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Abstract: Human history is also the history of the fight against viral diseases. From the eradication of 
viruses to coexistence, advances in biomedicine have led to a more objective understanding of viruses 
and a corresponding increase in the tools and methods to combat them. More recently, antiviral 
peptides (AVPs) have been discovered, which due to their superior advantages, have achieved great 
impact as antiviral drugs. Therefore, it is very necessary to develop a prediction model to accurately 
identify AVPs. In this paper, we develop the iAVPs-ResBi model using k-spaced amino acid pairs 
(KSAAP), encoding based on grouped weight (EBGW), enhanced grouped amino acid composition 
(EGAAC) based on the N5C5 sequence, composition, transition and distribution (CTD) based on 
physicochemical properties for multi-feature extraction. Then we adopt bidirectional long short-term 
memory (BiLSTM) to fuse features for obtaining the most differentiated information from multiple 
original feature sets. Finally, the deep model is built by combining improved residual network and 
bidirectional gated recurrent unit (BiGRU) to perform classification. The results obtained are better 
than those of the existing methods, and the accuracies are 95.07, 98.07, 94.29 and 97.50% on the four 
datasets, which show that iAVPs-ResBi can be used as an effective tool for the identification of 
antiviral peptides. The datasets and codes are freely available at 
https://github.com/yunyunliang88/iAVPs-ResBi. 

Keywords: antiviral peptides; features extraction; feature fusion; residual network; bidirectional gated 
recurrent unit 
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1. Introduction  

Viruses are microscopic infectious complexes that replicate in host cells. As a type of cellular 
organism, viruses have a very simple structure and do not have their own metabolic system, which 
means they have to colonize living cells [1]. As a result, once the virus has left the host cell, it loses 
all its vital activities and can no longer replicate, but it is highly pathogenic [2]. The great diversity of 
viruses, their genetic variation, their unclear routes of transmission and their tendency to acquire 
specific resistance to antiviral drugs through the evolution of mutations make it extremely difficult for 
researchers to develop effective and safe specific treatments [3,4]. Infectious diseases caused by viral 
pathogens have a major impact worldwide. Zoonotic viruses such as Ebola, Zika fever, West Nile virus, 
HIV, SARS-CoV and SARS-CoV-2 are particularly dangerous. COVID-19, in particular, has caused 
millions of deaths worldwide. The development of antiviral drugs is therefore essential [5].  

Peptides have interesting pharmacological properties such as high selectivity and relative safety [6]. 
Compared to conventional non-peptide drugs, these potential antiviral agents have a number of 
advantages. Peptides are highly specific, readily present in the human body and perform a wide range 
of biological functions. Furthermore, peptides are inexpensive to produce and easy to modify and 
synthesize [7]. They are mainly used as signaling and regulatory molecules in various physiological 
processes [8]. Previously, antiviral peptides (AVPs) are isolated from animal excretions after activation 
of the host defense process. Today, however, they are now available by reasonable design, either 
chemically [9] or from recombinant libraries. [10]. AVPs can be divided into two categories according 
to their mode of action on the host organism: virus-targeted and peptide-targeted [11]. To inactivate 
specific viral proteins [12], virus-targeted peptides inhibit viral enzymes involved in transcription and 
replication [13,14]. Only a few compounds with antiviral activity are known. AVPs are a kind of small 
polypeptide molecules with biological activity, which can kill or inhibit viruses. And they have been 
shown experimentally to prevent viruses from attaching to and invading host cells [15,16]. The unique 
molecular structure and mechanism of action have made antiviral peptides a hot spot in antiviral 
research. The majority of antiviral drugs act on specific regions or components of the virus to inhibit 
its growth. New antiviral drugs are being discovered by targeting various stages of the virus’s life cycle, 
such as the process by which the virus enters the host and the process by which it is synthesized within 
the host [17].  

The limited availability of therapeutic molecules targeting many viral infections means that new 
antiviral drug candidates need to be found to control resurgent and drug-resistant pathogenic viruses [18]. 
Experimentally validated antiviral peptides can therefore be used as an alternative strategy against 
medically important viruses [19]. Machine learning algorithms, in particular deep learning algorithms, 
have been used to efficiently identify antiviral peptides. Thakur et al. [20] developed the first anti-viral 
peptide prediction tool, called AVPpred, using amino acid composition and physicochemical properties 
and support vector machine. Chang et al. [21] showed that a physicochemical model using random 
forests was better at identifying antiviral peptides. Zare et al. [22] classified antiviral peptides using 
pseudo amino acid composition (PseAAC) and Adaboost. Lissabet et al. [23] developed AntiVPP 1.0 
by employing random forest algorithm to predict antiviral peptides based on net charge, number of 
hydrogen bond donors, molecular weight and hydrophilicity index. Schaduangrat et al. [24] used 
different machine learning algorithms and proposed Meta-iAVP, which can extract efficient feature 
representations based on prediction parameters obtained from feature types. Chowdhury et al. [25] 
proposed Firm-AVP based on the physicochemical and structural properties of amino acid sequences. 
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Li et al. [26] proposed DeepAVP, a two-channel deep neural network integration model for the analysis 
of variable lengths of antiviral peptides. Pang et al. proposed a two-stage classification scheme and 
established PreAntiCoV [27] and AVPIden [28] models. Timmons et al. [29] proposed ENNAVIA, a 
neural network-based antiviral peptide identification model. Agarwal et al. [30] elaborated on the 
identification and validation of antiviral peptides. Charoenkwan et al. [31] summarized machine 
learning methods for virus detection directly from sequence information. Manavalan et al. [32] 
evaluated highly specific virus predictors. Kurata et al. proposed a method called iACVP [33] and used 
conventional features, binary profiling and word2vec (W2V) embedding to detect coronavirus 
antigenic peptides (ACVP). Recent studies have collected AVPs from the literature and published them 
in databases such as AVPdb [3], DBAASP [34], CAMP [35] and APD3 [36]. These databases form the 
basis of computational predictors that help researchers identify AVPs, save time and reduce labor costs. 
A number of prediction tools have been developed to identify AVPs, but they still have certain 
limitations: they only support the calculation of peptides in a certain range, only some models use deep 
learning and the accuracy of the prediction needs to be improved.  

