
http://www.aimspress.com/journal/mbe

MBE, 20(12): 21267–21291.
DOI: 10.3934/mbe.2023941
Received: 20 October 2023
Revised: 06 November 2023
Accepted: 15 November 2023
Published: 30 November 2023

Research article

Analysis and prediction of UAV-assisted mobile edge computing systems

Xiong Wang1, Zhijun Yang1,2,3,∗, Hongwei Ding1 and Zheng Guan1

1 School of Information Science and Engineering, Yunnan University, Kunming, China
2 Educational Instruments and Facilities Service Center, Educational Department of Yunnan

Province, Kunming, China
3 Key Laboratory of Education Informatization for Nationalities of Ministry of Education, Yunnan

Normal University, Kunming, China

* Correspondence: Email: yzj207@aliyun.com.

Abstract: As the demand for the internet of things (IoT) continues to grow, there is an increasing
need for low-latency networks. Mobile edge computing (MEC) provides a solution to reduce latency
by offloading computational tasks to edge servers. However, this study primarily focuses on the inte-
gration of back propagation (BP) neural networks into the realm of MEC, aiming to address intricate
network challenges. Our innovation lies in the fusion of BP neural networks with MEC, particularly for
optimizing task scheduling and processing. Firstly, we introduce a drone-assisted MEC model that cat-
egorizes computation offloading into synchronous and asynchronous modes based on task scheduling.
Secondly, we employ Markov chains and probability-generation functions to accurately compute pa-
rameters such as average queue length, cycle time, throughput, and average delay in the synchronous
mode. We also derive the first and second-order derivatives of the probability-generation function
to support these computations. Finally, we establish a BP neural network to solve for the average
queue length and latency in the asynchronous mode. Our results from the BP neural network closely
align with the theoretical values obtained through the probability-generation function, demonstrating
the effectiveness of our approach. Additionally, our proposed UAV-assisted MEC model outperforms
the synchronous mode. Overall, our MEC scheduling approach significantly reduces latency, enhances
speed, and improves throughput, with our model reducing latency by approximately 11.72% and queue
length by around 9.45%.

Keywords: mobile edge computing; partial-differential equations; UAV; polling system; neural
network; machine learning; applied numerical methods

http://http://www.aimspress.com/journal/mbe
http://dx.doi.org/10.3934/mbe.2023941

21268

1. Introduction

The advent of the fifth generation (5G) has brought forth a wave of novel network applications and
services, signifying a transformative societal shift. These changes necessitate the delivery of higher-
quality network services to cater to the demands of emerging technologies like virtual reality, mobile
social media, the internet of things, the industrial internet, and the internet of vehicles. A majority
of these applications impose stringent quality of service (QoS) requirements, particularly in light of
the exponential surge in network traffic [1, 2]. This surge in data volumes places a considerable strain
on mobile service providers. Without appropriate infrastructure to manage and process this increased
workload, cellular networks would inevitably become more congested, resulting in diminished ser-
vice quality and slower download speeds. Consequently, mobile devices are increasingly reliant on
additional computing resources to meet these escalating demands.

Thankfully, certain scholars have introduced the concept of mobile edge computing (MEC) to en-
hance network service quality. This approach is designed to achieve faster response times and reduce
device energy consumption compared to traditional methods. It accomplishes this by deploying com-
putational access points (CAPs) as close as possible to the data source. Moreover, local devices can
efficiently offload computing tasks onto these CAPs through judicious decision-making [3–6]. Numer-
ous previous studies have made significant strides in this area.

Computation offloading, on the other hand, entails the transfer of local computational tasks to the
cloud or edge server for processing. This approach effectively mitigates the resource limitations of
mobile devices [7, 8]. In the realm of edge computing scenarios, particularly within campus networks,
compute offloading assumes a significant role. Both students and faculty members frequently employ
resource-limited mobile devices to access campus networks. By transferring computational tasks to
on-campus edge servers or cloud-based servers, mobile devices can efficiently execute a wide array
of tasks, including online learning, video conferencing, and campus navigation. This not only results
in improved device performance but also yields reduced energy consumption, consequently extending
the lifespan of the device’s battery. In simple terms, while computation offloading can save time and
resources for the mobile device, it may sometimes introduce latency due to the process of selecting
the appropriate cloud server and transmitting workload data from the mobile device to the designated
server.

In this context, our primary focus is on the integration of back propagation (BP) neural networks into
the realm of mobile edge computing. Our goal is to address complex network issues and optimize the
task scheduling and processing within MEC. This integration represents a novel approach to improving
the performance and efficiency of MEC systems. Our study aims to achieve quantitative enhancement
in comparison to existing state-of-the-art models.

To achieve this, we introduce a drone-assisted MEC model that categorizes computation offload-
ing into synchronous and asynchronous modes based on task scheduling. We employ Markov chains
and probability-production functions to accurately calculate critical performance metrics, including
average queue length, cycle time, throughput, and average delay in the synchronous mode. Addition-
ally, we derive the first and second-order derivatives of the probability-production function to support
these calculations. In the asynchronous mode, we utilize a BP neural network to predict the average
queue length and latency, with results that closely align with the theoretical values derived from the
probability-production function.

Mathematical Biosciences and Engineering Volume 20, Issue 12, 21267–21291.

21269

Compared to references [9, 10], our work advances the current state of the art in the MEC field
by integrating the strong performance of BP neural networks with the flexibility of drone-assisted
computing. We place particular emphasis on the quantitative improvements our model provides and its
potential to significantly enhance MEC system performance.

1.1. Our motivation

Accessing dependable computing services remains a significant challenge for user equipment (UE).
On one hand, numerous UEs engage in computation-intensive applications in remote regions where
communication infrastructure is less robust, and communication conditions are more favorable, ren-
dering the placement of MEC servers more convenient [11, 12]. Conversely, the demand for compu-
tationally intensive services surges when the number of users is high, surpassing the capabilities of
limited storage and computational resources. In such scenarios, MEC servers, especially in hotspots,
are indispensable [13]. Fortunately, unmanned aerial vehicles (UAVs) have flexible deployment and
extensive coverage, offering valuable support in executing computationally intensive tasks within MEC
systems [14–16].

Nevertheless, UAV-assisted MEC services also grapple with several challenges. As aircraft, UAVs
consume substantial energy to sustain their flight, which must also power the onboard communication
and computing units to ensure reliable data transmission and processing services [17]. Additionally, the
information transmission pathway between UAVs and ground users is exceptionally intricate [18]. Due
to the wireless channel’s inherent randomness, it is more variable and predictable than wired channels.
Consequently, UAV-assisted edge computing becomes a pivotal yet intricate endeavor, demanding the
development of suitable models and accurate parameter calculations.

1.2. Related works

A significant portion of academic research focusing on UAV-assisted edge computing relies heavily
on deep learning methodologies. For example, in reference [19], an innovative discrete differential
evolutionary algorithm, featuring novel mutation and crossover operators, is proposed to optimize the
UAV’s path over a cluster head. This advancement not only enhances MEC offloading efficiency but
also effectively reduces UAV energy consumption. Meanwhile, reference [20] employs inverse induc-
tion to scrutinize a proposed game and introduces a dynamic gradient-based iterative search algorithm
to boost UAV utilization. Additionally, reference [21] suggests a deep reinforcement learning-based
multi-intelligent path planning scheme that prioritizes UE offloading and ensures UAV load balancing.
Further contributing to the field, reference [22] offers an online algorithm rooted in perturbed Lyapunov
optimization techniques. This approach optimizes UAV energy usage and mission processing rates
while maintaining long-term data queue stability. Lastly, reference [23] proposes a Lyapunov-based
dynamic resource allocation strategy for UAV-assisted mobile edge computing, effectively curbing en-
ergy consumption and computational latency in edge computing.

