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Abstract: Accurate cloud detection is an important step to improve the utilization rate of remote 
sensing (RS). However, existing cloud detection algorithms have difficulty in identifying edge clouds 
and broken clouds. Therefore, based on the channel data of the Himawari-8 satellite, this work proposes 
a method that combines the feature enhancement module with the Gaussian mixture model (GMM). 
First, statistical analysis using the probability density functions (PDFs) of spectral data from clouds 
and underlying surface pixels was conducted, selecting cluster features suitable for daytime and 
nighttime. Then, in this work, the Laplacian operator is introduced to enhance the spectral features of 
cloud edges and broken clouds. Additionally, enhanced spectral features are input into the debugged 
GMM model for cloud detection. Validation against visual interpretation shows promising consistency, 
with the proposed algorithm outperforming other methods such as RF, KNN and GMM in accuracy 
metrics, demonstrating its potential for high-precision cloud detection in RS images. 

Keywords: cloud detection; Himawari-8; Gaussian mixture model; probability density function; 
Laplacian operator 
 

1. Introduction  

In recent years, remote sensing (RS) imagery has been widely applied in various fields, with the 
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continuous development of RS technology. The fields include environmental monitoring [1], natural 
disaster monitoring [24], mineral resource development [5] and cartography [6]. However, a large 
part of Earth’s surface is covered by clouds [7], which results in a significant amount of ground 
information being inaccessible to satellites. Additionally, the texture and spectral information of 
images are inconstant. There are substantial challenges in subsequent object detection and analysis 
tasks. Therefore, accurate and effective cloud detection is crucial due to being a preprocessing step for 
getting over the challenges before the analysis of satellite images [8]. 

Currently, cloud detection methods can be categorized into multi-spectral threshold methods and 
machine learning-based methods. Multi-spectral threshold methods use spectral differences between 
clouds and the underlying surface in different wavelength bands to select thresholds for cloud detection. 
Rossow et al. used spectral thresholding based on the 11 μm brightness temperature data of cloud tops 
in the international satellite cloud climatology project [9]. Xiong et al. proposed a cloud detection 
approach based on hybrid multi-spectral features with dynamic thresholds [10]. The multi-spectral 
threshold methods have a simple structure and are easy to implement. However, it is challenging for 
them to distinguish between clouds and the underlying surface for them when the ground is covered 
with ice, snow, desert or a cloud cover that is thin. 

Many cloud detection algorithms based on machine learning have emerged with the rapid 
development of computer science, including the support vector machine (SVM) [1113], random 
forest (RF) [14,15], convolutional neural network (CNN) [16,17] and others. Li et al. [11] utilized 
brightness temperature and texture features, employing SVM as a classifier for cloud detection. Zhang 
et al. proposed a cloud detection method based on the multi-feature embedded learning SVM [12]. Fu 
et al. used the results of the ensemble threshold as training samples for the RF classifier [15]. Zhang 
et al. designed a cascaded feature attention module based on the encoder-decoder structure to obtain 
and enhance useful feature information [16]. Xie et al. proposed a CNN with two branches to detect 
different types of clouds [17]. However, all the machine learning methods used by them encounter the 
following challenges: 

(1) Cloud edges are often semi-transparent, making it difficult for them to separate the underlying 
surface based solely on visual features. Therefore, it is essential to make full use of the multi-channel 
information from RS satellites. 

(2) These machine learning methods require a sufficient amount of training data to achieve 
reliable performance [18]. However, fragmented cloud samples are often sparse and scattered, 
demanding a significant amount of effort and time for manual labeling. 

The GMM, as an unsupervised learning method, does not require manual sample labeling. 
Therefore, it requires less preparation work before detection [19]. Furthermore, visual features can 
have difficulty in distinguishing between cloud edges and the underlying surface during manual 
labeling, and incorrect labeling may result in model inaccuracies. In contrast, the GMM algorithm use 
satellite multi-channel reflectance and brightness temperature as clustering features and can effectively 
leverage the spectral differences between clouds and the underlying surface for classification. 

In summary, we propose a cloud detection algorithm based on a feature enhancement module and 
GMM clustering. The proposed method utilizes clustering-based feature analysis to select appropriate 
feature schemes for different time periods, enabling cloud detection throughout the day. Additionally, 
we employ the Laplacian operator to enhance the spectral characteristics of the cloud edges and broken 
cloud regions and improve the accuracy of the GMM classifier for cloud detection. 