In this paper, the iAVP-ResBi model is proposed to identify AVPs. Firstly, to reflect the 
information of AVPs more comprehensively, we use the k-spaced amino acid pairs (KSAAP), 
enhanced grouped amino acid composition (EGAAC) based on the N5C5 sequence, encoding based 
on grouped weight (EBGW), and composition, transition and distribution (CTD) to extract features. 
Then, the four features groups are fused by bidirectional long short term memory (BiLSTM). After 
that, the fused features are input into deep algorithm framework to identify AVPs. The deep learning 
framework is constructed by combining improved residual neural network and bidirectional gated 
recurrent neural network (BiGRU). Residual neural network is a kind of shortcut connection network 
that prevents gradients from exploding and disappearing. We adopt two residual blocks, each 
consisting of batch normalization (BN) layer, and Relu activation function and two convolution layers. 
After processing by the residual neural network, the feature information is entered into BiGRU. 
Unnecessary information is deleted and useful information is retained by means of update and reset 
gates. Then, we add the softmax activation layer for classification. 5-fold cross-validation and 
independent validation are used for verifying the generalizability of the model. The results indicate 
that, compared with previous studies, our model achieves optimal results and significantly outperforms 
existing models, and the iAVP-ResBi model can accurately identify AVPs. In order to better explain 
the model constructed, we draw a flowchart of the model building process, as shown in Figure 1. 

2. Materials and methods 

2.1. Datasets  

In this paper, to facilitate comparison with existing models, we select the well-designed AVP 
datasets created by Thakur et al. [20]. They extract 1245 peptide sequences from more than 80 relevant 
papers and patents containing more than 30 types of antiviral activity sequences like HIV, HCV, HSV, 
RSV, SARS-CoV, influenza, etc., which contain duplicate peptides or identical peptides. Nearly 91% 
of peptides come from nature, and the rest can be obtained by artificial synthesis. After removing the 

duplicate peptides from 1245 peptide sequences by sequence alignment, 604 high-efficiency AVPs 
and 452 least or non-effective AVPs are finally obtained, which are randomly divided into training set 

544 407p nT   (544 positive and 407 negative for cross-validation) and test set 60 45p nV   (60 positive 
and 45 negative for the independent validation set), respectively, according to the proportion of 90 
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and 10%.  
In an earlier antimicrobial peptide prediction model [37], a new dataset is constructed using non-

experimental negative peptides instead of experimentally validated negative peptides in order to design 
a better model and better test the generalizability of the model. Therefore, Thakur et al. [20] construct 
the other two datasets based on non-experimental negative peptides: the training set 544 544p nT   (544 
positive and 544 negative) and independent validation set 60 60p nV   (60 positive and 60 negative).  

In order to further test the generalizability and ensure the reliability of the model, dataset 
ENNAVIA-C constructed by Timmons and Hewage [29] is adopted for identification of anti-
coronavirus peptides. ENNAVIA-C includes 109 peptide sequences with anti-coronavirus activity and 
356 peptide sequences with experimentally validated poor or no antiviral activity.  

 

Figure 1. The flowchart of the iAVP-ResBi model. 

2.2. Feature extraction 

Currently, the following feature extraction methods have been used in the existing studies 
targeting identification of antiviral peptides: amino acid composition (AAC) [20–24], pseudo amino 
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acid composition (PseAAC) [25–28], physicochemical property-based feature [27–30], amphiphilic 
pseudo amino acid composition (Am-PseAAC) [24,31], dipeptide composition (DPC) [24,25], g-gap 
dipeptide composition (GDC) [24,29], one-hot coding [26], composition of k-spaced amino acid group 
pairs (CKSAAGP) [27,28], binary profile (BP) [31–33], word2vec encoding [33] and BLOSUM62 
encoding [33].  

In order to broaden the sources of features information and overcome the uniqueness and one-
sidedness of extracted features, it is necessary to delve as deeply as possible into the internal 
relationships expressed in the data. In general, deep and efficient features can provide a strong basis 
for effectively improving classification accuracy [38]. In this paper, the KSAAP, EGAAC based on 
the N5C5 strategy, EBGW and CTD are used for extracting features. Compared with K-mer, KSAAP 
can describe localized fragment sequence information for amino acid pairs separated by k residues. 
Compared with GAAC, EGAAC can reflect both components and physicochemical properties, while 
reflecting the localized nature of the protein sequence. It is now well established that the most 
important influence on protein folding is the uniqueness of amino acid residues, and our choice of 
EBGW can reflect the distribution of residues with the same unique characteristics, as well as depict 
the nature of the protein sequence. CTD can account for differences in properties in the presence of 
different patterns of amino acid distribution. These feature extraction methods have been widely 
applied to the identification of other therapeutic peptides [39,40] and post-translational modification 
sites [41–43].  

2.2.1. K-spaced amino acid pairs 

K-spaced amino acid pairing (KSAAP) is an efficient feature extraction strategy that can be used 
to highlight and identify motifs in protein fragments and sequences [44–46]. KSAAP can be used to 
identify flexible and rigid regions of proteins and has been successfully applied to identify a variety of 
post-translational modification sites [42,43]. This coding provides a valuable descriptor for the 
accurate classification of AVPs and non-AVPs on the basis of short-term interactions of residues in the 
sequence. The detailed procedure of KSAAP is described as follows [43,46]. For a peptide sequence 
fragment, it calculates the frequency of the occurrence of amino acid pairs separated by k residues [47]. 
KSAAP is described as follows: 

0
0 0 0 0 400

, , , , ,ACAA AD YYMM M M
F

N N N N

 
  
 

                          (1) 

1
1 1 1 1 400

, , , , ,AxA AxC AxD YxYM M M M
F

N N N N

 
  
 

                        (2) 

2
2 2 2 2 400

, , , , ,AxxA AxxC AxxD YxxYM M M M
F

N N N N

 
  
 

                    (3) 

0 1 2.F F F F                                               (4) 

Here, we choose k = 0, 1 and 2. For example, , , , ,AxxA AxxC AxxD YxxYM M M M  represent the number for 2-
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spaced amino acid pairs. 1, 0,1,2kN L k k    , where L represents the length of the peptide sequence. 
For each value of k, kF  represents the features for k-spaced amino acid pairs. All protein sequences 
studied in this paper are composed of 20 natural amino acids, that is, no virtual amino acids, so the 
dimension of each feature space is 20 × 20 = 400. 0F , 1F  and 2F  are calculated as shown in Eqs (1)–(3), 
respectively. 0F , 1F  and 2F  are combined to get the final 400 3=1200- dimensional feature space 
F, as shown in Eq (4). 

