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Abstract: While diagnosing multiple lesion regions in chest X-ray (CXR) images, radiologists usu-
ally apply pathological relationships in medicine before making decisions. Therefore, a comprehensive
analysis of labeling relationships in different data modes is essential to improve the recognition per-
formance of the model. However, most automated CXR diagnostic methods that consider pathological
relationships treat different data modalities as independent learning objects, ignoring the alignment of
pathological relationships among different data modalities. In addition, some methods that use undi-
rected graphs to model pathological relationships ignore the directed information, making it difficult
to model all pathological relationships accurately. In this paper, we propose a novel multi-label CXR
classification model called MRChexNet that consists of three modules: a representation learning mod-
ule (RLM), a multi-modal bridge module (MBM) and a pathology graph learning module (PGL). RLM
captures specific pathological features at the image level. MBM performs cross-modal alignment of
pathology relationships in different data modalities. PGL models directed relationships between dis-
ease occurrences as directed graphs. Finally, the designed graph learning block in PGL performs the
integrated learning of pathology relationships in different data modalities. We evaluated MRChexNet
on two large-scale CXR datasets (ChestX-Ray14 and CheXpert) and achieved state-of-the-art perfor-
mance. The mean area under the curve (AUC) scores for the 14 pathologies were 0.8503 (ChestX-
Ray14) and 0.8649 (CheXpert). MRChexNet effectively aligns pathology relationships in different
modalities and learns more detailed correlations between pathologies. It demonstrates high accuracy
and generalization compared to competing approaches. MRChexNet can contribute to thoracic disease
recognition in CXR.
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1. Introduction

Thoracic diseases are diverse and imply complex relationships. For example, extensive clinical
experience [1, 2] has demonstrated that pulmonary atelectasis and effusion often lead to infiltrate de-
velopment, and pulmonary edema often leads to cardiac hypertrophy. This strong correlation between
pathologies, known as label co-occurrence, is a common phenomenon in clinical diagnosis and is not
coincidental [3], as shown in Figure 1. Radiologists need to look at the lesion area at the time of
diagnosis while integrating the pathologic relationships to arrive at the most likely diagnosis. There-
fore, diagnosing a massive number of Chest X-ray (CXR) images is a time-consuming and laborious
reasoning task for radiologists. This has inspired researchers to utilize deep learning techniques to au-
tomatically analyze CXR images and reduce the workloads of radiologists. Multiple abnormalities may
be present simultaneously in a single CXR image, making the clinical chest radiograph examination a
classic multi-label classification problem. Multi-label classification means that a sample can belong to
multiple categories (or labels) and that different categories are related. Relationships between pathol-
ogy labels are expressed differently in different data modalities. As Figure 1 shows, pathology regions
appearing simultaneously in the image reflect label relationships as features. In the word embedding of
pathology labels, the label relationship is implicit in the semantic information of each label. In recent
years, several advanced deep learning methods have been developed to solve this task [4–9]. According
to our survey, the existing methods are divided into two classes: 1) label-independent learning methods
and 2) label-correlation learning methods.
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Figure 1. Illustration of pathology relationships and alignment problems in different data
modals. Left: the pathology correlation within each modal. Right: we aligned the repre-
sentation of pathology across modals. The transformed arrows in the figure indicate that
“Pathology A→ Pathology B” means that when Pathology A appears, Pathology B is likely
to have occurred, but the converse does not necessarily hold.
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The label-independent learning method transforms the multi-label CXR recognition task into mul-
tiple independent nonintersecting binary recognition tasks. The primary process is to train a separate
binary classifier for each label on the sample to be tested. Early on, some researchers [2, 10–12] used
convolutional neural networks and their variants on this task with some success by designing elabo-
rate network structures to improve recognition accuracy. Despite their efforts and breakthroughs in
this field, some things can still be improved. Since this label-independent learning method treats each
label as an independent learning object, training results are susceptible to situations, such as missing
sample labels and sample mislabeling. Additionally, this class of methods uses only the sample image
as the main carrier of the learning object. The image as a single modal form of labeling relationships
implies a particular limitation. These methods have yet to consider interlabel correlations and ignore
the representation of labeling relationships in other data modalities.

Subsequently, clinical experience has shown that some abnormalities in CXR images may be
strongly correlated. The literature [3] suggests that this is not a coincidence but rather one of a la-
beling relationship that can be called co-occurrence. The literature [1] found that edema in the lungs
tends to trigger cardiomegaly. The literature [2] indicates that lung infiltrates are often associated with
pulmonary atelectasis and effusion. This labeling relationship inspires the application of deep learning
techniques to the CXR recognition task. In addition, this interdependent information can be used to
infer missing or noisy labels from co-occurrence relationships. This improves the robustness of the
model and its recognition performance.

Existing label-correlation learning methods are mainly categorized into two types: image-based
unimodal learning methods and methods that additionally consider textual modal data while learning
images. First, the most common technique in image-based unimodal learning methods is attention-
guided. These attention-guided methods [13–15] focus on the most discriminating lesion area features
in each sample CXR image. These methods capture the interdependence between labels and lesion
regions implicitly, i.e., by designing attention models with different mechanisms to establish the corre-
lation between lesion regions and the whole region. However, the above methods only locally establish
label correlations on the imaging modality, ignoring the global label co-occurrence relationship. An-
other approach that considers textual modal data when learning images is categorized as Recurrent
Neural Network (RNN)-based and Graph Convolutional Network (GCN)-based. These RNN-based
methods [1, 16, 17] rely on state variables to encode label-related information and use the RNN as
a decoder to predict anomalous sequences in sample images. However, this approach often requires
complex computations. In addition, some researchers [18, 19] extract valuable textual embedding in-
formation from radiology reports to assist in classification. In contrast, GCN-based methods [6,20–22]
represent label-correlation information, such as label co-occurrence as undirected graph data. These
methods treat each label as a graph node and use semantic word embeddings of labels as node features.
However, while the above methods learn the label relations in additional modalities, they ignore the
alignment between the label relation representations of different modalities, as shown on the right side
of Figure 1. Moreover, these methods of modeling pathological relationships using graphs are com-
posed so that the directed graph information is ignored, i.e., it is difficult to represent all pathological
relationships in an undirected graph accurately.