The paper is structured as follows: Section 2 presents the various applications of cloud detection. 
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Section 3 discusses data preprocessing, with a focus on the selection of clustering features. Section 4 
presents a modular description of the proposed algorithm, highlighting its key components and 
functionalities. Section 5 provides a comprehensive account of all experiments conducted and their 
corresponding observations, shedding light on the algorithm’s performance and efficacy. Section 6 
discusses the ethical considerations and potential societal impacts of enhanced cloud detection. Finally, 
Section 7 offers a summary of the paper, summarizing the major contributions. 

2. Relevant applications of cloud detection 

(1) Wildfire detection 
When utilizing satellite data for wildfire monitoring, clouds’ mid-infrared reflectance might cause 

them to be mistakenly identified as fire. Hence, cloud detection is crucial. Zhang et al. set different 
thresholds during daytime and nighttime to detect clouds [20]. Kang et al. employed an algorithm 
utilizing Imager’s reflectance and BT to eliminate clouds in aerosol optical depth retrieval [21]. 

(2) Cartography in agriculture 
To reduce spectral redundancy in images and improve method efficiency, cloud detection is often 

a crucial step in data preprocessing during agricultural mapping. Xia et al. utilized cloud masks 
generated by the C Function of Mask algorithm [22]. Li et al. calculated cloud scores according to the 
spectral data from six bands to achieve cloud removal [23]. 

(3) Vegetation change analysis 
Vegetation change analysis is particularly sensitive to cloud contamination because unmarked 

clouds above the vegetation can potentially be mistaken for change. Even minor errors in cloud 
detection can lead to significant inaccuracies in downstream vegetation change analysis. Huang et al. 
used clear view forest pixels as references to define cloud boundaries, separating clouds from the clear 
view surface in the spectral-temperature space [24]. Long et al. employed cloud identification 
algorithms provided by Google Earth Engine, utilizing the QA band to identify clouds and shadows in 
the images [25]. 

3. Data preprocessing 

The cloud detection algorithm in this paper is based on multi-spectral data from the Himawari-8 
satellite. As shown in Figure 1, the first step involves conducting a statistical analysis using probability 
density functions (PDFs) of pixel spectral data from clouds and underlying surfaces to select feature 
schemes for different time periods. The second step involves cloud detection based on the different 
feature schemes selected. During nighttime, the raw data of BT15 and BTD714 are directly subjected to 
GMM clustering to obtain the detection results. During the daytime, the detection process is divided 
into three parts. First, a feature enhancement module is applied to R3+4, and the enhanced data is 
clustered to detect cloud edges and broken clouds. Furthermore, the raw data is clustered to detect 
thick clouds. Finally, the results from the dual branches of clustering are combined to obtain the 
detection results. 
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Figure 1. Algorithm flowchart. 

3.1. Cloud definition 

The definition of clouds is crucial, and many scholars currently use a subjective approach to 
define different types of clouds. In this paper, cloud transparency and distribution are used as criteria 
for subjective definition. 

(1) Thick clouds are opaque and typically appear over large areas. 
(2) Cloud edges refer to clouds with transparency at the cloud boundaries. Cloud edges do not 

abruptly separate but gradually transition between the cloud layer and the non-cloud layer. 
(3) Broken clouds exhibit varying degrees of transparency, with their most noticeable 

characteristic being their distribution in small patches across the sky. 
Figure 2 illustrates various cloud types, with some cloud edges highlighted using red boxes. 

 

Figure 2. (a) Thick clouds; (b) Cloud edges; (c) Broken clouds. 
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3.2. Himawari-8/AHI data 

The synchronous meteorological satellite Himawari-8 was officially launched in July 2015. The 
satellite is equipped with the advanced Himawari imager (AHI), which has 16 observation channels 
covering visible, near-infrared and thermal infrared ranges [26]. The central wavelengths of these 
channels for detecting various objects are shown in Table 1. Additionally, AHI can provide high-
resolution observation data for the entire disk at intervals of 10 minutes, and its high temporal 
resolution data is advantageous for target detection and analysis [27]. The open accessibility of 
Himawari-8/AHI data, provided by the Japan Aerospace Exploration Agency, empowers researchers 
to extensively leverage this data for scientific inquiry and innovation. This ease of access and the 
widespread availability of this data have propelled its applications across the fields of Earth sciences, 
meteorology and environmental studies. For instance, it plays a pivotal role in monitoring natural 
disasters such as storm tracking, wildfire detection and climate change observations. Moreover, these 
datasets offer rich information for fields like agriculture, water resource management and urban planning. 