2.2.2.  Enhanced grouped amino acid composition 

The enhanced grouped amino acid composition (EGAAC) algorithm is an improved approach to 
the GAAC algorithm put forward by Chen et al. [48]. The EGAAC algorithm converts character 
information of peptide sequences into digital vectors. It has been successfully used to predict lysine in 
succinate sites [49]. As the peptide sequences used in this study vary in length, with the shortest 
sequence consisting of six amino acid residues, EGAAC is used to extract isometric features from the 
N5C5 sequence, because the N and C terminal residues are important for the structure and function of 
bioactive peptides [50,51]. The N5C5 sequence is constructed by truncating five amino acids from the 
N-terminal and C-terminal parts of the peptide sequence, and combining them into a new sequence 
with ten amino acid residues. Compared to fill a short sequence with virtual amino acid ‘X’ to the 
longest sequence, the N5C5 sequence strategy can avoid feature redundancy. At the same time, this 
method better preserves useful information, as the N-terminal and C-terminal parts of the sequence 
contain more essential information. 

According to the five physical and chemical properties of amino acids, Lee et al. [52] classify 20 
types of standard amino acids into the following five categories: 

Aliphatic group: 1g  = {G, A,V, L, M, I}; Aromatic group: 2g  = {F, Y, W}; Positive charge 
group: 3g  = {K, R, H}; Negative charge group: 4g  = {D, E}; Uncharged group: 5g  = {S, T, C, P, 
N, Q}.  

EGAAC scans along the N5C5 sequence with a fixed size window n. The calculation formula is 
as follows: 

 1 2 3 4 5

( , )
( , ) , , , , , ,

( )

N g n
G g n g g g g g g

N n
                         (5) 

where ( , )N g n  represents the number of amino acids belonging to the g-th group in the window n, 
and ( )N n  represents the length of the window. The value of window length is from 1 to L, since 
EGAAC is analyzed on N5C5 sequence, that is L = 10. In this paper, n is set to 5 by default, and we 
finally obtain a ( 1) 5 30L n    -dimensional vector for each peptide sequence. 

2.2.3. Encoding based on grouped weight 

EBGW is a coding scheme [53,54] proposed by Zhang et al. [55], which characterizes sequences 
on the basis of the physical and chemical properties of the amino acids. On the basis of their physical 
and chemical properties, the 20 amino acids are divided into four groups:  

Neutral and non-polarity residue group: 1G  = {A, F, G, I, L, M, P, V, W}; Neutral and polarity 
group: 2G  = {C, N, Q, S, T, Y}; Acidic group: 3G  = {D, E}; Basic group: 4G  = {H, K, R}.  
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The above four sets are combined to get three combinations, 1 2 3 4.G G vs G G  , 1 3 2 4.G G vs G G  , 

1 4 2 3.G G vs G G  . Given a peptide sequence 1 2 LP p p p   with length n, it can be transformed into 
three binary sequences as follows: 

1 2
1

3 4

1 3
2

2 4

1 4
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2 3
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i
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i

p G G
H p

p G G

p G G
H p

p G G

p G G
H p

p G G

 
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 
   

 
   

                              (6) 

where ( 1,2, , )ip i L   belongs to any one of 20 amino acids. 
Then, each sequence is cut into J subsequence fragments. For instance, for 1H , the feature of 

j -th subsequence is defined as the following: 

1

( )
( )

( )

Sum j
X j

D j
 ，                                   (7) 

where ( )Sum j  is the number of 1 s in the jth subsequence, ( ) int( / )D j j L J   refers to the length 
of the jth subsequence, int( )  is a function that rounds a numerical value down to the nearest integer. 
The EBGW scheme defines a peptide sequence as the 3 J dimension vector. Here, J is selected 
as 1, 2, 3, 4 and 5. Therefore, the dimension of the EBGW-based feature vector is 3 15 45  .  

2.2.4. Composition, transition and distribution 

The CTD scheme is originally proposed by Dubchak et al. [56] to predict protein folding classes. 
This feature extraction method can be used to describe the overall amino acid composition of each 
peptide sequence [57]. All amino acids are classified into three categories: polar, neutral and 
hydrophobic. Each amino acid is then coded as 1, 2 or 3, depending on the category to which it belongs. 
Composition (C) describes the overall percentage composition of 20 natural amino acids, which is 
defined as: 

, 1, 2,3,sn
C s

L
                                   (8) 

where sn  is the number of the sth class in the sequence and L is the length of the peptide sequence. 
The transition (T) represents the percentage frequency of one type of amino acid followed by 

another type of amino acid, which can be described as follows: 

, xy [12],[13],[23]
1

xy yxn n
T

L


 


，                           (9) 

where xyn  and yxn  are the number of dipeptides encoded as ‘xy’ and ‘yx’, respectively.  
Distribution (D) is to calculate the positions of the first, 25, 50, 75 and 100% of each type of 20 

natural amino acids, and the descriptor iE  is defined as:  
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25 50 751

100

1 ; 25 ; 50 ; 75 ;

100 ( 1,2, ,7; 1,2,3),

i x i x i x i x

i x

P P PP
E D E D E D E D

L L L L
P

E D i x
L
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  
          (10) 

where 1 25 50 75, , ,P P P P   and 100P   respectively measure the position of the first residue, and the 
occurrence rate of X at 25, 50, 75 and 100%, respectively.  