In this paper, we propose a multi-label CXR classification model called MRChexNet that integrally
learns pathology information in different modalities and models interpathology correlations more com-
prehensively. It consists of a representation learning module (RLM), a multi-modal bridge module
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(MBM), and a pathology graph learning module (PGL). In RLM, we obtain image-level pathology-
specific representations for lesion regions in every image. In MBM, we fully bridge the pathology
representations in different modalities. The image-level pathology-specific representations from RLM
align with the rich semantic information in pathology word embeddings. In PGL, we first model the
undirected graph pathology correlation matrix containing all pathology relations in a data-driven man-
ner. Second, by considering the directed information between nodes, we construct an in-degree matrix
and an out-degree matrix as directed graphs by considering the out-degree and in-degree on each node
as the study object, respectively. Finally, we designed a graph learning module in PGL that integrates
the study of pathological information in multiple modalities. The front end of the module is designed
with a graph convolution block with a two-branch symmetric structure for learning two directed graphs
containing labeling relations in different directions. The back end of the module stacks graph atten-
tion layers. All labeling relations are comprehensively learned on the undirected graph pathology
correlation matrix. Finally, the framework is optimized using a multi-label loss function to complete
end-to-end training.

In summary, our contributions are fourfold:

1) A new RLM is proposed to obtain image-level pathology-specific representation and global image
representation for image lesion regions.

2) A novel MBM is proposed that aligns pathology information in different modal representations.

3) In the proposed PGL, more accurate pathological relationships are modeled as directed graphs by
considering directed information between nodes on the graph. An effective graph learning block is
designed to learn the pathology information of different modalities comprehensively.

4) We developed the framework in two large-scale CXR datasets (ChestX-ray14 [2] and CheX-
pert [23]) and evaluated the effectiveness of MRChexNet on this basis, with average AUC scores of
0.8503 and 0.8649 for 14 pathologies. Our method achieves state-of-the-art performance in terms
of classification accuracy and generalizability.

2. Related work

This section presents a summary of the relevant literature in two aspects. First, previous works on
the automatic analysis of CXR images are introduced. Second, several representative works related to
cross-modal fusion are presented.

2.1. Multi-label chest X-ray image recognition

To improve efficiency and reduce the workloads of radiologists, researchers are beginning to ap-
ply the latest advances in deep learning to chest X-ray analysis. In the early days of deep learning
techniques applied to CXR recognition, researchers divided the CXR multi-label recognition task into
multiple independent disjoint binary labeling problems. An independent binary classifier is trained
for each anomaly present in the image. Wang et al. [2] used classical convolutional neural networks
and transfer learning to predict CXR images. Rajpurkar et al. [10] improved the network architecture
based on DenseNet-121 [11] and proposed CheXNet for anomaly classification in CXR images, which
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achieved good performance in detecting pneumonia. Li et al. [24] performed thoracic disease identi-
fication and localization with additional location annotation supervision. Shen et al. [12] designed a
novel network training mechanism for efficiently training CNN-based automatic chest disease detec-
tion models. To dynamically capture more discriminative features for thoracic disease classification,
Chen et al. [25] used a dual asymmetric architecture based on ResNet and DenseNet. However, as
mentioned above, these methods do not account for the correlation between the labels.

When diagnosing, the radiologist needs to view the lesion area while integrating pathological rela-
tionships to make the most likely diagnosis. This necessity inspired researchers to start considering la-
bel dependencies. For example, Wang et al. [16] used RNN to model label relevance sequentially. Yao
et al. [1] considered multi-label classification as a sequence prediction task with a fixed length. They
employed long short-term memory (LSTM) [26] and presented initial results indicating that utilizing
label dependency can enhance classification performance. Ypsilantis et al. [17] used an RNN-based
bidirectional attention model that focuses on information-rich regions of an image and samples the
entire CXR image sequentially. Moreover, some approaches have attempted to use different attentional
mechanisms to correlate labels with attended areas. The work of Zhu et al. [13] and Wang et al. [14]
both use an attention mechanism that only addresses a limited number of local correlations between
regions on an image. Guan et al. [15] used CNNs to learn high-level image features and designed
attention-learning modules to provide additional attention guidance for chest disease recognition. It is
worth mentioning that as the graph data structure has become a hot research topic, some approaches use
graphs to model labeling relationships. Subsequently, Chen et al. [22] introduced a workable frame-
work in which every label represents a node, the term vector of each label acts as a node feature, and
GCN is implemented to comprehend the connection among labels in an undirected graph. Li et al. [27]
developed the A-GCN, which captures label dependencies by creating an adaptive label structure and
has demonstrated exemplary performance. Lee et al. [20] described label relationships using a knowl-
edge graph, which enhances image representation accuracy. Chen et al. [6] employed an undirected
graph to represent the relationships between pathologies. They designed CheXGCN by using the word
vectors of labels as node features of the graph, and the experiments showed promising results.

2.2. Cross-modal fusion

Researchers often use concatenation or elemental summation to fuse different modal features to
fuse cross-modal features. Fukui et al. [28] proposed that two vectors of different modalities are made
exterior product to fuse multi-modal features by bilinear models. However, this method yields high-
dimensional fusion vectors. Hu et al. [29] used data within 24 hours of admission to build simpler
machine-learning models for early acute kidney injury (AKI) risk stratification and obtained good re-
sults. Xu et al. [30] encouraged data on both attribute and imaging modalities to be discriminated to
improve attribute-image person reidentification. To reduce the high-dimensional computation, Kim
et al. [31] designed a method that achieves comparable performance to the work of Fukui et al. by
performing the Hadamard product between two feature vectors but with slow convergence. It is worth
mentioning that Zhou et al. [32] introduced a new method with stable performance and accelerated
model convergence for the study of fusing image features and text embedding. Chen et al. [22] used
ResNet to learn the image features, GCN to learn the semantic information in the label word embed-
dings, and finally fused the two using a simple dot product. Similarly, Wang et al. [33] designed a
sum-pooling method to fuse the vectors of the two modalities after learning the image features and the
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semantic information of label word embeddings. It not only reduces the dimensionality of the vectors
but also increases the convergence rate of the model.