As shown in Figure 3, the data retrieved from the Himawari-8 satellite comes in the network 
common data form (NetCDF) format, requiring preprocessing before utilization. Initially, the NetCDF 
format will undergo conversion into physical variables. Channels 1 to 6 will denote reflectance data, 
while channels 7 to 16 will contain brightness temperature data. Following this, a sequence of 
geometric corrections will be applied, opting for the Geographic WGS84 Projection, succeeded by 
cropping procedures. 

Moreover, different features may have varying measurement units or numerical ranges. 
Normalization can alleviate these effects, enabling the model to treat each feature more evenly. The 
normalization formula is as follows: 

 
mean

std

X X
Y

X


  (1) 

Where the mean and standard deviation of X are indicated by Xmean and Xstd, respectively. X and 
Y represent the initial and the normalized feature values, respectively. 

 

Figure 3. Data preprocessing. 
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Table 1. AHI channel characteristics. 

Channel Central wavelength/μm Detection targets 
1 0.46 aerosol, coastline 
2 0.51 phytoplankton 
3 0.64 vegetation, aerosol 
4 0.86 stratus cloud 
5 1.6 cloud top phase, snow 
6 2.3 surface, cloud, snow 
7 3.9 surface, wildfire 
8 6.2 upper atmospheric water vapor, rainfall 
9 7.0 mid-level atmospheric water vapor, rainfall 
10 7.3 sulfur dioxide 
11 8.6 water, sulfur dioxide, rainfall 
12 9.6 ozone, airflow, wind 
13 10.4 surface, cloud 
14 11.2 surface, cloud 
15 12.4 water, sea surface temperature 
16 13.3 temperature, cloud altitude, cloudiness 

3.3. Cluster feature analysis 

The spectral data from the Himawari-8 satellite is analyzed using PDF to generate PDF 
distributions for reflectance, brightness temperature and brightness temperature difference of pixels 
corresponding to both clouds and the underlying surface. The selection of cluster features is completed 
based on the analysis of these PDF distributions. As shown in Figure 4, a random sample of cloud and 
underlying surface pixels from a series of RS images is used for statistical analysis. 

 

Figure 4. (a) Selection of cloud pixels; (b) selection of underlying surface of pixels. 

Figure 5 shows the PDF distributions of different cluster features for cloud and underlying surface 
pixels. The PDF distributions for three cluster features, R3+4, BT15 and BTD714, exhibit some overlap 
for both cloud and underlying surface pixels. As shown in Figure 5(a), the PDF distribution of R3+4 for 
both cloud and underlying surface pixels roughly follows a normal distribution. Cloud PDF mainly 
ranges from 0.8 to 1.3, with a peak around 1.2, while the underlying surface PDF predominantly ranges 
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from 0.2 to 0.35, with a peak around 0.3. 
Figure 5(b) displays the PDF distribution of BT15 for clouds and underlying surface pixels. Cloud 

BT15 PDF is mainly distributed between 220 K and 285 K, displaying two peaks near 250 K and 270 
K, respectively. In contrast, the underlying surface BT15 PDF mainly ranges from 280 K to 300 K, with 
a peak of around 290 K. 

Figure 5(c) demonstrates that the PDF distributions of BTD714 for both cloud and underlying 
surface pixels also roughly follow a normal distribution. Cloud BTD714 PDF mainly ranges from 20 
K to 30 K, with a peak around 23 K, while the underlying surface BTD714 PDF mainly ranges from 0 
K to 7 K, with a peak around 2 K. 

Although there are significant differences in the R3+4 PDF distributions between clouds and the 
underlying surface, during nighttime periods, the visible light band of AHI struggles to capture clear 
visible light images. Therefore, in this work, we use different cluster feature schemes for cloud 
detection during day and night periods: R3+4 during the day and BT15 and BTD714 at night. 

 

Figure 5. (a) PDF distribution of cloud and underlying surface pixel R3+4; (b) PDF 
distribution of cloud and underlying surface pixel BT15; (c) PDF distribution of cloud and 
underlying surface pixel BTD714. 