Simultaneously, some scholars delve into how drones can enhance task scheduling for edge com-
puting to bolster efficiency and curtail energy consumption. Concentrating on scenarios where UAVs
navigate intricate terrains replete with obstacles and interdependent tasks, reference [24] introduces a
deep reinforcement learning algorithm designed to tackle non-deterministic polynomial (NP) puzzles
and trim down MEC processing task latency. In a similar vein, reference [25] introduces the deep

Mathematical Biosciences and Engineering Volume 20, Issue 12, 21267–21291.

21270

MEC agent, a distributed algorithm rooted in deep reinforcement learning, meticulously designed to
optimize computational offloading while minimizing latency. Additionally, reference [26] proposes
an energy consumption fairness-aware computational offloading scheme based on genetic algorithms.
This approach aims to reduce the disparities in offloading task energy consumption between UAVs and
promote uniform energy distribution. Additionally, reference [27] introduces an asymmetric polling
model that reduces latency in edge computing. Lastly, reference [28] advocates for a deep reinforce-
ment learning approach that employs multi-intelligent proximal policy optimization, striving to define
an optimal computational offloading policy.

Table 1 provides an overview of current research priorities and technology trends in the realm of
UAV-assisted edge computing.

Table 1. The literature comparison.

Article Year Focused area Accurate
calculation

Deep
learning

[19] 2022 Offloading strategy regarding task delays and UAV
energy consumption.

No Yes

[20] 2022 Improved MEC offloading efficiency and reduced
UAV energy consumption.

No Yes

[21] 2022 Prioritizing offload rates with fairness No Yes
[22] 2022 Optimizing the energy and mission processing rate

of the UAV and meeting long-term data queue sta-
bility.

No Yes

[23] 2022 Reducing energy consumption and computational
latency in edge computing

No Yes

[24] 2023 Success rate, number of tasks performed, and av-
erage task response latency

No Yes

[25] 2023 Calculation latency Yes Yes
[26] 2023 Fairness of drone energy consumption, computa-

tional latency
No Yes

[27] 2023 Minimizing user latency and system power con-
sumption

Yes Yes

[28] 2023 Reduce weighted energy consumption and compu-
tational latency

No Yes

Our work 2023 Reduce average user latency, reduce average task
queue length, and maximize MEC throughput

Yes Yes

The previously conducted surveys, as mentioned above, shed light on various aspects of compu-
tation offloading techniques within edge computing environments. A notable limitation of traditional
MEC servers lies in their fixed location, which renders them unable to adapt to the movements of
mobile users. In this context, UAVs emerge as a promising and agile solution.

The existing literature has yet to provide a method that accurately encompasses all the essential
parameters for UAV-assisted MEC. This underscores the absence of a suitable scheduling approach
for this context. Polling, a well-established transmission technique utilized across various sectors

Mathematical Biosciences and Engineering Volume 20, Issue 12, 21267–21291.

21271

like computing, communications, and industrial control, offers insights into this challenge. Polling
service systems can be classified into gated, exhaustive, and limited-k models based on their service
policies [29]. In the exhaustive service policy, the server continues operating until the queue is entirely
empty. Conversely, the gated service policy dictates that only those clients already in the queue at the
start of the access period receive service. In the global gated service policy, only clients present when
the server reaches a predefined “parent queue” during an epoch are served. Lastly, the limited-k service
policy mandates that the server operates within a queue until a predetermined client is served or until
the queue becomes empty [29, 30].

1.3. Our contribution

In this paper, we introduce novel applications of polling and scheduling within the realm of UAV-
assisted edge computing. These innovations are as follows:

• We propose a UAV-assisted edge computing model designed to mitigate computational latency
and enhance overall system throughput.
• Within the scope of UAV-assisted edge computing, we put forth two distinct scheduling methods:

a synchronous-assisted scheduling approach and an asynchronous scheduling approach.
• To accurately assess key performance metrics such as the average queueing length, average

period, throughput, and average delay within the synchronous threshold multi-server service
(STMS), we leverage probability-generating functions and Markov models.
• Furthermore, we construct a precise BP neural network tailored to forecast the average queueing

length and average delay associated with asynchronous threshold multi-server service (ATMS).

1.4. Structure of this paper

This paper follows a structured approach, beginning with an introduction that outlines the research
motivation and identifies gaps in UAV-assisted edge computing. We then present the novel aspects of
this work. Moving forward, we introduce the STMS model for UAV-assisted mobile edge computation
and analyze it using probability distribution functions and Markov models. The subsequent section
focuses on the precise computation of critical metrics, including average queue length, cycle time,
throughput, and average delay within the STMS model. To validate our findings, we designed a Monte
Carlo experiment with 100,000 repetitions, confirming the close alignment between simulated and
theoretical values for ATMS. Following this, we propose the ATMS model and detail the construction
of a BP neural network. In the penultimate section, we deploy BP neural networks to predict average
queue length and latency in ATMS and provide a comparative analysis demonstrating ATMS’s superior
performance over STMS. Finally, we conclude our study, summarizing key findings, and outline future
research priorities.

2. System model

2.1. Network architecture

The UAV-assisted edge computing model, illustrated in Figure 1, consists of multiple shaded re-
gions, each representing an edge zone with a specific number of users denoted as N. In this con-
figuration, S UAVs equipped with mobile edge computing (MEC) servers and communication relay

Mathematical Biosciences and Engineering Volume 20, Issue 12, 21267–21291.

21272

capabilities collaborate to collectively process user data. From the user’s perspective, they interact
with a virtual UAV for data exchange.

The data transfer delay is divided into three primary segments: the duration for data transfer from
ground users to UAVs, the local computation time, and the delay involved in offloading data and com-
putation among UAVs. It is important to note that UAVs are capable of performing data calculations
and offloading simultaneously. In this paper, we focus on the delay associated with transmitting results
back to users.

UE 1

UE 2

UE 3

UE 4UE 5

UE N

···

Data exchange between UE

and Drone

Data exchange between

Drone and Drone

Figure 1. Scenarios of UAV-assisted edge computing.

Service

······

33 NN11 22

Figure 2. The STMS system model.

2.2. Complexity of the Model

The proposed service solution involves users within a specific region offloading their data to a virtual
UAV, necessitating S UAVs to concurrently process the data. This forms an STMS model, as depicted
in Figure 2.

The STMS model operates through the following steps: Initially, the virtual server serves UE 1 until
the completion of UE 1’s data transfer. Subsequently, it proceeds to serve UE 2 in a similar manner,
continuing this sequence for each UE. The polling list is updated to determine the next service to be

Mathematical Biosciences and Engineering Volume 20, Issue 12, 21267–21291.

21273

executed, as illustrated in Figure 3.
The process of the STMS can be summarized as follows:

1. Initialization of the polling list with i = 1.
2. The virtual server queries node i.
3. If node i is occupied, it services node i. If not, increment i by 1 and return to step (2).
4. If i , N, return to step (2). If i reaches N, check whether the next polling will be conducted.
5. If the next polling is scheduled, return to step (1), marking the completion of the polling cycle.

Figure 3. The flowchart of STMS.

3. Model analysis of STMS

3.1. Define random variables

We list the defined variables in Table 2.

Table 2. Definitions of random variables.

Random variables Definition
µi(n) The virtual server switching time from node i to other nodes (data uploads)
νi(n) The time of the virtual service provided by the server to node i (calculate the

data and offload the data)
µ j(µi) The amount of data entering the node j within time µi(n)
η j(νi) The amount of data entering the node j within time νi(n)

3.2. System workflow and conditions of STMS

The STMS system operates through two distinct and precisely defined moments, each playing a
vital role in understanding its operational functionality.