3. Materials and methods

This section proposes a multi-label CXR recognition framework, MRChexNet, consisting of three
main modules: the representation learning module (RLM), multi-modal bridge module (MBM), and
pathology graph learning module (PGL). We first introduce the general framework of our model in
Figure 2 and then detail the workflow of each of these three modules. Finally, we describe the datasets
implementation details, and evaluation metrics.
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Figure 2. The overall framework of our proposed MRChexNet.

3.1. Representation learning module

Theoretically, we can use any CNN-based model to learn image features. In our experiments,
following [1, 6, 25], we use DenseNet-169 [11] as the backbone for fair comparisons. Thus, if an in-
put image I has a 224 × 224 resolution, we can obtain 1664 × 7 × 7 feature maps from the “Dense
Block 4” layer of DenseNet-169. As shown in Figure 2, we perform global average pooling to obtain
the image-level global feature x = fGAP ( fbackbone(I)), where fGAP(·) represents the global average pool-
ing (GAP) [34] operation. We first set up a multi layer perceptron (MLP) layer learning x to obtain
an initial diagnostic score of the image, YMLP. Specifically, the MLP here consists of a layer of fully
connected (FC) network + sigmoid activation function.

YMLP = fMLP(x; θMLP), (3.1)
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where fMLP(·) represents the MLP layer and θMLP ∈ R
C×D is the parameter. We use the parameter θMLP

as a diagnoser for each disease and filter a set of features specific to a disease from the global feature
x. Each diagnoser θCMLP ∈ R

D extracts information related to disease C and predicts the likelihood of
the appearance of disease C in the image. Then, the pathology-related feature Fpr is disentangled by
Eq (3.2).

Fpr = frepeat(x) ⊙ θMLP. (3.2)

The operation frepeat(·) indicates that x ∈ RD is copied C times to form [X, · · · X]T ∈ RC×D, with
⊙ denoting the Hadamard product. Using this method to adjust the global feature x, the adjusted x
captures more relevant information for each disease.

3.2. Multi-modal bridge module

In this section, we design the MBM module to efficiently align the disease’s image features and
the disease’s semantic word embeddings. As Figure 3 shows, the MBM module is divided into two
phases: alignment + fusion and squeeze. The fixed input of the MBM module consists of two parts:
modal1 ∈ R

D1 , which represents the image features, and modal2 ∈ R
D2 , which is the word embedding.

First, we use two FC layers to convert modal1 into M1 ∈ R
D3 and modal2 into M2 ∈ R

D3 , respectively:M1 = FC1(modal1) ∈ RD3

M2 = FC2(modal2) ∈ RD3
. (3.3)

We design a separate dropout layer for M2 to prevent redundant semantic information from causing
overfitting. After obtaining two inputs M1, M2 of the same dimension, the initial bilinear pooling [35]
is defined as follows:

F = MT
1 Si M2, (3.4)

where F ∈ Ro is the output fusion feature of the MBM module and Si ∈ R
D3×D3 is the bilinear mapping

matrix with bias terms included. S = [S i, · · · , S o] ∈ RD3×D3×o can be decomposed into two low-rank
matrices ui = [u1, · · · , uG] ∈ RD3×G, vi = [v1, · · · , vG] ∈ RD3×G. Therefore, Equation (3.4) can be
rewritten as follows:

Fi = 1T
(
uT

i M1 ◦ vT
i M2

)
, (3.5)

where the value of G is the factor or latent dimension of two low-rank matrices and 1T ∈ RG is an
all-one vector. To obtain the final F, two three-dimensional tensors ui ∈ R

D3×G×o, vi ∈ R
D3×G×o need to

be learned. Under the premise of ensuring the generality of Eq (3.5), the two learnable tensors u, v are
converted into two-dimensional matrices by matrix variable dimension, namely, ui → ũ ∈ RD3×Go and
vi → ṽ ∈ RD3×Go, then Eq (3.5) simplifies to:

F = fGroupS um

(
ũT M1 ◦ ṽT M2,G

)
, (3.6)

where the function fGroupS um (vector,G) represents the mapping of g elements in vector into 1
G groups

and outputs all G groups obtained after complete mapping as potential dimensions, F ∈ RG. Further-
more, a dropout layer is added after the elementwise multiplication layer to avoid overfitting. Due to
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the introduction of elementary multiplication, the size of the output neuron can change drastically, and
the model can converge to a local minimum that is not satisfactory. Therefore, the normalization layer
(F ← F/∥F∥) and power normalization layer (F ← sign(F)|F|0.5) are appended. Finally, F is copied
C times through operation fRepeat(·), then F ∈ RC×G as the final MBM output. These are the details of
the MBM process.

FC layer1

M2

FC layer2

Modal1

Modal2 

×

M1

Dropout2

Dropout1

L2 Normalization 

GroupSum

× Element-wise Product

Stage1: Alignment + Fusion Stage2: Squeeze

Power Normalization 

···

Repeat * C

Figure 3. Architecture of multi-modal bridge module.

3.3. Pathology graph learning module

Our PGL module is built on top of graph learning. The node-level output of traditional graph
learning techniques is the predicted score of each node. In contrast, the final output of our designed
graph learning block is designed as the classifier for the corresponding label in our task. We use the
fused features of the MBM output as the node features for graph learning. Furthermore, the graph
structure (i.e., the correlation matrix) is typically predefined in other tasks. However, it is not provided
in the multi-label CXR image recognition task. We need to construct the correlation matrix ourselves.
Therefore, we devise a new method for constructing the correlation matrix by considering the directed
information of graph nodes.