4. Cloud detection algorithm 

4.1. Feature enhancement module 

During the process of cloud detection, cloud edges (the overlapping parts of PDFs for various 
cluster features in Figure 5) are prone to being misclassified as non-cloud pixels. This is primarily due 
to the minimal spectral feature differences between cloud edges and the underlying surface. 
Additionally, broken clouds are often sparse and scattered, causing their detection to be challenging. 
Therefore, as shown in Figure 6, to enhance the algorithm’s efficiency in detecting cloud edges and 
broken clouds, convolution operations are employed to enhance the spectral features of cloud edges 
and broken clouds. The convolution operation involves sliding the sharpening convolution kernel over 
each pixel of the original image and computing the weighted sum of the convolution kernel with the 
pixel values. The formula for this enhancement is as follows: 

  g( , ) ( , ) ( , )x y f x y w i j    (2) 
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In the equation, f(x, y) represents the pixel value at (x, y), and w(i, j) represents the convolution kernel. 

 

Figure. 6. Convolution operation. 

 

Figure 7. (a) Original image; (b) Laplacian operator; (c) Roberts operator; (d) Prewitt 
operator; and (e) Sobel operator. 

The Laplacian operator, often used in image processing, plays a crucial role in extracting gradient 
information from images [28,29]. It accentuates abrupt changes in pixel values, making it particularly 
useful in highlighting boundaries and fine details, such as edges of clouds or broken clouds. It is 
essentially a filter that amplifies high-frequency components, aiding in the detection and emphasis of 
subtle variations in the image. Compare the sharpening effects of the Laplacian operator with 
commonly used operators. As depicted in Figure 7, the sharpening results obtained using Roberts, 
Prewitt and Sobel operators exhibit missing cloud edges, whereas the sharpening results at the edges using 
the Laplacian operator demonstrate continuity. Therefore, the Laplacian operator is chosen to enhance the 
features of cloud edges and broken clouds. The definition of the Laplacian operator is as follows: 

 

2 2
2

2 2

f f
f

x y

 
  

 
  (3) 

By separately taking the second derivatives of the Laplacian operator in the x and y directions 
through differencing, we obtain: 
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  2 ( 1, ) ( 1, ) ( , 1) ( , 1) 4 ( , )f f x y f x y f x y f x y f x y            (4) 

The above formulas can be transformed into the form of convolution kernels: 

 

0 1 0

1 4 1

0 1 0

 
  
 
 

  (5) 

After the Laplacian operator processing, the spectral features of cloud edges and broken clouds 
are enhanced. However, the extensive areas of thick clouds that manifest as low-frequency signals are 
removed. This can lead to sample imbalance and affect clustering results. Therefore, overlaying the 
image processed with the Laplacian operator onto the original image is crucial. The resulting feature-
enhanced image can highlight cloud edges and broken cloud details while preserving the thick cloud 
portions from the original image. The overlay formula is as follows: 

 
2( , ) ( , ) ( , ) ( , )g x y f x y w i j f x y f         (6) 

Finally, based on Eq (6), we obtain the convolution kernel used in this paper: 

 

0 -1 0

( , ) -1 5 -1

0 -1 0

w i j

 
   
 
 

  (7) 

Figure 8 provides a comparison of the results before and after feature enhancement. From Figure 
8(a),(b), a noticeable improvement in the clarity of cloud edges and broken clouds that is within the RS 
image is observed after the feature enhancement. Additionally, the R3+4 values for cloud edges and broken 
clouds are extracted from the image for PDF comparison. Figure 8(c) shows that feature enhancement 
significantly increases the R3+4 values for cloud edges and broken clouds. This will effectively reduce the 
occurrence of false negatives in the algorithm for cloud edge and broken cloud pixels. 

4.2. GMM cloud detection algorithm 

4.2.1. GMM clustering basic principle 

During detection, the diversity of cloud and the underlying surface results in complex distributions 
of reflectance and brightness temperature. GMM can represent the PDF of data by the way of using a 
convex combination of multiple Gaussian functions (a linear combination of multiple Gaussian 
functions). Given a sufficient number of samples, GMM can model distributions of any shape [30]. 
Therefore, GMM can accurately describe the probability distributions of reflectance and brightness 
temperature for both clouds and the underlying surface. Additionally, some spectral characteristics of 
clouds and underlying surfaces may overlap (as shown in Figure 5). The advantage of GMM compared 
to clustering algorithms like K-means and mean-shift lies in its more flexible modeling capability. 
Unlike K-means and other hard clustering methods, GMM has the ability to perform soft clustering 
which allows data points to belong to different clusters with certain probabilities. This flexibility helps 
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in better understanding and representing relationships between data points, making the model more 
adaptable to clusters that exhibit overlap or have fuzzy boundaries. Additionally, GMM uses 
probability distributions to describe clusters, which makes it better suited for handling complex data 
distributions, especially when dealing with non-spherical distributions where GMM often outperforms 
other algorithms [31]. Its PDF formula is as follows: 

 
2

1

( | ) ( | , )
K

j j j

j

P x f x   


    (8) 

In the equation, x represents a vector X = {x1, x2, x3, ..., xn} consisting of n sample values, where 
X contains K categories. The weight of the jth class is denoted by j, and the function f(x) is the PDF 
of a single Gaussian model with mean j and variance j for the jth class. 