According to the seven physical and chemical properties of hydrophobicity, van der Waals volume, 
polarity, polarizability, charge, secondary structure and solvent proximity [58], the dimension of the 
feature vector based on CTD is finally (3 3 3 5) 7 147     .  

2.3. Feature fusion 

Feature fusion is an effective strategy for processing multiple features. It allows redundant 
information between different features to be eliminated and discrete information to be merged. Here, 
BiLSTM is used to combine the four feature types mentioned above.  

LSTM is based on the principle of recurrent neural network (RNN) [59], where each unit is 
connected in turn to constitute a directional cycle. After this connection, the internal state of the 
network has been well constructed. At the same time, LSTM can avoid vanishing gradients, exploding 
gradients and poor ability to rely on long-range information. The LSTM units dynamically adapt to 
the length of the studied sequence. Each LSTM unit consists of an input gate, a forgetting gate and an 
output gate [60]. The formula can be expressed as follows: 

  
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







,                            (11) 

where , , , ,t t t t tf i C o h  represent the forgetting gate, input gate, cell state, output gate and hidden unit 

state at time t, respectively. tC   denotes the temporary state (candidate cell information). 

, , ,f i C oW W W W   are weight matrices, , , ,f i C ob b b b   are bias vectors, [ ]  means that two vectors are 

connected and means pointwise multiplication. 
In this paper, BiLSTM is a combination of forward LSTM and backward LSTM. BiLSTM 

performs reverse processing on the input sequence information and recalculates it according to the 
long-term and short-term memory algorithms [61]. Fixed-length time-step outputs in both directions 
are obtained and the outputs from both directions are combined into a feature vector. 
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2.4. Deep learning algorithm 

In order to more accurately identify AVPs, we develop a framework of deep learning based on the 
residual network [62] and the bidirectional gate recurrent unit [63], which is an improvement on the 
framework proposed by Zhang et al. [64]. As the number of layers in the depth of the network increases, 
the identification accuracy reaches a saturated state then produces a rapid degradation. And residual 
neural networks make these layers to fit the residual mapping, rather than having each stacked layer 
directly fit the desired underlying mapping. He et al. [62] have showed that BN and ReLU are full pre-
activation, having smaller classification error than the original residual unit. The BN layer in front of 
the Relu function can bring regularization effect, reduce over-fitting, and thus get higher accuracy. 
Afterwards we choose the bidirectional gated recurrent neural network to better capture dependencies 
with large step distances in the sequence. It controls the flow of information through a door that can 
be learned.  

In this paper, first, the normalization process of the batch normalization layers (BN layer) and 
Relu activation function are carried out. Then, in the convolution processing, each part of the 
convolution is composed of two convolution layers. In the residual unit, the input and output 
information are added by means of conv shortcut, and two residual blocks are connected at the same 
time. The bidirectional gate recurrent unit includes three BiGRU layers, three dropout layers, a flatten 
layer, two dense layers, and a dense layer as output layer with softmax activation function. The softmax 
function first converts logits into a probability distribution and then select the node with the highest 
probability as our prediction class. The deep learning framework is operated in Python 3.8 and 
TensorFlow 2.5.0 under PyCharm, and the operating system is 64-bit Windows 10. 

A residual network is a kind of hop-connected network that skips intermediate layers and passes 
previous activation values directly to the next network. In this way, the problems of gradient loss and 
bursting are effectively mitigated and the depth of the network to be learnt is significantly improved. 
At the same time, the phenomenon of information missing has been basically solved. The general 
structure of the network is that information is fed sequentially to each layer for processing. The residual 
unit can directly transfer the input x  to the output as the preliminary result by means of shortcut 
connection, and the output result is ( ) ( )H x F x x  , where ( )H x x  is the residual. This means that 
the cell inputs are added directly to the cell outputs and then activated [65], as shown in Figure 2.  

 

Figure 2. The comparison of general network structure and ResNet network structure. 
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The more layers in the network, the more features can be extracted at different levels. However, 
a high number of layers in the network can saturate and even reduce the accuracy of the training set. 
The key part of the residual structure shortcut connection is equivalent of a simple identity mapping. 
In addition, the whole network can still be trained by end-to-end back propagation. Each residual unit 
can be expressed by the following formulas: 

( ) ( , ),l l l ly h x F x W                                   (12) 

1 ( ),l lx f y                                        (13) 

where F  is the residual function, which is a stack of two 1-dimensional (1D) convolutional layers 
with kernel_size = 3. ,{ |1 }l l kW W k K    is a set of biases associated with the l-th residual unit. The 
skip connection ( )lh x  represents the transform of 1D convolution with kernel_size = 1 and f  is the 
Relu activation function [65]. In this paper, we use the improved residual neural network, that is, the 
BN layer and Relu activation function are calculated first, and then the weight layer is used to calculate. 
The feature information can be directly transferred from one unit to another, which maintains much of 
the integrity of the information. 

Our deep learning algorithm integrates residual unit and bidirectional gated recurrent unit. Gated 
recurrent neural network can solve the problem of vanishing gradients [66]. It has been widely used to 
process data. The traditional GRU structure consists of two parts: reset gate and update gate. The most 
critical step of GRU is to update the memory stage. At this stage, forgetting and remembering occur 
simultaneously, and update gates are used to control the extent to which information from the previous 
state is incorporated into the current state [67]. Update the GRU cell at each time step t by applying 
the following equation: 
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

 




,                      (14) 

where tz  denotes the update gate, tr  denotes the reset gate, t̂h  denotes the candidate status, tx  is 
the input vector, th  is the output vector and   means pointwise multiplication. 

