations)
z = 0, t = tend,

(Transversality Conditions)
∂νz = 0, (x, y) ∈ ∂Ω.

(Neumann Boundary Conditions)

It should be noted that the present conditions are given as g for the reduced SEI-model. The adjoint
equations PDE system has be solved numerically backward in time. Let us assume a time–dependent
transmission rate of the form (2.5). This leads to χ = (β0, β1, β2, κ, δ) and to a corresponding gradient

∂βkL = w1

(
βk − β̃k

)
+

∫
Ik

∫
Ω

w0δuS uI

(
δβ(t)uS uI − udata

I

)
+ (z2 − z1) uS uI dω dt , (3.8a)

where I0 = [0, t0], I1 = [t0, t1] and I2 = [t1, tend] for k = 0, 1, 2 , (3.8b)

∂κL = w1 (κ − κ̃) +
3∑

j=1

∫
V

z j∆x,yu j dω dt , (3.8c)

∂δL = w1

(
δ − δ̃

)
+ w0

∫
V
β(t)uS uI

(
δβ(t)uS uI − udata

I

)
dω dt . (3.8d)

The adjoint equations in this case read as follows:

∂tz1 = −
(
w0δβ(t)uI

(
δβ(t)uS uI − udata

I

)
+ (z2 − z1) β(t)uI + κ∆x,yz1

)
, (3.9a)

∂tz2 = −
(
ϑ (z3 − z2) + κ∆x,yz2

)
, (3.9b)

∂tz3 = −
(
w0δβ(t)uS

(
δβ(t)uS uI − udata

I

)
+ (z2 − z1) β(t)uS − γz3 + κ∆x,yz3

)
. (3.9c)

For parameter estimation, we use Algorithm 2. Regarding the optimization of χ, a Quasi-Newton
Broyden-Fletcher-Goldfarb-Shanno (BFGS) search direction is used. The initial condition u0 is updated
with a convex combination between the old value and current ‘optimal’ value. The step size is mediated
by the Armijo stepsize rule. In each optimization step, the PDE system for the state u and adjoint z
variable must be solved. This is done by the Crank-Nicholson method presented above. The fact that
the state variable must be solved forward and the adjoint variable backward in time also leads to the
term “forward–backward sweep method”.
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Algorithm 2 Pseudocode for the parameter estimation via adjoint functions.

1: βk, κ, δ, uDAT A
I , udata

0 ← load initial values and data
2: u, z← solve PDE for state variable and adjoint function
3: J, ∇J ← compute objective function and gradient regarding χ = (β0, ..., βk, κ, δ)
4: s1 ← compute search direction regarding χ (Quasi-Newton (BFGS))
5: s2 ← (ũ0 − u0) compute search direction for u0 with ũ j,0 = udata

j,0 −
z j(x,y,0)

w2

6: repeat
7: Jold ← J
8: α← 1
9: χ← χ + αs1

10: u0 ← u0 + αs2

11: u, J ← update
12: repeat
13: α← 0.5α
14: χ← χ + αs1

15: u0 ← u0 + αs2

16: u, J ← update
17: until J ≤ Jold + 0.001αsT∇Jold (Armijo Rule)
18: z,∇J, s1, s2 ← update
19: until ∥J−Jold∥2

∥Jold∥2
< TOL

4. Numerical results

The numerical computations were both done with MatLab (the Metropolis algorithm) and Python
(the adjoint method). All codes are available on request.

4.1. Without penalty term (Metropolis)

Using the Metropolis algorithm as of chapter 3.4, we first set w0 = 1 and w1 = w2 = 0 in Eq (3.1).
In Figure 4, the results for the district of Birkenfeld and in Figure 5, the results for the four ACs are
presented; the red dots represent the respective data, the blue line the outcome of the model.
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Figure 4. Result of the optimization with the Metropolis algorithm for the district of Birkenfeld
with w1 = w2 = 0.
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Figure 5. Result of the optimization with the Metropolis algorithm for the lower level
administrative units (Verbandsgemeinden) with w1 = w2 = 0.

4.2. With penalty term

We now include a penalty term; in Eq (3.1) we choose w0 = 1 and w1 = w2 = 1 · 10−5. This
guarantees a convex problem, cf. Heidrich et al. [1]. Additionally, by pretesting various values, we
aimed to find a reasonably large value of w1 = w2 such that the summands in the target function
as of Eq (3.1), including w0, w1, and w2, respectively, are of the same magnitude. In Figure 6, the
results for the district of Birkenfeld and in Figure 7, the results for the four associated communities
are presented; the red dots represent the respective data, the blue line the outcome of the model. We
also compare the results to those of a standard SEIR-model with the usual parameter estimation (with
Metropolis algorithm).
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Figure 6. Result of the optimization with the various methods for the district of Birkenfeld
with w1 = w2 = 10−5.
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Figure 7. Result of the optimization with the various methods for the lower level administrative
units (Verbandsgemeinden) with w1 = w2 = 10−5.

4.3. Comparison

In the results of the parameter estimation as shown in Table 4, as well as the target function values
for the different methods. The comparison of the absolute values of J(u), e.g. within the Metropolis
simulations for w1 = w2 = 0 and w1 = w2 = 10−5, is not useful; however, the outcomes of the different
models can be compared using the value of J.