In the initial moment, denoted as tn, the S edge servers collaborate simultaneously with a specific
focus on servicing the requirements of node i. This phase is marked by a concentration of resources,

Mathematical Biosciences and Engineering Volume 20, Issue 12, 21267–21291.

21274

ensuring that node i’s needs are met with the highest level of efficiency. Services provided during
this interval encompass a range of operations, including data uploads, data computations, and data
offloading, all working in concert to comprehensively address the demands of node i.

As we transition to the second moment, tn+1, a significant operational shift occurs within the system.
The previous emphasis on node i gives way to a swift and seamless transition, as the system promptly
reorients itself to query and initiate service for node i + 1. This agile adaptation ensures that the
requirements of node i + 1 are promptly and effectively met. This transition highlights the STMS
model’s dynamic nature and its remarkable ability to respond to the evolving demands of diverse
nodes.

The entire system workflow, spanning these two pivotal moments, is vividly depicted in Figure 4.
This visual representation serves as an illustrative guide to the system’s progression from one moment
to the next, showcasing the dynamic nature of the STMS model and its capacity to efficiently serve
multiple nodes in a well-coordinated manner.

UE 2

UE 4

UE N

UE 1

UE 3

UE 5

NN
NN

11 22

33

44
55

11 22

33

4455

11

22

33

44

55

NN

Figure 4. The workflow of STMS.

The chronological sequence follows tn < tn+1. Furthermore, the random variable ξi(n) signifies the
data volume stored in node i’s buffer at time tn, whereas ξi(n + 1) represents the data volume stored
in node i’s buffer at time tn+1. At both time points, the system’s condition variables are expressed as
[ξ1(n), ξ2(n), . . . , ξi(n), . . . , ξN(n)] and [ξ1(n + 1), ξ2(n + 1), . . . , ξi(n + 1), . . . , ξN(n + 1)]. The system’s
state variables are delineated through acyclic and transient Markov chains within each state.

At time tn → tn+1, we get: {
ξ j(n + 1) = ξ j(n) + η j(νi) + η j(µi)
ξi(n + 1) = η j(νi) + η j(µi)

, i , j. (3.1)

3.3. Mathematical models of STMS

Based on the operational principles of the STMS, the data arrival process, and the data transmission
characteristics in the communication process, we define the following operational scenarios:

• Information packets arrive independently at each node following a Poisson distribution. The
probability-generating function for a typical node is denoted as A(z). The means and variances
for these arrivals are represented as λi(i = 1, 2, · · · ,N) = λ = A′(1) and σ2

λ = A′′(1) + λ − λ2.
• The time it takes for the server to serve any node is independently distributed and follows a

Poisson distribution. The corresponding probability-generating function is represented as B(z),
with a mean service time denoted as β = B′(1), and a variance of σ2

β = B′′(1) + β − β2.

Mathematical Biosciences and Engineering Volume 20, Issue 12, 21267–21291.

21275

• The switching times of the server from one node, say node i, to another node are independently
distributed and follow a Poisson distribution. The corresponding probability-generating function
is denoted as R(z), with a mean switch time of γ = R′(1) and a variance of σ2

γ = R′′(1) + γ − γ2.
• All data is first in, first out (FIFO)
• Sufficient node capacity, no data overflow

In a state of equilibrium, provided that the condition
N∑

i=1
λβ = Nρ < S is satisfied, the probability

distribution function for the system’s state variables is as follows:

lim
n→∞

P[ξ1(n), ξ2(n), · · · ξi(n), · · · ξN(n)] = πi(x1, x2, · · · , xi, · · · , xN). (3.2)

According to the Definition of the probability-generating function, the generating function is :

Gi(z1, z2, · · · , zi, · · · , zN)

=

∞∑
x1=0

∞∑
x2=0

· · ·

∞∑
xi=0

· · ·

∞∑
xN=0

πi(x1, x2, · · · , xi, · · · , xN)zx1
1 zx2

2 · · · z
xi
i · · · z

xN
N , i = 1, 2, · · · ,N.

(3.3)

At the time tn+1, the server starts to transmit the data of i + 1 node, and the probability-generating
function of the system state variable is:

Gi+1(z1, z2, · · · , zi, · · · , zN) = lim
t→∞

E[
N∏

j=1

zξ j(n+1)
j]

= lim
t→∞

E[
N∏

j=1
j,i

zξ j(n)+η j(νi)+η j(µi)
j · zηi(νi)+ηi(µi)

i]

= lim
t→∞

E[
N∏

j=1
j,i

zξ j(n)+η j(νi)
j · zηi(νi)

i]E[
N∏

j=1

zη j(µi)
j]

= lim
t→∞

E[
N∏

j=1
j,i

zξ j(n)+η j(νi)
j · zηi(νi)

i]E[
N∏

j=1

(A j(z j))η j(n)]

= lim
t→∞

E[
N∏

j=1
j,i

zξ j(n)+η j(νi)
j · zηi(νi)

i]Ri[
N∏

j=1

A j(z j)]

= Ri[
N∏

j=1

A j(z j)]Gi[z1, z2, · · · , zi−1, Bi(
N∏

j=1

A j(z j)), zi+1 · · · , zN].

(3.4)

4. Analysis of system variables

To assess UAV-assisted edge computing systems effectively, it is crucial to compute essential per-
formance metrics such as the average queue length, throughput, cycle time, and delay.

Mathematical Biosciences and Engineering Volume 20, Issue 12, 21267–21291.

21276

4.1. The average queue length

The average queue length reflects the level of congestion in the STMS system, and a lower average
queue length corresponds to quicker data transmission. To define the average queue length gi(j) for
the STMS, we consider it as the average number of information packets stored at node j when node i
commences data transmission at time tn. This can be formulated as:

gi(j) = lim
z1,z2,··· ,zi,··· ,zN→1

∂Gi(z1, z2, · · · , zi, · · · , zN)
∂z j

. (4.1)

According to Equations (3.4) and (4.1), we get:

gi(i) =
Nγλ(S − ρ)

S − Nρ
. (4.2)

4.2. The average cycle

The average cycle time is a fundamental metric for STMS. A shorter average cycle time signifies
faster service delivery to UEs. To formally define the average cycle time of STMS, we consider it as
the time interval between two successive queries made by the same UE to the edge server. This can be
expressed as:

E(θ) =
NS γ

S − Nρ
. (4.3)

4.3. The system throughput

Throughput is a crucial parameter that quantifies the system’s capacity to handle users and their
workload. Higher throughput implies the system’s ability to accommodate more users and efficiently
manage a larger load. Conversely, lower throughput suggests limited capacity, allowing only a few
users with reduced load handling. The throughput of STMS can be formally defined as:

T = NSλβ. (4.4)

4.4. The average delay

Average delay serves as a pivotal metric for evaluating data transmission efficiency, directly impact-
ing user data retrieval times and overall system performance. Accurate computation of the system’s av-
erage delay necessitates the calculation of second-order partial derivatives of the probability-generating
function. In this context, we define the second-order partial derivatives of the variables as follows:

gi(j, k) = lim
z1,z2,··· ,z j··· ,zk ,··· ,zN→1

∂2Gi(z1, z2, · · · , zN)
∂z j∂zk

, j = 1, 2, · · ·N; k = 1, 2, · · ·N; j , k. (4.5)

According to Equations (3.4) and (4.5), we get:

Mathematical Biosciences and Engineering Volume 20, Issue 12, 21267–21291.