BiGRU is an improvement on the GRU and helps to improve the accuracy of prediction. It 
consists of two GRUs: a forward GRU model that takes forward input, and a reverse GRU model that 
learns backward input. The expression is as follows: 

 1, ,t t th GRU x h 
   1, ,t t th GRU x h 

 
                    (15) 

[ , ],t t ty h h
 

                                (16) 

where th


  is the forward output, th


  is the backward output, [ ]  means that two vectors are 
connected and ty  is the output of the model. 
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2.5. Evaluation metrics 

It is not uncommon for overfitting to occur during training, which means the model can match 
the training data well, but does not give a good result for data outside the training set. If test data is 
used to adjust the model parameters at this point, the accuracy of the final evaluation results will be 
affected. It is now common practice to use cross-validation and independent dataset tests to evaluate 
the training and generalization ability of constructed model [68]. In this paper, we choose 5-fold cross-
validation and independent validation to estimate the prediction performance of this model. Meanwhile, 
some valid evaluation indexes are chosen to verify the feasibility of the model. They are sensitivity 
(Sn), specificity (Sp), accuracy (ACC), precision (Pre), recall (Rec), the receiver operating 
characteristic curve (ROC), precision-recall curve (PRC) and Matthew’s correlation coefficient 
(MCC) [69–72]. They are calculated as follows: 

    

or

,

TP
Sn Rec

TP FN
TN

Sp
TN FP

TP TN
ACC

TP TN FP FN
TP

Pre
TP FP

TP TN FP FN
MCC

TP FN TP FP TN FP TN FN


 







 


  


 
       

           (17) 

where TP, TN, FP and FN represent the number of true positive, true negative, false positive and false 
negative, respectively. The ROC curve shows 1-specificity on the x axis and sensitivity on the y axis, 
and the area under the curve is called auROC (AUC). The PR curve shows the recall on the x axis and 
the precision on the y axis, and the area under the curve is called auPRC. The area under the two curves 
ranges from 0 to 1, which is used to evaluate the effectiveness of the model [73]. Obviously, the larger 
the value of auROC and auPRC, the better the performance of the predictor. 

3. Results and discussion 

3.1. Sequence analysis 

To analyze which AVPs residues are preferred at which positions, the frequencies of occurrence 
of the N-terminal and C-terminal residues are examined using two sample sequence logos. Two Sample 
Logo is a web-based tool that can compare two groups of multi-sequences, show the amino acid 
composition at a specific position in the sequence, and get their statistically significant differences. 
The shortest length of AVPs is 6 in this study. Since AVP activity is concentrated in the N-terminal and 
C-terminal regions of the sequence, we study 1 to 5 N-terminal and C-terminal amino acids by 
sequence composition preference analysis. We submit the positive and negative samples for 5N-
terminal and 5C-terminal amino acids from 544 407p nT   and 60 45p nV   datasets to the sample logo online 
server (http://www.twosamplelogo.org/) [74] to generate the two sample sequence logos. The logos 
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are scaled according to their statistical significance threshold of 0.05p  by Welch’s t-test. The upper 
portion (enriched) is represented by positive AVPs, while lower portion (depleted) is represented by 
negative AVPs (non-AVPs), as shown in Figure 3. 

 

Figure 3. Sequence logo representation of positive and negative AVPs at 5N-terminal and 
5C-terminal. 

Figure 3(a),(b) expresses two sample logos for the 544 407p nT   dataset, Figure 3(c),(d) expresses 
two sample logos for the 60 45p nV   dataset. From Figure 3, in the 544 407p nT  dataset, we can see that 
positive and negative AVPs are significantly different. Positional analysis of 5 N-terminal residues 
showed that leucine (L) at positions 1 and 4, tryptophan (W) at positions 2 and 3, threonine (T) at 
position 1, arginine (R) at positions 4 and aspartate (D) at positions 5 are significantly overrepresented 
compared with other amino acids, while asparagine (N) at positions 2, 3 and 5, valine (V) at positions 3 
and 5, alanine (A) and glutamine (Q) at position 4 are significantly underrepresented. In addition, 
tyrosine (Y) at position 4 is overrepresented, while Y at position 4 is underrepresented, serine (S) at 
position 1 is overrepresented, while S at position 2 is underrepresented, isoleucine (I) at positions 2, 4 
and 5 are overrepresented while I at position 1 is underrepresented and proline (P) at position 5 is 
overrepresented, while P at position 2 is underrepresented. These results suggest that positive and 
negative AVPs are significantly different. 

3.2. Identification performance of our model 

In this paper, we propose a model named iAVP-ResBi. Firstly, we select KSAAP to extract short-
range interaction information between amino acid pairs considering the need to extract features from 
multiple perspectives. Due to the important information of the sequence being mostly concentrated in 
the N-terminal and C-terminal, we extract 30 EGAAC features based on N5C5 sequence. The different 
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feature parameters affect not only the size of the feature extraction, but also the subsequent predictive 
ability of the model. Choosing appropriate parameters is a key step in feature extraction. Selecting a 
parameter that is too small will lead to incomplete extracted information, while a parameter that is too 
large may lead to feature redundancy or even dimension disaster. In order to ensure the integrity of 
information, we choose the step size from 1 to 5 for EBGW, and combine the feature information of 
five parts. Considering the physicochemical properties of protein, we convert the peptide sequence 
into a numerical sequence, and extract the features by CTD. Then, the 1422 features are fused by 
BiLSTM, and we choose the parameter as 400 to get 800-dimensional features. Finally, we design a 
deep learning algorithm composed of improved residual block and a bidirectional gated recurrent unit 
for classification, and better experimental results are obtained.  

 

Figure 4. ROC curves and PR curves of 
544 407p nT 

, 
544 544p nT 

, 
60 45p nV   and 60 60p nV   datasets. 
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From our model we can see that, the ACC values of the four datasets reaches 95.07, 98.07, 94.29 
and 97.50%, which is a significant improvement. At the same time, the values of Sn, Sp, MCC and 
AUC of the four datasets have been improved to some extent. More specific information of 
identification results is listed in Table 1. The ROC curve and PR curve for the 544 407p nT  , 544 544p nT  ,

60 45p nV  and 60 60p nV   datasets are plotted in Figure 4. 

Table 1. The identification performance of iAVP-ResBi on the four datasets. 

Datasets ACC (%) Pre (%) Sn (%) Sp (%) MCC AUC 
544 407p nT   95.07 95.92 95.40 94.63 0.8998 0.9766 
544 544p nT   98.07 98.65 97.43 98.71 0.9899 0.9899 

60 45p nV   94.29 97.50 91.67 97.78 0.8962 0.9389 

60 60p nV   97.50 98.18 96.67 98.33 0.9505 0.9681 

Table 2. Performance comparison of different feature extraction methods. 