First, we capture the pathological dependencies based on the label statistics of the entire dataset and
construct the pathology correlation matrix Apc. Specifically, we count the number of occurrences (Ti)
of the i-th pathological label (Li) and the simultaneous occurrences of Li and L j (Ti j=T ji). In addition,
the label dependency can be expressed by conditional probability as follows:

Pi j = P
(
Li|L j

)
=

Ti j

T j
,∀i ∈ [1,C] , (3.7)
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where Pi j denotes the probability that Li occurs under the condition that L j occurs. Note that since
the conditional probabilities between two objects are asymmetric, Pi j , P ji. The element value Apci j
at each position in this matrix is equal to Pi j. Then, by considering directed information on the graph
structure, we split an in-degree matrix Ain

pc and an out-degree matrix Aout
pc , which are defined as follows:

Ain
pc =

∑
k

Apcki Apck j∑
v Apckv

,∀i, j ∈ C, k, v ∈ C, (3.8)

Aout
pc =

∑
k

Apcik Apc jk∑
v Apcvk

,∀i, j ∈ C, k, v ∈ C. (3.9)

Then, in our PGL, the dual-branch learning of the graph learning block is specifically defined as:

Z in = f in
gc(Ain

pcFθingc), (3.10)

Zout = f out
gc (Aout

pc Fθout
gc ), (3.11)

where Z in and Zout are the outputs of the in-degree branch and the out-degree branch, respectively.
fgc(·) denotes the graph convolutional operation, and θgc denotes the corresponding trainable transfor-
mation matrix.

To learn more about the correlations between different pathological features, we use a graph atten-
tion network (GAT) [36] to consider Z in and Zout jointly. We do this by using Zall = f

′

(Z in)+ f
′

(Zout)
as the input feature to graph attention. f

′

(·) denotes the batch normalization layer and nonlinear ac-
tivation operation LeakyReLU. The graph attention layer transforms the implicit features of the input
nodes and aggregates the neighborhood information to the next node to improve the correlation be-
tween the information of the central node and its neighbors. The input Zall to the graph attention layer
is the set of node features

{
Zall

1 , Z
all
2 , · · · , Z

all
n

}
∈ Rd, where d is the number of feature dimensions in

each node. The attention weight coefficients ei, j are computed between node i and the neighborhood
of node j ∈ NBi by a learnable linear transformation matrix W and applied to all nodes, as shown in
Eq (3.12).

ei, j = a
[
WXi∥WX j

]
, (3.12)

where ∥ is the concatenation operation, W ∈ Rd́×d, a ∈ Rd́×d is a learnable parameter and d́ denotes
the dimensionality of the output features. The graph attention layer allows each node to focus on each
of the other nodes. ei, j uses LeakyReLU as the nonlinear activation function and is normalized by the
sigmoid function, which can be expressed as:

αi, j = S igmoid j

(
ei, j

)
=

exp
(
LeakyReLU

(
ei, j

))∑
k∈NBi

exp
(
LeakyReLU

(
ei,k

)) . (3.13)

To stabilize the learning process of the graph attention in the PGL module, we extended the multi-
headed self-attention mechanism within it as follows:

YPGL = ∥
K
k=1ReLU

(
α(k)ZallW k

)
, (3.14)

where YPGL ∈ R
KD́ denotes the output features incorporating the pathology-correlated features, K

denotes the number of attention heads, and α(k) denotes the normalized k-th attention weight coefficient
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matrix. Wk denotes the transformable weight matrix under the corresponding k-th attention head.
Finally, the output features are averaged and passed to the next node.

YPGL = ReLU
(

1
K

) K∑
K=1

(
α(k)ZallW k

)
. (3.15)

We show through empirical studies that PGL can detect potentially strong correlations between patho-
logical features. It improves the model’s ability to learn implicit relationships between pathologies.

After obtaining YMLP and YPGL, we set the final output of our model as YOut = YMLP + YPGL and then
feed it into the loss function to calculate the loss. Finally, we update the entire network end-to-end
using the MultiLabelSoftMargin loss (called multi-label loss) function [37]. The training loss function
is described as:

L (YOut, L) = −
1
C

C∑
j=1

L j log
((

1 + exp
(
−Yout j

))−1
)

+
(
1 − L j

)
log

 exp
(
−Yout j

)(
1 + exp

(
−Yout j

)) ,
(3.16)

where YOut and L denote the predicted pathology and the true pathology of the sample image, respec-
tively. Yout j and L j denote the j-th element in its predicted pathology and the j-th element in the actual
pathology.

4. Experiments

In this section, we report and discuss the results on two benchmark multi-label CXR recognition
datasets. Ablation experiments were also conducted to explore the effects of different parameters and
components on MRChexNet. Finally, a visual analysis was performed.

4.1. Datasets

ChestX-Ray14 is a large CXR dataset. It contains 78,466 training images, 11,220 validation images,
and 22,434 test images. Approximately 1.6 pathology labels from 14 semantic categories are applied to
the patient images. Each image is labeled with one or more pathologies, as illustrated in Figure 4. We
strictly follow the official splitting standards of ChestX-Ray14 provided by Wang et al. [2] to conduct
our experiments so that our results are directly comparable with most published baselines. We use the
training and validation sets to train our model and then evaluate the performance on the test set.

CheXpert is a popular dataset for recognizing, detecting and segmenting common chest and lung
diseases. There are 224,616 images in the database, including 12 pathology labels and two nonpathol-
ogy labels (not found and assistive device). Each image is assigned one or more disease symptoms,
and the disease results are labeled as positive, negative and uncertain, as illustrated in Figure 4; if no
positive disease is found in the image, it is labeled as ‘no finding’. Undetermined labels in the images
can be considered positive (CheXpert 1s) or negative (CheXpert 0s). On average, each image had 2.9
pathology labels for CheXpert 1s and 2.3 for CheXpert 0s. Since the data for the test set are still not
published, we redivided the dataset into a training set, a validation set, and a test set at a ratio of 7:1:2.
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Figure 4. Example images and the corresponding labels in the ChestX-Ray14 and CheXpert
datasets. Each image is labeled with one or more pathologies. In CheXpert, the uncertain
pathology is marked in red.