21277

g(i, i) =
N

(1 + φ)(1 − Nφ)
{λ2R′′(1) +

1
1 − Nφ

[(N + 2Nφ − 1)γ2λ2

+ (N − 1)γλ2φ + (1 + φ − Nφ)γA′′(1) + Nγλ3B′′(1)]}

i = 1, 2, · · ·N; φ =
ρ

S
.

(4.6)

Definition: The average delay within the STMS signifies the temporal span from an information
packet’s arrival at the node to its subsequent transmission. In particular, the average delay upon entry
to the node is denoted as E(w), and we compute it as follows:

E(W) =
(1 + φ)g(i, i)

2λg(i)

=
1
2
{
R′′(1)
γ

+
1

1 − Nφ
[(N − 1)γ + (N − 1)φ + 2Nγφ + NλB′′(1) +

(1 + φ − Nφ)A′′(1)
λ2]}.

(4.7)

5. Simulation experiment and analysis

We determined performance parameters, including the average queue length and average cycle time,
for the multi-server gated service through the mathematical analysis method outlined above. To assess
the method’s feasibility, we created a system model using MATLAB 2022a and conducted numeri-
cal calculations along with experimental simulations. In these simulations, we assumed an ideal data
communication process where all data was transmitted successfully without any packet loss or retrans-
mission. The simulation process followed a time-slot-based division of the time axis and adhered to
the following conditions:

• The system demonstrates symmetry, with random variables at each site conforming to a Poisson
distribution.
• Information packets arrive at nodes during each unit time slot in accordance with a Poisson pro-

cess, and node storage space is considered infinite.

• System stability is maintained under the condition that
N∑

i=1
λβ = Nρ < S .

• Each experiment consists of a total of 100,000 trials.

The initial parameters for the experiments are detailed in Table 3.

Table 3. Initial parameters.

i λi βi γi

Number of UE Arrival rate Service time Switch time
5 0.001 2 1

Figure 5 depicts how the average queue length changes in response to varying arrival rate for STMS.
Notably, the simulated values closely align with the theoretical values, validating the accuracy of our
derived formula. As arrival rates increase, the average queue length in STMS similarly rises, which

Mathematical Biosciences and Engineering Volume 20, Issue 12, 21267–21291.

21278

aligns with real-world observations. Furthermore, an increase in the number of UAVs results in a
decrease in the average queue length for STMS, demonstrating the efficacy of collaborative processing.
However, excessive UAVs incur exponential costs. In cases where S=2, the average queue length in
STMS decreases without significantly escalating expenses.

In Figure 6, we observe how the average cycle period changes concerning the arrival rate for STMS.
Notably, the simulated and theoretical values closely align, attesting to the robustness of our simulation.
As the arrival rate escalates, the average cycle period for STMS experiences a corresponding increase,
a pattern consistent with real-world behavior. Moreover, an increase in the number of UAVs leads to a
reduction in the average cycle period for STMS, enhancing system operational speed. When S=2, the
average cycle period experiences a pronounced decrease. However, when S exceeds 2, the cycle period
of STMS registers only minor reductions. These results highlight the efficient operational dynamics of
STMS under varied scenarios.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

A
ve

ra
ge

 q
ue

ue
 le

ng
th

Arrival rate

 Theoretical S = 1
 Simulated S = 1
 Theoretical S = 3
 Simulated S = 3
 Theoretical S = 5
 Simulated S = 5
 Theoretical S = 7
 Simulated S = 7
 Theoretical S = 10
 Simulated S = 10

Figure 5. The average queue length of STMS varies with arrival rate.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
5

10

15

20

25

A
ve

ra
ge

 c
yc

lic
 p

er
io

d

Arrival rate

 Theoretical S = 1
 Simulated S = 1
 Theoretical S = 3
 Simulated S = 3
 Theoretical S = 5
 Simulated S = 5
 Theoretical S = 7
 Simulated S = 7
 Theoretical S = 10
 Simulated S = 10

Figure 6. The average cyclic period of STMS varies with arrival rate.

Mathematical Biosciences and Engineering Volume 20, Issue 12, 21267–21291.

21279

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

1

2

3

4

5

6

7

8

9

Th
ro
ug

hp
ut

Arrival rate

 Theoretical S = 1
 Simulated S = 1
 Theoretical S = 3
 Simulated S = 3
 Theoretical S = 5
 Simulated S = 5
 Theoretical S = 7
 Simulated S = 7
 Theoretical S = 10
 Simulated S = 10

Figure 7. The throughput of STMS varies with arrival rate.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
2

4

6

8

10

12

14

16

18

A
ve

ra
ge

 d
el

ay

Arrival rate

 Theoretical S = 1
 Simulated S = 1
 Theoretical S = 3
 Simulated S = 3
 Theoretical S = 5
 Simulated S = 5
 Theoretical S = 7
 Simulated S = 7
 Theoretical S = 10
 Simulated S = 10

Figure 8. The average delay of STMS varies with arrival rate.

Figure 7 presents the fluctuation in throughput concerning the arrival rate for STMS. The relatively
minor variance between the simulated and theoretical values signifies the system’s overall coherence.
STMS throughput is inherently linked to the arrival rate, the number of users, and the quantity of
UAVs. As the arrival rate escalates, the throughput of STMS concurrently experiences an increase,
showcasing its adaptability to the influx of data. When the number of UAVs is augmented, the STMS
throughput exhibits a gradual ascent, ultimately enhancing the system’s capacity to handle increased
load. This observation emphasizes the potential for improving STMS operational efficiency by increas-
ing the number of UAVs, particularly when dealing with a substantial number of users, as it bolsters
the system’s load-bearing capability.

Figure 8 illustrates the relationship between the average delay of STMS and the arrival rate. The
proximity of the simulated values to the theoretical values affirms the effectiveness of the simulation.
With an escalating arrival rate in STMS, the average delay proportionally increases, indicating that
the system’s capacity is constrained by a predefined number of UAVs. As the number of UAVs rises,
the average delay within STMS consistently decreases, aligning with the trends observed in Figures 5

Mathematical Biosciences and Engineering Volume 20, Issue 12, 21267–21291.

21280

and 6. Our primary objective is to optimize system efficiency while minimizing costs. Ideally, a dual-
system setup is desirable to ensure reliable and cost-effective operation. However, in scenarios with a
substantial user base, deploying additional UAVs becomes a necessity to uphold system efficiency and
service delivery.

6. Asynchronous mode performance prediction based on BP neural networks

6.1. Threshold multi-server asynchronous mode

The ATMS approach employs a strategy where multiple servers do not concurrently serve the same
node. For the purposes of illustration, let’s assume S = 2, and the system’s configuration is depicted in
Figure 9. When Server 1 initiates service at node i, it checks whether Server 2 is concurrently serving
that very node. If Server 2 is found to be servicing node i, then Server 1 immediately reassigns itself
to node i + 1. Conversely, if no concurrent service by Server 2 is detected, Server 1 proceeds to serve
node i before transitioning to the subsequent node following its service completion. This operational
sequence is visualized in the flowchart presented in Figure 10.

Service 1

······

Service 2

UE 1 UE 2 UE 3 UE 4 UE N

Figure 9. The system model of ATMS.

The process of ATMS is as follows:

1. Initialization of the polling list with i set to 1. The idle server queries node i.
2. If node i is unoccupied, increment i by 1, and return to step 2. Otherwise, proceed to service node

i.
3. If node i is currently being serviced, increment i by 1, and return to step 2. Otherwise, the idle

server commences service at node i.
4. If i is not equal to N, return to step 2. Otherwise, inquire about the need for the next polling cycle.
5. If the next polling cycle is required, return to step 1. Otherwise, conclude the polling process.