Datasets 
Feature 

extraction 

5-fold cross-validation 

ACC (%) Pre (%) Sn (%) Sp (%) MCC AUC 

544 407p nT 
 

EBGW 82.77 81.98 91.18 71.59 0.6497 0.8903 

EGAAC 82.25 83.71 85.47 77.97 0.6372 0.8720 

CTD 91.60 91.76 93.93 88.50 0.8283 0.9545 

KSAAP 93.38 93.90 94.67 91.67 0.8659 0.9713 

ALL 95.07 95.92 95.40 94.63 0.8998 0.9766 

544 544p nT 
 

EBGW 85.40 85.09 86.04 84.76 0.7099 0.9278 

EGAAC 84.11 84.98 83.10 85.13 0.6826 0.8960 

CTD 94.03 94.41 93.57 94.49 0.8809 0.9776 

KSAAP 96.60 97.01 96.15 97.06 0.9325 0.9833 

ALL 98.07 98.65 97.43 98.71 0.9899 0.9899 

Datasets 
Feature 

extraction 

Independent validation 

ACC (%) Pre (%) Sn (%) Sp (%) MCC AUC 

60 45p nV 
 

EBGW 75.24 74.21 83.33 64.44 0.5070 0.8019 

EGAAC 85.71 86.13 90.00 80.00 0.7144 0.9148 

CTD 87.62 88.33 90.00 84.44 0.7536 0.9148 

KSAAP 83.81 84.24 93.33 71.11 0.6276 0.8870 

ALL 94.29 97.50 91.67 97.78 0.8962 0.9389 

60 60p nV 
 

EBGW 81.67 86.75 78.33 85.00 0.6396 0.8792 

EGAAC 86.67 88.33 88.33 84.44 0.7278 0.9241 

CTD 89.17 89.23 90.00 88.33 0.7847 0.9139 

KSAAP 93.33 95.00 90.00 96.67 0.8707 0.9611 

ALL 97.50 98.18 96.67 98.33 0.9505 0.9681 
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3.3. Analysis of different feature extraction approach 

In model recognition, feature extraction is the foundation, and the choice of its method has a vital 
impact on the prediction effect. In this work, we select four feature extraction methods including 
KSAAP, EGAAC, EBGW and CTD. These methods extract important information of peptide sequence 
from different perspectives. The single feature method is compared with the combined feature method 
and the result is shown in Table 2. Clearly, the combined features show better performance than any 
other single feature. Thus, the information obtained from different methods helps to improve the 
predictive power of the model. 

3.4. Analysis of feature fusion approach 

The main purpose of feature fusion is to combine features from multiple sources into a better 
feature representation to improve model performance. We choose to use the deep learning algorithm 
BiLSTM to fuse the original features. Through BiLSTM processing, the features we obtained have 
been improved in importance and relevance. To illustrate the necessity of feature fusion, we compare 
the features before and after fusion, the experimental results are shown in Figure 5. Evidently, the ACC 
of the four datasets is improved after using the feature fusion method. This means that the classification 
effect of the whole model is greatly improved. Therefore, it is essential to use the feature fusion method 
to process features. 

 

Figure 5. The ACC comparison of four datasets before and after feature fusion. 

3.5. Performance comparison with different classifiers 

The most important part of the binary classification problem is the construction of the classifier, 
which directly affects the final test result. In this paper, we design a deep learning algorithm named 
ResNet + BiGRU. The combination of improved residual neural network (ResNet) and BiGRU 
effectively improves the identification accuracy of the model. Our ResNet used is pre-activation for 
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the full BN layer and Relu activation function based on the original residual network. 

Table 3. Performance comparison of different classifiers with cross-validation. 

Datasets Classifier 
5-fold cross-validation 

ACC (%) Pre (%) Sn (%) Sp (%) MCC AUC 

544 407p nT 
 

SVM 80.86 85.40 80.34 81.57 0.6162 0.8965 

XGboost 80.44 82.48 83.64 76.17 0.6018 0.8883 

GaussianNB 74.24 79.73 73.73 74.92 0.4831 0.8176 

LR 76.97 78.87 81.62 70.77 0.5278 0.8177 

ANN 80.33 82.48 83.46 76.17 0.5988 0.8777 

DNN 84.05 86.38 88.07 78.71 0.6615 0.8712 

CNN 85.11 86.64 87.15 82.38 0.6970 0.8778 

BiGRU 87.21 88.89 89.36 84.36 0.7368 0.8933 

Original ResNet 94.02 94.01 95.89 91.92 0.8780 0.9778 

ResNet 94.54 94.27 96.33 92.17 0.8895 0.9804 

ResNet + BiLSTM 92.13 92.59 94.48 89.01 0.8386 0.9658 

ResNet + BiGRU 95.07 95.92 95.40 94.63 0.8998 0.9766 

544 544p nT 
 

SVM 89.25 92.94 84.93 93.56 0.7884 0.9549 

XGboost 86.86 89.25 83.82 89.89 0.7386 0.9360 

GaussianNB 83.27 87.03 78.31 88.23 0.6694 0.8924 

LR 86.77 87.04 86.40 87.13 0.7357 0.9323 

ANN 88.88 89.83 87.69 90.07 0.7786 0.9434 

DNN 91.93 95.15 86.79 97.06 0.8486 0.9591 

CNN 92.48 95.28 88.25 96.70 0.8571 0.9608 

BiGRU 94.31 96.02 91.74 96.88 0.8891 0.9663 

Original ResNet 96.05 97.25 94.68 97.43 0.9219 0.9856 

ResNet 95.77 95.73 95.77 95.77 0.9158 0.9837 

ResNet + BiLSTM 96.42 97.30 95.41 97.43 0.9292 0.9842 

ResNet + BiGRU 98.07 98.65 97.43 98.71 0.9899 0.9899 

The results show that ResNet + BiGRU has better performance than other classification 
algorithms. To describe the superiority of our deep learning algorithm, we compare ResNet+BiGRU 
with different classifiers. More details are shown in Tables 3 and 4. In general, the deep learning 
algorithm has better predictive performance than the machine learning algorithm on the same dataset. 
In the machine learning approaches, we compare SVM, XGboost, GaussianNB, logistic regression 
(LR), ANN with ResNet + BiGRU. The ACC values are 80.86, 80.44, 74.24, 76.97 and 80.33% in the 