As described earlier, the proposed PGL module involves the global modeling of all pathologies
on the basis of cooccurrence pairs, the results of which are the identification of potential pathologies
present in each image. As shown in Figure 5, many pathology pairs with cooccurrence relationships
were obtained by counting the occurrences of all pathologies in both datasets separately. For example,
lung disease is frequently associated with pleural effusion, and atelectasis is frequently associated with
infiltration. This phenomenon serves as a basis for constructing pathology correlation matrix Apc and
provides initial evidence of the feasibility of the proposed PGL module.

Figure 5. Graph representations of the pathology correlation extracted from the ChestX-
Ray14, CheXpert 1s and CheXpert 0s datasets.
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4.2. Implementation details

All experiments were run on an Intel 8268 CPU and NVIDIA Tesla V100 32 GB GPU. Moreover,
it was implemented based on the PyTorch framework. First, we resize all images to 256 × 256 and
normalize via the mean and standard deviation of the ImageNet dataset. Then, random cropping to
make images 224 × 224, random horizontal flip, and random rotation were applied, as some images
may have been flipped or rotated within the dataset. The output characteristic dimension D1 of the
backbone was 1664. In the PGL module, we designed a graph learning block consisting of 1-1 sym-
metrically structured GCN layers stacked with 2(2) graph attention layers (the number of attention
heads within the layer). The number of GCN output channels was 1024 and 1024, respectively. We
used a 2-layer GAT model, with the first layer using K = 2 attention heads, each head computing 512
features (1024 features in total), followed by exponential linear unit (ELU) [46] nonlinearity. The sec-
ond layer did the same, averaging these features, followed by logistic sigmoid activation. In addition,
we considered LeakyReLU with a negative slope of 0.2 as the nonlinear activation function used in the
PGL module. The input pathology label word embedding was a 300-dimensional vector generated by
the GloVe model pretrained on the Wikipedia dataset. When multiple words represented the pathology
labels, we used the average vector of all words as the pathology label word embedding. In the MBM,
we set D3 = 14,336 to bridge the vectors of the two modes. Furthermore, we set G = 1024 with g =
14 to complete the GroupSum method. The ratios of dropout1 and dropout2 were 0.3 and 0.1, respec-
tively. The whole network was updated by AdamW with a momentum of (0.9, 0.999) and a weight
decay of 1e-4. The initial learning rate of the whole model was 0.001, which decreased 10 times every
10 epochs.

In our experiments, we used the AUC value [38] (the area under the receiver operating character-
istic (ROC) curve [38]) for each pathology and the mean AUC value across all cases to measure the
performance of MRChexNet. There was no data overlap between the training and testing subsets. The
true label of each image was labeled with L = [L1, L2, . . . , LC]. In the dataset of two CXR label num-
bers C = 14, each element LC indicated the presence or absence of the C-th pathology, i.e., 1 indicated
presence and 0 indicated absence. For each image, the label was predicted as positive if the confidence
level of the label was greater than 0.5.

4.3. Comparison with existing methods

In this section, we conduct experiments on ChestX-Ray14 and CheXpert to compare the perfor-
mance of MRChexNet with existing methods.

Results from ChestX-Ray14 and discussion: We compared MRChexNet with a variety of exist-
ing methods including U-DCNN [2], LSTM-Net [1], CheXNet [10], DNet [39], AGCL [19], DR-
DNN [12], CRAL [15], DualCheXN [25] and CheXGCN [6]. We present the results of the comparison
on ChestX-Ray14 in Table 1 including the evaluation metrics for the entire dataset of 14 pathology
labels. MRChexNet outperformed all candidate methods on most pathology-labeled metrics. Fig-
ure 6 illustrates the ROC curves of our model over the 14 pathologies on ChestX-Ray14. Specifi-
cally, MRChexNet outperformed these previous methods in mean AUC score, especially for U-DCNN
(0.745) and LSTM-Net (0.798), with improvements of 10.5% and 3.7%, respectively. Moreover, it
outperformed DualCheXNet (0.823) and improved the AUC score of detecting consolidation (0.819
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vs. 0.746) and pneumonia (0.783 vs. 0.727) by more than 6.0%. Notably, the mean AUC score
of MRChexNet improved by 2.4% over CheXGCN (0.826). The AUC scores of some pathologies
labeled with MRChexNet obviously improved, e.g., cardiomegaly (0.923 vs. 0.893), consolidation
(0.819 vs. 0.751), edema (0.904 vs. 0.850) and atelecta (0.824 vs. 0.786). It must be mentioned that
our proposed model performed somewhat poorly on the nodule and fibrosis labels. Note that the patho-
genesis of these diseases is systemic, and we generated word embeddings of their pathological labels
using only their noun meanings without adding additional semantics to explain their sites of pathogen-
esis. This issue led to the unsatisfactory performance of MRChexNet on these pathologies. Overall,
the proposed MRChexNet improved the multi-label recognition performance of ChestX-Ray14 and
outperformed existing methods.