The average queue length and average delay provide valuable insights into the system’s data pro-
cessing efficiency. Figures 11 and 12 present simulated values for average queue length and average
delay in ATMS. When comparing Figure 11 with Figure 5, it’s clear that the arrival rate has a consis-
tent impact on the average queue length. Similarly, comparing Figure 12 with Figure 8 reveals that
the arrival rate consistently impacts the system’s delay. Remarkably, under identical initial parameters,
ATMS outperforms STMS, making it the preferred choice for UAV-assisted edge computing, providing
enhanced data processing capabilities.

Mathematical Biosciences and Engineering Volume 20, Issue 12, 21267–21291.

21281

Initialization

i=1

Ask if UE i node

is empty
i=i+1

The server

services

UE i node

i=i+1

i=N?

Server queries

node i and offload

data

Start

No

Yes

No

Cyclic polling?

Yes

End

No

Yes

UE i node is

receiving service

No

Yes

Figure 10. The flowchart of ATMS.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
 Simulated S = 1
 Simulated S = 3
 Simulated S = 5
 Simulated S = 7
 Simulated S = 10

Arrival rate

A
ve

ra
ge

 q
ue

ue
 le

ng
th

Figure 11. The average queue length of ATMS varies with arrival rate.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
2

4

6

8

10

12

14
 Simulated S = 1
 Simulated S = 3
 Simulated S = 5
 Simulated S = 7
 Simulated S = 10

Arrival rate

A
ve

ra
ge

 d
el

ay

Figure 12. The average delay of ATMS varies with arrival rate.

Mathematical Biosciences and Engineering Volume 20, Issue 12, 21267–21291.

21282

6.2. The principle of BP neural network

The rapid expansion of mobile edge computing and the increasing demands for efficient data pro-
cessing have significantly complicated network deployment and management. Accurate performance
forecasting is essential for evaluating system functionality and mitigating deployment challenges. In
our experiments, we introduced an ATMS model, assessing its performance through mathematical
methodologies and simulation trials. We also developed a BP neural network for performance predic-
tion, rigorously validating its reliability. Moreover, our comprehension of system performance under
specific arrival rates is invaluable for anticipating system behavior in unpredictable scenarios. This
understanding facilitates the fine-tuning of system parameters and the selection of an optimal system
model, contributing to more efficient network management.

A BP network is a multi-layer neural network with at least three layers, each consisting of multiple
neurons. The architecture of a BP neural network is depicted in Figure 13. Neurons in the left and right
layers are fully interconnected, signifying that every neuron in the left layer is linked to each neuron in
the corresponding right layer, with no connections bridging neurons across different layers. BP neural
networks are trained through supervised learning. When the network encounters a pair of learning
patterns, the activation values of its neurons propagate from the input layer, traverse through the hidden
layer, and arrive at the output layer, where neurons generate a network response corresponding to
the input pattern. Subsequently, output errors are iteratively rectified, starting from the output layer,
and proceeding backward through each hidden layer, ultimately reaching the input layer. During this
process, connection strengths are adjusted following the principle of minimizing expected errors. This
sequential correction procedure, known as the error backpropagation algorithm, results in enhanced
network accuracy in responding to input patterns through consistent training over time.

Input layer Hidden layer Output layer

1
x

2
x

3
x

1
y

2
y

Figure 13. The BP neural network structure diagram.

6.3. Parameters of BP neural network

The architecture of a BP neural network must consider the following elements: the network’s layer
count, the quantity of neurons within each layer, initial settings, and the learning rate.

• The number of network layers: In the realm of neural network design, the selection of archi-
tecture is a pivotal consideration. In the case of a BP neural network, it is commonly advised
to incorporate a minimum of one hidden layer utilizing sigmoid activation, along with a linear
output layer, resulting in a three-tier structure. This adheres to the foundational design principle
of BP neural networks, which excel at approximating rational functions. While expanding the
number of network layers can lead to diminished errors and heightened accuracy, it must be noted

Mathematical Biosciences and Engineering Volume 20, Issue 12, 21267–21291.

21283

that this approach can simultaneously introduce complexities and prolong the training process for
weight adjustments. Alternatively, an effective strategy for enhancing error accuracy involves in-
creasing the number of neurons within the hidden layer. This approach offers the benefit of more
straightforward observation and adjustment of training outcomes, making it a preferable choice
over the mere addition of extra layers. Consequently, the recommendation often leans towards
augmenting the number of neurons within the hidden layer, effectively balancing error reduc-
tion and network simplicity, aligning with the goal of achieving both accuracy and efficiency in
practical applications.
• Hidden layer: Increasing the number of neurons within the hidden layer can be beneficial for

improving network accuracy, but an excessive number of neurons may lead to overfitting. There-
fore, a practical approach involves training the network with various neuron quantities and com-
paring their performance to determine the ideal number. Additionally, the selection of initial
item weights is critical, and it’s advisable to opt for random initial weights within the range of
(-1,1) to promote efficient learning without the hindrance caused by excessively large or small
initial weights. This combination of careful neuron selection and appropriate weight initialization
contributes to a well-balanced and efficient neural network design.
• Learning efficiency: The learning rate is a critical factor that governs the extent of weight adjust-

ments made during each training cycle. A high learning rate can lead to system instability, while a
low learning rate demands a lengthier training process, resulting in slower convergence but guar-
anteeing that the network’s error value eventually approaches the minimum threshold. Therefore,
to maintain system stability while achieving efficient learning, we select a learning rate within the
range of 0.01 to 0.8, ensuring a well-balanced and reliable system performance.

6.4. Optimization attempts

• Learning Rate Scheduling: Learning rate scheduling is a crucial optimization strategy in neural
network training, playing a pivotal role. The core idea of this strategy is to gradually reduce the
numerical value of the learning rate, which can be seen as introducing a self-adjusting mechanism
in network learning to better adapt to data and enhance overall performance. The learning rate
is a key parameter that controls the magnitude of weight updates in a neural network. A higher
learning rate can result in excessively large weight updates, potentially causing system instability
and even oscillations that hinder network convergence. Conversely, a lower learning rate leads
to smaller weight updates in each step, requiring longer training time to reach the optimal state.
Therefore, selecting an appropriate learning rate range is of paramount importance. Typically, we
choose a moderate learning rate range, often between 0.01 and 0.8. This range maintains system
reliability and stability while improving learning efficiency. The strategy of gradually reducing the
learning rate allows the network to adapt to data more rapidly during the early stages of training
and become more stable in the later stages, contributing to higher accuracy and generalization
capability. This strategy is a key step in enhancing neural network performance, ensuring that
the network balances learning speed and system stability more effectively, ultimately improving
overall performance.
• Activation Function Selection: In our pursuit of enhancing our neural network’s performance,

we embarked on an extensive exploration to identify the most suitable activation function for our
specific task. Throughout this journey, we conducted thorough experiments with various acti-

Mathematical Biosciences and Engineering Volume 20, Issue 12, 21267–21291.

21284

vation functions, including ReLU (rectified linear unit), Leaky ReLU (rectified linear unit with
leakage), and Swish, among others. Our goal was to meticulously select an activation function
that would maximize our neural network’s performance. During this exploration, we delved into
both the mathematical properties of these activation functions and their real-world performance.
We conducted a comprehensive analysis, carefully comparing and evaluating the strengths and
weaknesses of each activation function. Our assessment covered various aspects, including their
non-linearity, their ability to address gradient vanishing issues, computational efficiency, and their
impact on model convergence speed and generalization capabilities. After extensive experimen-
tation and careful consideration, we ultimately opted for the Swish activation function. Swish
demonstrated exceptional performance in our specific task, combining swift convergence with
remarkable generalization capabilities. This choice signifies not only a technical triumph but also
a testament to our profound understanding of the task requirements, ensuring the best possible
performance for our neural network.