544 407p nT    dataset, respectively. For 60 45p nV   , the ACC values are 60.95, 61.90, 73.33, 70.48 and 
71.43%, respectively. In the deep learning approaches, we compare DNN, CNN, BiGRU, original 
ResNet, ResNet with ResNet+BiGRU, with ACC values of 84.05, 85.11, 87.21, 94.02 and 94.54% in 
the 544 407p nT  dataset, respectively, and with ACC values of 85.71, 88.57, 85.71, 88.57 and 89.52% in 

60 45p nV  , respectively. Compared with other deep learning algorithms, ResNet+BiGRU is an obvious 
improvement. In addition, the experimental results also indicate that the accuracies of the original 
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ResNet are lower than those of ResNet with pre-activation for the full BN layer and Relu activation 
function for four datasets, respectively. 

Table 4. Performance comparison of different classifiers with independent validation. 

Datasets Classifier 
Independent validation 

ACC (%) Pre (%) Sn (%) Sp (%) MCC AUC 

60 45p nV 
 

SVM 60.95 68.70 75.00 42.22 0.1828 0.7833 

XGboost 61.90 64.46 76.67 42.22 0.2109 0.6833 

GaussianNB 73.33 78.55 73.33 73.33 0.4718 0.8130 

LR 70.48 83.14 63.33 80.00 0.4454 0.7796 

ANN 71.43 75.83 81.67 57.78 0.4386 0.7500 

DNN 85.71 89.23 86.67 84.44 0.7085 0.8889 

CNN 88.57 90.00 88.33 88.89 0.7725 0.8926 

BiGRU 85.71 89.09 85.00 86.67 0.7156 0.8574 

Original ResNet 88.57 89.67 88.33 88.89 0.7843 0.9046 

ResNet 89.52 90.13 91.67 96.67 0.7867 0.9204 

ResNet + BiLSTM 92.38 93.33 93.33 91.11 0.8444 0.9259 

ResNet + BiGRU 94.29 97.50 91.67 97.78 0.8962 0.9389 

60 60p nV 
 

SVM 76.67 87.78 63.33 90.00 0.5621 0.8639 

XGboost 67.50 65.72 73.33 61.67 0.3545 0.7486 

GaussianNB 78.33 82.73 71.67 85.00 0.5740 0.8444 

LR 75.83 79.83 71.67 80.00 0.5258 0.8278 

ANN 71.67 68.10 81.67 61.67 0.4426 0.8417 

DNN 84.17 80.38 93.33 75.00 0.6947 0.9042 

CNN 91.67 93.33 86.67 96.67 0.8383 0.9653 

BiGRU 94.17 94.55 93.33 95.00 0.8836 0.9681 

Original ResNet 90.00 91.11 93.33 86.67 0.8064 0.9542 

ResNet 90.83 90.53 96.67 85.00 0.8205 0.9543 

ResNet + BiLSTM 93.33 92.50 96.67 90.00 0.8707 0.9556 

ResNet + BiGRU 97.50 98.18 96.67 98.33 0.9505 0.9681 

At the same time, to demonstrate the superiority of our combination of the ResNet and BiGRU, 
we also choose to combine the ResNet with BiLSTM, and the experimental results are shown in 
Tables 3 and 4. The final identification accuracy does not reach a more satisfactory result. Therefore, 
we adopt the ResNet with BiGRU to improve the accuracy. The experimental results show that our 
classifier has better identification performance and generalization ability. The parameters of different 
classifiers are shown in Table 5. 

3.6. Performance comparison with different models 

We summarize several currently available models for identifying AVPs. To illustrate more 
visually the advantages of our constructed model iAVP-ResBi, seven models, namely AVPpred [20], 
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the model proposed by Chang et al. [21], AntiVPP 1.0 [23], Meta-iAVP [24], Firm-AVP [25], 
DeepAVP [26] and ENNAVIA [29], are compared using the same training dataset and test dataset. The 
values of four evaluation metrics for seven models are shown in Table 6. 

The values in Table 6 show the predicted results of our method and the existing methods on the 
four datasets. Clearly, the results of our model have been greatly improved in both training set and test 
set. The ACC on the four datasets improved by 3.82, 2.17, 0.41 and 1.85% compared with the best 
model, respectively, which fully demonstrates the power of our method. The results show that our 
proposed iAVP-ResBi model has better predictive performance than the previous model. 

Table 5. The parameters of different classifiers. 

Classifiers Parameters 

SVM probability = True, kernel = ’rbf’, random_state = 20 

XGboost max_depth = 7, learning_rate = 0.1, n_estimators = 500 

GaussianNB priors = None, var_smoothing = 1e-09 

LR penalty = ’l2’, dual = True, solver = ’liblinear’, max_iter = 100 

ANN random_state = 10 

DNN Three Dense layers with 32, 16 and 8 neurons, respectively. 

activation = 

“softmax”, 

loss = 

categorical_cros

sentropy, 

optimizer = 

Adam, 

metrics = 

[“accuracy”], 

batch_size = 30,

epochs = 30. 

CNN 

Two Conv1D layers with filters = 32, kernel_size = 3 and two 

MaxPooling1D layers with pool_size = 2, strides = 1, a Flatten 

layer and two Dense layers with 32 and 16 neurons, respectively. 

BiGRU 
Three layers of BiGRU with 128, 64 and 32 neurons respectively, 

add a dropout layer after each BiGRU layer, dropout = 0.5. 

Original 

ResNet 

Two residual blocks, each one containing Batch Normalization 

layer, ReLU activation function and two convolution layers with 

filters = 64, kernel_size = 3. 

ResNet 

Two residual blocks, each one containing Batch Normalization 

layer, ReLU activation function and two convolution layers with 

filters = 64, kernel_size = 3. Adjust the positions of ReLU 

function and BN layer for pre-activation. 