Table 1. AUC comparisons of MRChexNet with existing methods on ChestX-Ray14.
ChestX-Ray14

Method AUC Mean AUC
atel card effu infi mass nodu pne1 pne2 cons edem emph fibr pt hern

U-DCNN [2] 0.700 0.810 0.759 0.661 0.693 0.669 0.658 0.799 0.703 0.805 0.833 0.786 0.684 0.872 0.745
LSTM-Net [1] 0.772 0.904 0.859 0.695 0.792 0.717 0.713 0.841 0.788 0.882 0.829 0.767 0.765 0.914 0.798
DR-DNN [12] 0.766 0.801 0.797 0.7510.7510.751 0.760 0.741 0.778 0.800 0.787 0.820 0.773 0.765 0.759 0.748 0.775
AGCL [19] 0.756 0.887 0.819 0.689 0.814 0.755 0.729 0.850 0.728 0.848 0.906 0.818 0.765 0.875 0.803
CheXNet [10] 0.769 0.885 0.825 0.694 0.824 0.759 0.715 0.852 0.745 0.842 0.906 0.821 0.766 0.901 0.807
DNet [39] 0.767 0.883 0.828 0.709 0.821 0.758 0.731 0.846 0.745 0.835 0.895 0.818 0.761 0.896 0.807
CRAL [15] 0.781 0.880 0.829 0.702 0.834 0.773 0.729 0.857 0.754 0.850 0.908 0.830 0.778 0.917 0.816
DualCheXN [25] 0.784 0.888 0.831 0.705 0.838 0.796 0.727 0.876 0.746 0.852 0.942 0.8370.8370.837 0.796 0.912 0.823
CheXGCN [6] 0.786 0.893 0.832 0.699 0.840 0.8000.8000.800 0.739 0.876 0.751 0.850 0.9440.9440.944 0.834 0.795 0.929 0.826
MRChexNet (Ours)MRChexNet (Ours)MRChexNet (Ours) 0.8240.8240.824 0.9230.9230.923 0.8940.8940.894 0.719 0.8570.8570.857 0.779 0.7830.7830.783 0.8880.8880.888 0.8190.8190.819 0.9040.9040.904 0.920 0.835 0.8080.8080.808 0.9460.9460.946 0.8500.8500.850

Note: The 14 pathologies in Chest X-Ray14 are atelectasis (atel), cardiomegaly (card), effusion (effu), infiltration (infi), mass, nodule (nodu), pneumonia (pne1), pneumothorax
(pne2), consolidation (cons), edema (edem), emphysema (emph), fibrosis (fibr), pleural thickening (pt) and hernia (hern).

Table 2. AUC comparisons of MRChexNet with previous baseline on CheXpert 1s.
CheXpert 1s

Method AUC Mean AUC
nofi enla card opac lesi edem cons pne1 atel pne2 pleu1 pleu2 frac supp

ML-GCN [22] 0.879 0.630 0.841 0.723 0.773 0.856 0.692 0.740 0.713 0.829 0.873 0.802 0.762 0.868 0.784
U Ones [23] 0.890 0.659 0.856 0.735 0.778 0.847 0.701 0.756 0.722 0.855 0.871 0.798 0.789 0.878 0.795
DenseNet-169 [11] 0.916 0.717 0.895 0.770 0.783 0.882 0.7100.7100.710 0.7740.7740.774 0.728 0.871 0.916 0.817 0.805 0.909 0.821
MRChexNet 1s (Ours) 0.9760.9760.976 0.7380.7380.738 0.9000.9000.900 0.8870.8870.887 0.9400.9400.940 0.8840.8840.884 0.701 0.719 0.7590.7590.759 0.9250.9250.925 0.9240.9240.924 0.8520.8520.852 0.9580.9580.958 0.9440.9440.944 0.8650.8650.865

Note: The 14 pathologies in CheXpert are no Finding (nofi), enlarged cardiomediastinum (enla), cardiomegaly (card), lung opacity (opac), lung lesion (lesi), edema (edem),
consolidation (cons), pneumonia (pne1), atelectasis (atel), pneumothorax (pne2), pleural effusion (pleu1), pleural other (pleu2), fracture (frac) and support devices (supp).

Table 3. AUC comparisons of MRChexNet with the previous baseline on CheXpert 0s.
CheXpert 0s

Method AUC Mean AUC
nofi enla card opac lesi edem cons pne1 atel pne2 pleu1 pleu2 frac supp

ML-GCN [22] 0.864 0.673 0.831 0.681 0.802 0.770 0.713 0.758 0.654 0.845 0.841 0.764 0.754 0.838 0.771
U Zeros [23] 0.885 0.678 0.865 0.730 0.760 0.853 0.735 0.740 0.700 0.872 0.880 0.775 0.743 0.877 0.792
DenseNet-169 [11] 0.912 0.715 0.884 0.738 0.780 0.8610.8610.861 0.753 0.770 0.711 0.860 0.9040.9040.904 0.830 0.758 0.8780.8780.878 0.811
MRChexNet 0s (Ours) 0.9140.9140.914 0.8080.8080.808 0.8940.8940.894 0.7480.7480.748 0.9130.9130.913 0.827 0.8010.8010.801 0.8680.8680.868 0.7440.7440.744 0.9280.9280.928 0.876 0.9090.9090.909 0.9150.9150.915 0.859 0.8580.8580.858

Results from CheXpert and discussion: To our limited knowledge, the test set of CheXpert has
yet to be publicly available and can only be redivided by itself. Fewer state-of-the-art methods are
available for comparison. Based on that, we further evaluated the comparison of our model with the
uncertainty labeling treatments mentioned in the original dataset (U Ones and U Zeros). As shown in
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Table 2, MRChexNet 1s obtained higher mean AUC scores on 14 pathological labels for CheXpert 1s,
which were 1.5% higher than the techniques in the original paper U Ones. Additionally, compared to
the vanilla DenseNet-169, the improvement is 3.8%. As shown in Table 3, MRChexNet 0s obtained
higher mean AUC scores on 14 pathological labels for CheXpert 0s, which were 2.1% higher than the
techniques U Zeros in the original paper. The mean AUC score of MRChexNet is 3.1% higher than that
of vanilla DenseNet-169. These results prove that our two proposed modules can work better when re-
inforcing each other. Overall, the AUC score of MRChexNet 1s was better than that of MRChexNet 0s
by 0.3%, especially for lung lesions by 3.5% (0.788→0.823), atelectasis by 2.5% (0.707→0.732) and
fracture by 2.7% (0.793→0.820). This is because the true value of these uncertainty labels on the image
is likely to be negative. The converse is also true. Figure 6 illustrates the ROC curves of MRChexNet
on ChestX-ray14, CheXpert 1s and CheXpert 0s for the 14 pathologies.