6.5. Data preparation and problem description

The evaluation of mobile edge computing systems revolves around two principal performance met-
rics: the average queueing length and the average data transmission delay. The former constitutes a
first-order performance indicator, while the latter is a second-order characteristic. Smaller values for
both metrics signify superior system performance under equivalent workloads.

Building upon the insights from Section 6.1, we maintained consistent parameters across all five
ATMS sites. Parameters encompassing the number of servers, arrival rates, and average time intervals
were provided as inputs for forecasting the average queue length and average delay. To broaden the
scope of our predictions, we increased the number of trials to simulate average queue lengths across
varying arrival rates. In these experiments, a dataset comprising 100 data sets was employed for pre-
dictive analysis.

During the data processing phase, each sample value underwent a normalization process, scaling it
to a range of (-1,1). This normalization step was instrumental in standardizing the statistical distribution
of the data samples, thereby enhancing the accuracy of our predictive models. The formula for this
normalization process is detailed in Equation (6.1).

y =
(ymax − ymin) · (x − xmin)

xmax − xmin
+ ymin. (6.1)

The dataset used for training the neural network was divided into three sets: 70% for training, 15%
for testing, and 15% for validation.

The forecasting task within the framework of ATMS can be formulated as a mathematical problem.
We seek to predict y1(l + 1) given an arrival rate of l + 1. Utilizing N historical data points as input, we
derive y1(l + 1), which is represented in the form of the matrix y1.

y1 =

y11

y12
...

y1N

 =

y11(l − N + 1) y11(l − N + 2) · · · y11(l)
y12(l − N + 1) y12(l − N + 2) · · · y12(l)

...
...

...

y1N(l − N + 1) y1N(l − N + 2) · · · y1N(l)

 (6.2)

We can obtain y2 by following the same method.

Mathematical Biosciences and Engineering Volume 20, Issue 12, 21267–21291.

21285

6.6. Model establishment

Following data preprocessing, we employed MATLAB 2022a to construct the neural network. After
extensive iterative testing, we determined the network configuration to consist of an input layer with
3 nodes, a hidden layer with 10 nodes, and an output layer with 2 nodes. Equation (6.3) outlines the
formula for calculating the mean square error (MSE). We set the number of training iterations at 1000,
the error threshold at 4.4479 × 10−10, and the learning rate at 0.01. Figure 14 illustrates the flowchart
depicting the training process of the neural network.

MS E(y, ŷ) =
1
n

n∑
i=1

(̂y − y)2. (6.3)

The neural network model, as depicted in Figure 15, was successfully established. To overcome
the issues of sluggish convergence and irregular computed values often associated with conventional
BP network models in the context of ATMS modeling, we implemented iterative calculations with
weights denoted as ω and thresholds as θ to serve as the initial parameters. Through this iterative ap-
proach, we derived updated initialization parameters ω′ and θ′ at specific points in time. Subsequently,
we employed these new parameters to create the ATMS model, effectively addressing the previously
mentioned challenges.

Start

Initialize:

and

T=1

Solve for

deviation E

Adjust and

T=1000?

T=T+1

All sample training

is completed

End
Yes

Yes

No

No

Figure 14. The flowchart of BP neural network.

w

b

+ +

w

b

+ +

Input

Hidden

Output

3

10

2

Figure 15. The BP neural network models.

7. Prediction results and analysis

The loss function is a critical metric that quantifies the disparity between predicted values and
ground truth, where a lower loss value signifies a more accurate prediction. To gain a deeper insight

Mathematical Biosciences and Engineering Volume 20, Issue 12, 21267–21291.

21286

into the model’s performance, we have visualized the loss functions for the three distinct datasets in
Figure 16. The graph reveals an interesting pattern during the training process. Initially, there is a rapid
and substantial reduction in the loss values, indicative of the network’s rapid learning and adaptation
to the data. However, as the training progresses, the rate of reduction gradually diminishes, leading
to a phase where the loss values plateau. This plateauing phase highlights the model’s ability to reach
a certain level of predictive accuracy. Upon closer examination of the training process, the optimal
validation performance is achieved at approximately the 1000th iteration. At this point, the model
attains an impressively low error rate of 4.7749 × 10−10, which underscores the network’s remarkable
precision in capturing the underlying patterns within the data. This observation provides valuable
insights into the model’s convergence and the point at which it achieves its best predictive performance.

Error statistics for the three data types are presented in Figure 17, revealing a relatively focused
error distribution. The mean squared error (MSE) is computed at 4.4479 × 10−10, with the maximum
error amounting to 0.000144. These values indicate a strong model fit and high prediction accuracy.

The error statistics, as illustrated in Figure 17, provide valuable insights into the model’s perfor-
mance across the three different data types. The error distribution, as observed, exhibits a notably
concentrated pattern, which is indicative of the model’s consistent and precise predictions. This fo-
cused error distribution implies that the majority of predictions are remarkably close to the ground
truth values, contributing to a high level of prediction accuracy. In particular, we calculated the MSE
to quantify the average magnitude of errors. The computed MSE, which stands at 4.4479 × 10−10, sig-
nifies the overall closeness of predictions to the actual data points. This remarkably low MSE suggests
that, on average, the model’s predictions deviate insignificantly from the true values, further confirm-
ing the model’s strong fit to the data. Furthermore, it’s worth noting that while the MSE provides
a comprehensive view of prediction accuracy, we also examined the maximum error, which, in this
case, amounts to 0.000144. This maximum error represents the most significant deviation between
predictions and actual values within the dataset. Even at its maximum, the error remains exceptionally
low, underscoring the model’s ability to maintain high precision and consistency in its predictions. In
summary, the error statistics depicted in Figure 17, including the low MSE and maximum error, col-
lectively validate the robustness and high prediction accuracy of the model across a diverse range of
data types. These findings reaffirm the model’s ability to provide reliable predictions with remarkable
consistency.

0 200 400 600 800 1000

Epochs

10
-10

10
-5

10
0

M
ea

n
 S

q
u

a
re

 E
rr

o
r

(m
se

)

Training

Validation

Test

Best

Figure 16. The loss function curves for BP neural networks.

Mathematical Biosciences and Engineering Volume 20, Issue 12, 21267–21291.

21287

Figure 17. The error statistics for BP neural networks.

4 6 8 10 12

Target

4

6

8

10

12

O
u

tp
u

t
~

=
 1

*T
a

rg
e

t
+

 0
.0

0
0

6
7 Training: R=0.99995

Data

Fit

Y = T

4 6 8 10

Target

4

6

8

10

O
u

tp
u

t
~

=
 1

*T
a

rg
e

t
+

 0
.0

1
4

Validation: R=0.99976

Data

Fit

Y = T

5 10 15

Target

4

6

8

10

12

14

O
u

tp
u

t~
=

 1
.1

*T
a
rg

e
t

+
 -

0
.1

3

Test: R=0.99976

Data

Fit

Y = T

5 10 15

Target

4

6

8

10

12

14

O
u

tp
u

t~
=

 1
*T

a
rg

e
t

+
 -

0
.0

2

All: R=0.99953

Data

Fit

Y = T

Figure 18. The regression analysis.