It is notable that across all simulations, we find β1 ≈ β2, which indicates that the more severe
lockdown restrictions from December 17 onwards might be overlaid by the rising number of festivities
during Christmas. The adjustment regarding the detection rate shows that, according to the model, the
actual number of infected people is approximately three to five times higher than registered, which is in
line with previous findings.

The parameter values for the transmission parameters βi are relatively consistent across the different
methods and parameter settings. The values β0 > β1 ≈ β2 show that the so-called ‘light’ lockdown in
November 2020 had the most significant effect on the case values, while the more ‘severe’ lockdown
before Christmas did not have a significant effect. A reason for this can be Christmas itself during which
the amount of contacts has rised by nature, it also has to be noted that the measurement of case numbers
during or after Christmas was not consistent, which might lead to delays in the infection data.

The parameter κ is ranging significantly between 0.05 and 0.12, but correlations to the higher initial
values of the infected, as well as the detection rate δ, vary across the different methods and parameter
settings, depending not only on the weights w1 and w2 but also the chosen κ. The results indicate that
there is some potential variation in the optimal parameter values and parameter cross-correlation of
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parameters, e.g. of the initial infection values and the detection rate, as well as to some extent in the
diffusivity. This can also be seen in the target function J(u) which, despite the deviations, shows only
minor variations among the different methods and parameter settings.

The estimations for some of the districts is generally quite accurate, e.g., for Herrstein-Rhaunen
and Baumholder. However, for the city of Idar-Oberstein, the area with most infections, the model
underestimates the infection cases, which can be explained by the diffusivity of the model that neglects
the urban structures. On the other side, the model overestimates the infection cases in Birkenfeld. In
total, the amount of infected is slightly underestimated towards the end; some (perhaps technical) jumps
in the middle of the observed time interval cannot be represented well in the chosen models.

For a convex target function and a weight choice of c = 10−5, the Metropolis algorithm provides the
most accurate results for the cumulative data. Compared to the SEIR-model without diffusion, we see
that both Metropolis and adjoint methods provide better target function values than the SEIR-model,
which generally overestimates the infections in all districts except the largest (Idar-Oberstein).

Table 4. Results for the Metropolis algorithm and the adjoint method, compared to an SEIR-
model without diffusion. For the Metropolis simulations, the standard deviation is given as an
addition.

Metropolis Metropolis Adjoint SEIR
w1 = w2 0 10−5 10−5 10−5

β0 (0.228 ± 0.005) d−1 (0.218 ± 0.011) d−1 0.202 d−1 0.206
β1 (0.097 ± 0.003) d−1 (0.099 ± 0.003) d−1 0.109 d−1 0.092
β2 (0.103 ± 0.029) d−1 (0.097 ± 0.027) d−1 0.097 d−1 0.105
κ 0.119 ± 0.004 0.100 ± 0.005 0.102 0.000
IBA
0 3.393 ± 0.077 2.629 ± 0.101 4.007 4.139

IBI
0 11.570 ± 1.183 4.424 ± 0.258 3.275 8.441

IHR
0 10.176 ± 0.276 4.753 ± 0.2615 6.350 9.632

I IO
0 20.681 ± 0.682 8.024 ± 0.291 14.630 12.207
δ 0.202 ± 0.005 0.495 ± 0.010 0.397 0.444
J(u) 0.4829 0.4836 0.4850 0.4858

5. Discussion

We present a reaction-diffusion model used to simulate the spatial spread of COVID-19, making use
data down to the municipality level for parameter estimation. The SEIR-model is based on a set of PDEs
that describe the dynamics of susceptible, exposed, infected, and recovered individuals, as well as an
incidence term that represents the transmission of the disease. The optimal control is based on a least
square fit between the model output and the reported daily data. Two different numerical approaches for
the estimation of parameters and approximation of the infection data – the Metropolis algorithm and the
adjoint method – were described in detail and implemented on some existent medical data, and their
results were plotted and compared.

Regarding the graphical and numerical results, all routines have provided meaningful results. The
models depict the infection values quite accurately in several subdistricts, yet slightly over- or
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underestimate them in others, which can partially be explained by non-homogeneous behaviour of cities
compared to rural areas. On a local level, the quality of the estimations decreases – which is as
expected, as it cannot be assumed that a global model will apply perfectly to the behavior of single
villages, especially as some of them had no or less than a handful of detected infected in the observed
time interval. The parameter values, including initial infection values, detection rate, and diffusivity,
vary across different methods and parameter settings, while the transmission-related parameters remain
relatively consistent, and the target function are very similar. Compared to a non-spatial SEIR-model,
both Metropolis and adjoint method provide better results with respect to the target function J(u).

The PDE model provides valuable insights and information and manages to describe the diffusion
in the epidemiological situation – i.e., very few and locally condensed initial cases in a more or less
completely susceptible population. The results in this article suggest that PDE models for the spread of
diseases are reasonable tools, which is underpinned by the comparison with the local medical data. The
Metropolis and the adjoint methods, coupled by different numerical techniques for the solution of PDEs,
lead to similar results and are very similar in terms of the approximation error.

Further refinement of the model or the use of additional data sources may improve its accuracy in the
future. Nevertheless, the accuracy of the model on district and sub-district levels make it a valuable tool
for understanding the spread of infections. Not only new variants of COVID-19, but also the possibility
of future pandemics underscore the need for accurate modeling on local level.
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