Figure 6. ROC curves of MRChexNet on the ChestXRay14 and CheXpert, respectively. The
corresponding AUC scores are given in Tables 1−3.

Table 4. Comparison of AUC of MRChexNet with its different components on ChestX-
Ray14.

Chest X-Ray14
Method AUC Mean AUC

atel card effu infi mass nodu pneu1 pneu2 cons edem emph fibr pt hern
Baseline : DenseNet-169 [11] 0.775 0.879 0.826 0.685 0.766 0.689 0.725 0.823 0.788 0.841 0.838 0.767 0.742 0.811 0.782
Baseline +MBM 0.800 0.892 0.860 0.707 0.856 0.760 0.741 0.859 0.810 0.870 0.883 0.711 0.781 0.796 0.809
Baseline + PGL 0.820 0.920 0.888 0.710 0.784 0.769 0.756 0.873 0.808 0.896 0.874 0.744 0.799 0.804 0.818
MRChexNet (Ours) 0.8240.8240.824 0.9230.9230.923 0.8940.8940.894 0.7190.7190.719 0.8570.8570.857 0.7790.7790.779 0.7830.7830.783 0.8880.8880.888 0.8190.8190.819 0.9040.9040.904 0.9200.9200.920 0.8350.8350.835 0.8080.8080.808 0.9460.9460.946 0.8500.8500.850

4.4. Ablation experiments and discussion

MRChexNet with its different components on ChestX-Ray14: We experimented with the perfor-
mance of the components of the MRChexNet; the results are shown in Table 4. In baseline + PGL, we
use a simple summation of elements instead of MBM to fuse the visual feature vectors of pathology
and the semantic word vectors of pathology. The obtained simple fusion vectors are used as the node
features of the graph learning block. Compared to the baseline DenseNet-169, the mean AUC score
of baseline + PGL was significantly higher by 3.6% (0.782→ 0.818), especially in atelectasis (0.775
→ 0.820), cardiomegaly (0.879→ 0.920), effusion (0.826→ 0.888) and nodule (0.689→ 0.769), ex-
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ceeding the vanilla DenseNet-169 by an average of 5.7% in those pathology labels. The experimental
results showed that the proposed PGL module is crucial in mining the global cooccurrence between
pathologies. Note that in the baseline +MBM model, the fixed direct input2 to the MBM module is a
vector of 14 pathology-annotated words with initial semantic information. We learn the output of the
resulting cross-modal fusion vectors from one FC layer by aligning the visual features of pathology
with the semantic word vectors of pathology. Compared to the DenseNet-169 baseline, the mean AUC
score of baseline + MBM was significantly higher by 2.7% (0.782 → 0.809), especially in atelecta-
sis (0.775 → 0.800), effusion (0.826 → 0.860), pneumothorax (0.823 → 0.859), and mass (0.766 →
0.856) on pathology, exceeding the vanilla DenseNet-169 by an average of 4.6% in those pathology
labels. With the addition of the MBM and PGL modules, MRChexNet significantly improved the mean
AUC score by 6.8%. In particular, the AUC score improvement was significant for atelectasis (0.775
→ 0.824), pneumothorax (0.823→ 0.888), and emphysema (0.838→ 0.920). This phenomenon indi-
cates that the MBM and PGL modules in our framework can reinforce and complement each other to
make MRChexNet perform at its best.

Table 5. Comparison of the test time of MRChexNet with its different components.

Method Test time (1 image)
Baseline : DenseNet−169 2.5 × 10−6 s
(Baseline +MBM) − Baseline 12.1 × 10−6 s
(Baseline + PGL) − Baseline 20.3 × 10−6 s
MRChexNet (Ours) 33.7 × 10−6 s

Testing time for different components in MRChexNet: We experimented with the inference time
for each component of MRChexNet, and the results are shown in the Table 5. We have set the inference
time in seconds and the inference duration as the time to infer 1 image. Then, we first tested an image
using Baseline and the obtained time as a base. After testing an image using Baseline + MBM and
Baseline + PGL to get the duration, the base inference duration of the previous baseline is subtracted
to get the exact inference duration of each module. According to the results, it can be seen that MBM
and PGL increase the reasoning time of the model by 20.3 × 10−6 and 33.7 × 10−6 s, respectively. It
is worth mentioning that the interaction of the two achieves a satisfactory recognition performance,
which is an acceptable result compared to the manual reasoning time of the radiologist.

MRChexNet under different types of word embeddings: We default to using GloVe [40] as the
token representation as input to the multi-modal bridge module (MBM). In this section, we evaluate
the performance of MRChexNet under other types of popular word representations. Specifically, we
investigate four different word embedding methods, including GloVe [40], FastText [41], and simple
single-hot word embedding. Figure 7 shows the results using different word embeddings on ChestX-
Ray14 and CheXpert. As shown, we can see that thoracic disease recognition accuracy is not sig-
nificantly affected when using different word embeddings as inputs to the MBM. Furthermore, the
observations (especially the results of one-hot) demonstrate that the accuracy improvement achieved
by our approach does not come entirely from the semantics produced by the word embeddings. Fur-
thermore, using powerful word embeddings led to better performance. One possible reason may be
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that the word embeddings learned from a large text corpus maintain some semantic topology. That is,
semantic-related concept embeddings are close in the embedding space. Our model can employ these
implicit dependencies and further benefit thoracic disease recognition.

ChestX-Ray14 CheXpert-1s CheXpert-0s
80

82
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86
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90

M
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OneHot

Figure 7. Effects of different pathology word embedding approaches. It is clear that different
pathology word embeddings have little effect on accuracy. This shows that our improvements
are not necessarily due to the semantic meanings derived from the pathology word embed-
dings but rather to our MRChexNet.