Figure 19 illustrates the relationship between ATMS’s average queue length and the arrival rate,
emphasizing the BP neural network’s accurate predictions. As the arrival rate increases, the average
queue length in ATMS rises, reflecting its ability to manage growing data loads efficiently. Moreover,
a higher number of UAVs under constant conditions reduces the average queue length, enhancing
system responsiveness. This is due to UAVs’ efficiency in mobile edge computing, facilitating faster
data processing and delivery. Comparing ATMS with STMS in Figure 5 under identical parameters,
ATMS consistently outperforms STMS. This highlights ATMS as a superior choice for managing data
traffic in mobile edge computing environments, reaffirming its efficiency and predictive strength.

Figure 20 presents the prediction graph for ATMS delays, vividly showcasing the minimal dispar-
ities between predicted and theoretical values, further emphasizing the outstanding performance of
the established BP neural network model in delivering highly accurate predictions. In line with the
earlier conclusion, delays in ATMS increase with the arrival rate. And, an encouraging finding is the
direct comparison between Figure 20 and Figure 8, which highlights ATMS’s significant advantage
over STMS under the same parameters. It’s worth noting that in both ATMS and STMS, increasing the
number of auxiliary UAVs results in a remarkable reduction in latency and a substantial improvement in
throughput. This observation further underscores the potential of auxiliary UAVs in enhancing system

Mathematical Biosciences and Engineering Volume 20, Issue 12, 21267–21291.

21288

responsiveness and performance. In summary, the results from Figure 20, along with the comparison
with Figure 8, provide compelling evidence of the predictive capabilities of the BP neural network
model and the superior performance of ATMS relative to STMS. This will offer valuable guidance for
future research and system optimization.

 Predicted S=10

Arrival rate

A
ve

ra
ge

 q
ue

ue
 le

ng
th

Figure 19. The average queue length of ATMS varies with arrival rate.

 Predicted S=10

Arrival rate

A
ve

ra
ge

 d
el

ay

Figure 20. The average delay of ATMS varies with arrival rate.

8. Conclusion

In this research, we have explored UAV-assisted MEC networks and developed a multi-server
polling scheduling methodology for both STMS and ATMS models. For STMS, we have harnessed
the power of probability generating functions and harnessed Markov chains to compute fundamen-
tal metrics encompassing average queue length, average cycle duration, throughput, and mean delay.
Numerous experiments have confirmed the accuracy of our equations by showing the convergence of
theoretical and simulated values. In contrast, for ATMS, we used a neural network to predict perfor-
mance. Our research findings have invariably underscored the supremacy of ATMS over STMS under

Mathematical Biosciences and Engineering Volume 20, Issue 12, 21267–21291.

21289

identical parameters within the domain of MEC networks. The increasing demand for internet services
and the need for improved service quality guide our future research. We will focus on developing
multi-server service strategies to meet these growing demands. We will particularly focus on carefully
determining parameters to enhance precision. Furthermore, in our future research, we will actively
explore optimization methods and algorithms to reduce energy consumption. Our main goal is to im-
prove energy efficiency and sustainability by implementing strategies and algorithms, thus reducing
energy costs.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This research received support from multiple funding sources, including Yang Zhijun’s Industry
Innovation Talents Project of Yunnan Xingdian Talents Support Plan (No. YNWR-CYJS-2020-017),
the Yunnan Province Wu Zhonghai Expert Workstation (No. 202305AF150045), the National Natural
Science Foundation of China (NSFC) under grant numbers 61461054 and 61461053, as well as funding
from the Yunnan University Graduate Research Innovation Project (No. TM-23237070).

Conflict of interest

All authors declare no conflicts of interest in this paper.

References

1. S. M. AHuda, S. Moh, Survey on computation offloading in UAV-Enabled mobile edge computing,
Network Computer Appl., 5 (2022), 103341. https://doi.org/10.1016/j.jnca.2022.103341

2. C. Feng, P. Han, X. Zhang, B. Yang, Y. Liu, L. Guo, Computation offloading in
mobile edge computing networks: A survey, Network Comput. Appl., (2022), 103366.
https://doi.org/10.1016/j.jnca.2022.103366

3. L. Chen, S. Tang, V. Balasubramanian, J. Xia, F. Zhou, L. Fan, Physical-layer security based
mobile edge computing for emerging cyber-physical systems, Comput. Commun., 194 (2022),
180–188. https://doi.org/10.1016/j.comcom.2022.07.037

4. X. Lai, J. Xia, L. Fan, T. Q. Duong, A. Nallanathan, Outdated access point selection for mobile
edge computing with cochannel interference, IEEE Transact. Vehicular Technol., 71 (2022), 7445–
7455. https://doi.org/10.1109/TVT.2022.3167405

5. Y. Guo, R. Zhao, S. Lai, L. Fan, X. Lei, G. K. Karagiannidis, Distributed machine learning for
multiuser mobile edge computing systems, IEEE J. Select. Topics Signal Process., 16 (2022),
460–473. https://doi.org/10.1109/JSTSP.2022.3140660

6. H. Jiang, X. Dai, Z. Xiao, A. K. Iyengar, Joint task offloading and resource allocation
for energy-constrained mobile edge computing, IEEE Transact. Mobile Comput., (2022).
https://doi.org/10.1109/TMC.2022.3150432

Mathematical Biosciences and Engineering Volume 20, Issue 12, 21267–21291.

http://dx.doi.org/https://doi.org/10.1016/j.jnca.2022.103341
http://dx.doi.org/https://doi.org/10.1016/j.jnca.2022.103366
http://dx.doi.org/https://doi.org/10.1016/j.comcom.2022.07.037
http://dx.doi.org/https://doi.org/10.1109/TVT.2022.3167405
http://dx.doi.org/https://doi.org/10.1109/JSTSP.2022.3140660
http://dx.doi.org/https://doi.org/10.1109/TMC.2022.3150432

21290

7. Y. Y. Cui, D. G. Zhang, T. Zhang, J. Zhang, M. Piao, A novel offloading scheduling method
for mobile application in mobile edge computing., Wireless Networks, 28 (2022), 2345–2363.
https://doi.org/10.1007/s11276-022-02966-2

8. S. K. U. Zaman, A. I. Jehangiri, T. Maqsood, N. U. Haq, A. I. Umar, J. Shuja, et al., LiMPO:
Lightweight mobility prediction and offloading framework using machine learning for mobile edge
computing, J. Cluster Comput., 26(2023), 99–117. https://doi.org/10.1007/s10586-021-03518-7

9. B. Jiang, S. Chen, B. Wang, B. Luo, MGLNN: Semi-supervised learning via multi-
ple graph cooperative learning neural networks, Neural Networks, 153 (2022), 204–214.
https://doi.org/10.1016/j.neunet.2022.05.024

10. A. Singh, K. Raj, T. Kumar, S. Verma, A. M. Roy, Deep learning-based cost-effective and respon-
sive robot for autism treatment, Drones, 7 (2023), 81. https://doi.org/10.3390/drones7020081

11. N. Zhao, Z. Ye, Y. Pei, Y. C. Liang, D. Niyato, Multi-agent deep reinforcement learning for task
offloading in UAV-assisted mobile edge computing, IEEE Transact. Wireless Commun., 21 (2022),
6949–6960. https://doi.org/10.1109/TWC.2022.3153316

12. Q. Chen, H. Zhu, L. Yang, X. Chen, S. Pollin, E. Vinogradov, Edge computing assisted au-
tonomous flight for UAV: Synergies between vision and communications, IEEE Commun. Magaz.,
59 (2022), 28–33. https://doi.org/10.1109/MCOM.001.2000501

13. P. A. Apostolopoulos, G. Fragkos, E. E. Tsiropoulou, S. Papavassiliou, Data offloading in UAV-
assisted multi-access edge computing systems under resource uncertainty, IEEE Transact. Mobile
Comput., 22 (2023), 175–190. https://doi.org/10.1109/TMC.2021.3069911