ResNet + BiLSTM 

Two residual blocks, each one containing Batch Normalization 

layer, ReLU activation function and two convolution layers with 

filters = 64, kernel_size = 3. Three layers of BiLSTM with 128, 64 

and 32 neurons, respectively, add a dropout layer after each 

BiLSTM layer, dropout = 0.5. Add a Flatten layer and two Dense 

layers with 64 and 32 neurons, respectively. 

ResNet + BiGRU Replace BiLSTM in ResNet + BiLSTM with BiGRU. 

3.7. Universal validation of the model 

In order to further illustrate the generalizability of our constructed model, we use the dataset 
ENNAVIA-C created by Timmons and Hewage [29] to identify anti-coronavirus peptides. ENNAVIA-
C consists of 109 peptide sequences with anti-coronavirus activity and 356 peptide sequences that have 
been validated to have poor or no antiviral activity. As shown in Table 7, the identification accuracy of 
anti-coronavirus reaches 96.99% in our constructed iAVP-ResBi model, which exceeds several 
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currently available models. The results show that the model we constructed is an effective recognition 
model with good generalization ability. 

Table 6. Performance comparison of iAVP-ResBi and existing methods. 

Datasets Method 
5-fold cross-validation 

ACC (%) Sn (%) Sp (%) MCC 

544 407p nT 
 

AVPpred [20] 85.00 82.20 88.20 0.70 

Chang et al. [21] 85.10 86.60 83.00 0.70 

Meta-iAVP [24] 88.20 89.20 86.90 0.76 

DeepAVP [26] 83.50 84.60 82.10 0.66 

ENNAVIA [29] 91.25 90.56 91.88 0.82 

iAVP-ResBi 95.07 95.40 94.63 0.90 

544 544p nT 
 

AVPpred [20] 90.00 89.70 90.30 0.80 

Chang et al. [21] 91.50 89.00 94.10 0.83 

Meta-iAVP [24] 93.20 89.00 97.40 0.87 

DeepAVP [26] 90.10 89.30 90.80 0.88 

ENNAVIA [29] 95.90 93.44 98.35 0.92 

iAVP-ResBi 98.07 97.43 98.71 0.96 

Datasets Method 
Independent validation 

ACC (%) Sn (%) Sp (%) MCC 

 

AVPpred [20] 85.70 88.30 82.20 0.71 

Chang et al. [21] 89.5 91.7 86.7 0.79 

Meta-iAVP [24] 95.20 96.70 93.20 0.90 

Firm-AVP [25] 92.40 93.30 91.10 0.84 

DeepAVP [26] 87.60 90.00 84.40 0.75 

ENNAVIA [29] 93.88 94.74 92.68 0.87 

iAVP-ResBi 94.29 91.67 97.78 0.90 

 

AVPpred [20] 92.50 93.30 91.70 0.85 

Chang et al. [21] 93.00 91.70 95.00 0.87 

AntiVPP 1.0 [23] 93.00 87.00 97.00 0.87 

Meta-iAVP [24] 94.90 91.70 98.30 0.90 

DeepAVP [26] 93.30 96.70 90.00 0.87 

ENNAVIA [29] 95.65 92.98 98.28 0.91 

iAVP-ResBi 97.50 96.67 98.33 0.95 

Table 7. Performance comparison of iAVP-ResBi and existing models on ENNAVIA-C dataset. 

Dataset Model Acc (%) Sn (%) Sp (%) MCC 

Anti-CoV vs. Non-AVP Pang et al’s model [27] 85.32 85.71 85.31 0.3050 

Anti-CoV vs. Non-AVP ACP-Dnnel [75] 95.00 89.40 100 0.9040 

ENNAVIA-C ENNAVIA [29] 94.95 91.64 95.96 0.8700 

ENNAVIA-C iAVP-ResBi 96.99 93.38 98.06 0.9155 

60 45p nV 

60 60p nV 
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4. Conclusions 

As a long-term focus of researchers, antimicrobial peptides have shown great advantages in the 
fields of medicine and life sciences. Among them, antiviral peptides (AVPs) are an important 
component of antimicrobial peptides, which can not only cooperate with the components of the 
immune system, but also have a good therapeutic potential in drug resistance. Currently antiviral 
peptides are selected from databases such as HIPdb, APD3, CAMPR3 and LAMP, which are 
experimentally determined and time-consuming. Meanwhile, antiviral peptides have been favored by 
biopharmacologists in recent years due to their high pharmacological activity, strong targeting, low 
toxicity and more mature production technology. With the rapid development of artificial intelligence 
and deep learning algorithms, a large number of peptide vaccines, peptide nutraceuticals, peptide drugs 
and reagents will be developed and enter clinical trials in the coming years. So it is very necessary to 
identify AVPs accurately and efficiently. In this study, we develop a novel model called iAVP-ResBi 
for identification of AVPs. A single method to extract features is not comprehensive. Here we use the 
method of combining four features: KSAAP, EGAAC, EBGW and CTD. Then to develop a better 
classifier, after feature fusion through BiLSTM, the residual neural network combined with BiGRU 
was used to identify AVPs.  

The final data shows that the model we constructed has good results. The value of ACC is 95.07, 
98.07, 94.29 and 97.50% on the 

544 407p nT 
, 

544 544p nT 
, 

60 45p nV  and 60 60p nV  datasets, respectively. 
As a result, the iAVP-ResBi model constructed in this paper has certain reference significance. In our 
future work, we will be committed to establishing the user-friendly and public web-server for our 
iAVP-ResBi model for the convenience of the wider research community to use. The datasets and 
codes are freely available at https://github.com/yunyunliang88/iAVPs-ResBi. 

Our model is applicable in the identification of bioactive peptides but may not be particularly 
applicable in the identification of post-translational modification sites of protein or functional 
prediction of DNA. In addition, if the number of samples exceeds tens of thousands, our model will 
have some uncertainty, and at the same time, our hardware equipment may not be able to support it, 
so we need a high-performance computing workstation for processing. 
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