Groups G and elements g in GroupSum: In this section, we evaluate the performance of the MBM
in MRChexNet by using a different number of groups G and the number of elements g within a group.
With the GroupSum in the MBM, each D3-dimensional vector will be converted into a G-dimensional
vector. We have a set of G-g ∈ {(2048, 7), (1024, 14), (512, 28), (256, 56), (128, 112)} to generate a
low-dimensional bridging vector. As shown in Figure 8, MRChexNet obtains better performance on
ChestX-Ray14 when G = 1024 and g = 14 are chosen, while the change in the mean AUC is very
slight on CheXpert. We believe that the original semantic information between the pathology word
embeddings can be better expressed by G = 1024 and g = 14. Other values of G-g bring similar results,
which do not affect the model too much.

Different numbers of GCN layers and GAT layers of the graph learning block in PGL: Since
the front end of the graph learning block we have designed is a GCN with a dual-branch symmetric
structure, the main discussion is about the number of GCN layers on each branch. We set the graph
attention layer at the end of the graph learning block. To maintain the symmetry of the graph learning
block structure, we kept the number of layers the same as the number of attention heads within the
layer. We show the performance results for different GCN layers of our model in Table 6. For the
1-1 layer model to GCN, in each branch, the output dimensions of the sequential layers are 1024. For
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the 2-2 layer model to GCN, in each branch, the output dimensions of the sequential layers are 1024
and 1024. For the 3-3 layer model to GCN, in each branch, the output dimensions of the sequential
layers are 1024. We aligned the number of graph attention layers with the number of attention heads.
Specifically, for the 1-layer GAT model, with the layer using K = 1 attention heads, the head computes
1024 features (1024 features in total). For the 2-layer GAT model, with the first layer using K = 2
attention heads, each head computes 512 features (1024 features in total), and the second layer does the
same. As shown in the table, the pathology recognition performance on both datasets decreased when
the number of GCN layers and the number of GAT layers increased. The performance degradation was
due to the accumulation of information transfer between nodes when more GCN and GAT layers were
used, leading to oversmoothing.

Figure 8. The change of mean AUC using different values of G-g.

Table 6. The different number of GCN layers and GAT layers of the graph learning block
in PGL.

Mean AUC
#Layer Dataset

Dual-branch GCN GAT (heads) ChestX-Ray14 CheXpert-0s CheXpert-1s

1-11-11-1
1(1) 0.8417 0.8493 0.8366
2(2)2(2)2(2) 0.85030.85030.8503 0.86490.86490.8649 0.85750.85750.8575

2-2
1(1) 0.8342 0.8402 0.8309
2(2) 0.8251 0.8323 0.8187

3-3
1(1) 0.8187 0.8238 0.8194
2(2) 0.8063 0.8109 0.8057

4.5. Visualization of lesion areas for qualitative assessment

In Figure 9, we visualize the original images and the corresponding label-specific activation maps
obtained by our proposed MRChexNet. It is clear that MRChexNet can capture the discriminative
semantic regions of the images for the different chest diseases. Figure 10 illustrates a visual represen-
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Figure 9. Visualization results of pathology correlation activation maps on ChestX-Ray14
dataset. The three columns on the right are three samples with different diseases and their
corresponding activation maps.
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Figure 10. Visualization results of our model scoring the highest pathology on the images to
be tested in the ChestX-Ray14 dataset. We present the top-eight predicted pathology labels
and the corresponding probability scores. The ground truth labels are highlighted in red.
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tation of multi-label CXR recognition. The top-eight predicted scores for each test subject are given
and sorted top-down by the magnitude of the predicted score values. As shown in Figure 10, com-
pared with the vanilla DenseNet-169 model, the proposed MRChexNet enhances the performance of
multi-label CXR recognition. Our MRChexNet can effectively improve associated pathology confi-
dence scores and suppress nonassociated pathology scores with fully considered and modeled global
label relationships. For example, in column 1, row 2, MRChexNet fully considers the pathological
relationship between effusion and atelectasis. In the presence of effusion, the corresponding confi-
dence score for atelectasis was (0.5210 → 0.9319); compared to vanilla DenseNet-169 performance,
the confidence score improved by approximately 0.4109. For the weakly correlated labels, effusion
ranked first in column 2, row 3 regarding the DenseNet-169 score. While MRChexNet fully considers
the global interlabel relationships, its confidence score does not reach the top 8. To some extent, this
demonstrates the ability of our model to suppress the confidence scores of nonrelevant pathologies.

5. Conclusions

Improving the performance of multi-label CXR recognition algorithms in clinical environments by
considering the correspondence between pathology labels in different modalities and capturing the
correlation relationship between related pathologies is vital, as is aligning pathology-relationship rep-
resentations in different modalities and learning the relationship information of pathologies within
each modality. In this paper, we propose a multi-modal bridge and relational learning method named
MRChexNet to align pathological representations in different modalities and learn information about
the relationship of pathology within each modality. Specifically, our model first extracts pathology-
specific feature representations in the imaging modality by designing a practical RLM. Then, an ef-
ficient MBM is designed to align pathological word embeddings and image-level pathology-specific
feature representations. Finally, a novel PGL is intended to comprehensively learn the correlation of
pathologies within each modality. Extensive experimental results on ChestX-Ray14 and CheXpert
show that the proposed MBM and PGL can effectively enhance each other, thus significantly improv-
ing the model’s multi-label CXR recognition performance with satisfactory results. In the future, we
will introduce the relation weight parameter in pathology relation modeling to learn more accurate
pathology relations to help further improve the multi-label CXR recognition performance.

In the future, we will extend the applicability of the proposed method to other imaging modalities,
such as optical coherence tomography (OCT). Among them, OCT is a noninvasive optical imaging
modality that provides histopathology images with microscopic resolution [42–45]. Our next research
direction is extending the proposed method for OCT-based pathology image analysis. In addition,
exploring the interpretability and readability of models has been a hot research topic in making deep
learning techniques applicable to clinical diagnosis. Our next research direction is also how to make
our model more friendly and credible for clinicians’ understanding.
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