14. S. R. Sabuj, D. K. P. Asiedu, K. J. Lee, H. S. Jo, Delay optimization in mobile edge computing:
Cognitive UAV-assisted eMBB and mMTC services, IEEE Transact. Cognit. Commun. Network.,
8 (2023), 1019–1033. https://doi.org/10.1109/TCCN.2022.3149089

15. W. Lu, Y. Mo, Y. Feng, Y. Gao, N. Zhao, Y. Wu, et al., Secure transmission for multi-UAV-assisted
mobile edge computing based on reinforcement learning, IEEE Transact. Network Sci. Eng., 10
(2023), 1270–1282. https://doi.org/10.1109/TNSE.2022.3185130

16. Y. Liu, J. Yan, X. Zhao, Deep reinforcement learning based latency minimization for mobile edge
computing with virtualization in maritime UAV communication network, IEEE Transact. Vehicu-
lar Technol., 71 (2022), 4225–4236. https://doi.org/10.1109/TVT.2022.3141799

17. Z. Liu, Y. Cao, P. Gao, X. Hua, D. Zhang, T. Jiang, Multi-UAV network assisted intelli-
gent edge computing: Challenges and opportunities, China Commun., 19 (2023), 258–278.
https://doi.org/10.23919/JCC.2022.03.019

18. T. Tan, M. Zhao, Z. Zeng, Joint offloading and resource allocation based on UAV-
assisted mobile edge computing, ACM Transact. Sensor Networks (TOSN), 18 (2022), 1–21.
https://dl.acm.org/doi/abs/10.1145/3476512

19. M. H. Mousa, M. K. Hussein, Efficient UAV-based mobile edge computing using differential evo-
lution and ant colony optimization, PeerJ Comput. Sci., 8 (2022). https://doi.org/10.7717/peerj-
cs.870

Mathematical Biosciences and Engineering Volume 20, Issue 12, 21267–21291.

http://dx.doi.org/https://doi.org/10.1007/s11276-022-02966-2
http://dx.doi.org/https://doi.org/10.1007/s10586-021-03518-7
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2022.05.024
http://dx.doi.org/https://doi.org/10.3390/drones7020081
http://dx.doi.org/https://doi.org/10.1109/TWC.2022.3153316
http://dx.doi.org/https://doi.org/10.1109/MCOM.001.2000501
http://dx.doi.org/https://doi.org/10.1109/TMC.2021.3069911
http://dx.doi.org/https://doi.org/10.1109/TCCN.2022.3149089
http://dx.doi.org/https://doi.org/10.1109/TNSE.2022.3185130
http://dx.doi.org/https://doi.org/10.1109/TVT.2022.3141799
http://dx.doi.org/https://doi.org/10.23919/JCC.2022.03.019
http://dx.doi.org/https://dl.acm.org/doi/abs/10.1145/3476512
http://dx.doi.org/https://doi.org/10.7717/peerj-cs.870
http://dx.doi.org/https://doi.org/10.7717/peerj-cs.870

21291

20. H. Zhou, Z. Wang, G. Min, H. Zhang, UAV-Aided Computation offloading in mobile-edge com-
puting networks: A stackelberg game approach, IEEE Int. Things J., 10 (2023), 6622–6633.
https://doi.org/10.1109/JIOT.2022.3197155

21. Z. Wang, H. Rong, H. Jiang, Z. Xiao, F. Zeng, A load-balanced and energy-efficient navigation
scheme for UAV-mounted mobile edge computing, IEEE Transact. Network Sci. Eng., 9 (2022),
3659–3674. https://doi.org/10.1109/TNSE.2022.3188670

22. Z. Yang, S. Bi, Y. J. A. Zhang, Dynamic offloading and trajectory control for UAV-enabled mobile
edge computing system with energy harvesting devices, IEEE Transact. Wireless Commun., 21
(2022), 10515–10528. 10.1109/TWC.2022.3184953

23. J. Lin, L. Huang, H. Zhang, X. Yang, P. Zhao, A novel Lyapunov based dynamic re-
source allocation for UAVs-assisted edge computing, Comput. Networks., 205 (2022), 108710.
https://doi.org/10.1016/j.comnet.2021.108710

24. X. Wei, L. Cai, N. Wei, P. Zou, J. Zhang, S. Subramaniam, Joint UAV trajectory planning, DAG
task scheduling, and service function deployment based on DRL in UAV-empowered edge com-
puting, IEEE Int. Things J., 10 (2023), 12826–12838. https://doi.org/10.1109/JIOT.2023.3257291

25. X. Zhang, Y. Wang, DeepMECagent: Multi-agent computing resource allocation for UAV-
assisted mobile edge computing in distributed IoT system, Appl. Intell., 53 (2023), 1180–1191.
https://doi.org/10.1007/s10489-022-03482-8

26. B. Kim, J. Jang, J. Jung, J. Han, J. Heo, H. Min, A computation offloading scheme for UAV-edge
cloud computing environments considering energy consumption fairness, Drones, 7 (2023), 139.
https://doi.org/10.3390/drones7020139

27. X. Wang, Z. Yang, H. Ding, Application of polling scheduling in mobile edge computing, Axioms,
12 (2023), 709. https://doi.org/10.3390/axioms12070709

28. W. Liu, B. Li, W. Xie, Y. Dai, Z. Fei, Energy Efficient Computation offloading in aerial edge
networks with multi-agent cooperation, IEEE Transact. Wireless Commun., 22 (2023), 5725–5739.
https://doi.org/10.1109/TWC.2023.3235997

29. M. A. A. Boon, R. D. van der Mei, E. M. M. Winands, Applications of polling systems, Surveys
Operat. Res. Manag. Sci., 16 (2011), 67–82. https://doi.org/10.1016/j.sorms.2011.01.001

30. R. Suman, A. Krishnamurthy, Analysis of tandem polling queues with finite buffers, Ann. Operat.
Res., 293 (2020), 343–369. https://doi.org/10.1007/s10479-019-03358-0

c© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 20, Issue 12, 21267–21291.

http://dx.doi.org/https://doi.org/10.1109/JIOT.2022.3197155
http://dx.doi.org/https://doi.org/10.1109/TNSE.2022.3188670
http://dx.doi.org/10.1109/TWC.2022.3184953
http://dx.doi.org/https://doi.org/10.1016/j.comnet.2021.108710
http://dx.doi.org/https://doi.org/10.1109/JIOT.2023.3257291
http://dx.doi.org/https://doi.org/10.1007/s10489-022-03482-8
http://dx.doi.org/https://doi.org/10.3390/drones7020139
http://dx.doi.org/https://doi.org/10.3390/axioms12070709
http://dx.doi.org/https://doi.org/10.1109/TWC.2023.3235997
http://dx.doi.org/https://doi.org/10.1016/j.sorms.2011.01.001
http://dx.doi.org/https://doi.org/10.1007/s10479-019-03358-0
http://creativecommons.org/licenses/by/4.0

	Introduction
	Our motivation
	Related works
	Our contribution
	Structure of this paper

	System model
	Network architecture
	Complexity of the Model

	Model analysis of STMS
	Define random variables
	System workflow and conditions of STMS
	Mathematical models of STMS

	Analysis of system variables
	The average queue length
	The average cycle
	The system throughput
	The average delay

	Simulation experiment and analysis
	Asynchronous mode performance prediction based on BP neural networks
	Threshold multi-server asynchronous mode
	The principle of BP neural network
	Parameters of BP neural network
	Optimization attempts
	Data preparation and problem description
	Model establishment

	Prediction results and analysis
	Conclusion