 

Figure 8. (a) Original image; (b) sharpened image; and (c) comparison of R3+4 before and 
after sharpening. 

4.2.2. EM algorithm for GMM parameter estimation 

The set of data for the study area, R3+4, BT15 and BTD7-14, is denoted as X = {x1, x2, x3, ..., xn}, 
where xi is a sample drawn from the set X. The elements in the set are independent of each other and 
follow a GMM. As shown in Eq (7), the GMM density function contains a parameter set θ = {, μ, σ2} 
and this parameter set is defined as θ. For a single Gaussian model, the parameters θ can be estimated 
using the Maximum Likelihood (ML) method, where the likelihood function is given by the PDF: 

 

2

221 1

1 ( )
( ) ( | ) exp( )

22

n n i

i i

x
L P x

 
 


      (9) 

Similarly, the likelihood function can be derived from the GMM PDF as follows: 
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2

1 11

( ) ( | ) log[ ( | , )]
n n K

j j j

i ji

L P x f x    
 

     (10) 

In the equation, there is a complex nonlinear relationship between the likelihood function L (θ) 
and the parameter set θ, making it impractical to directly maximize the likelihood function through 
differentiation. The Expectation-Maximization (EM) algorithm is a common method for maximum 
likelihood estimation and is suitable for data with hidden, unknown variables. It can appropriately 
estimate the optimal parameters of probability models [32,33]. The specific steps of the EM algorithm 
are as follows: 

Step 1: Initialize the parameter set θ = {, μ, σ2} for each category (hidden variables) based on 
prior knowledge. 

Step 2: Calculate the probability that the data is generated by a Gaussian distribution as follows: 

 

2

2

1

( | , )
( , )

( | , )

j i j j

K

j i j j

j

P x
i j

P x

  
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




  (11) 

Step 3: Update the μ and σ2 for each Gaussian model as follows: 

  1

1

( , )

( , )

n

i

i
j

n

i

i j x

i j















  (12) 
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i j
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







 




  (13) 

Step 4: Update the  for each Gaussian model as follows: 

  1

( , )
n

n
j

i j

n


 


  (14) 

Repeat Steps 2 through Step 4 until the maximum likelihood value L (θ) approaches stability. 
Once this condition is met, the algorithm is complete. 
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Figure 9. (a) Variation curve of VAIC with increasing K; (a) Variation curve of VBIC with increasing K. 

 

Figure 10. (a) Visible light image; (b) cloud detection effect when K = 5; (c) cloud 
detection effect when K = 6; and (d) cloud detection effect when K = 7. 

 

Figure 11. (a) Cloud detection effect when K = 7; (b) Cloud detection effect when K = 8. 

4.2.3. Setting the value of K 

Before applying the GMM algorithm for clustering, the value of K needs to be determined. In 
practical situations, the types of distributions contained in the data samples are unknown. As the 
number of sub-models in the observed samples increases, the mixture model better reflects the 
characteristics of the data samples. However, this also leads to a more complex model. A balance point 
should be established to maintain the simplicity of the mixture model and ensure the accuracy of the 
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model fit. Therefore, how to determine the value of parameter K to ensure that the mixture model is 
both accurate and concise is a primary goal to optimize the model. We use the AIC and BIC criterions 
from information statistics to determine the parameter K and their expressions are as follows: 

 
2

AIC
2

BIC

2 ln ( | , , , )
ln ln ( | , , , )

V m L x K
V m n L x K

  
  

 
 

  (15) 

In the equations, m is the number of parameters in the mixture model, n is the number of samples, 
and lnL (x|K, , , 2) represents the maximum likelihood value. The minimum value of VAIC and VBIC 
is taken as the criteria for selecting the optimal model. 

First, four sets of RS images of R3+4 are selected as sample data, and the range for selecting K is set 
between 1 and 14. VAIC and VBIC are calculated for different values of K. As shown in Figure 9, with the 
increase of K, both VAIC and VBIC show an overall decreasing trend, and the trend gradually stabilizes 
when K > 8. To further determine the specific value of K, values of K are set to 5, 6, 7 and 8, and the 
GMM cloud detection results for different K values are compared to determine the appropriate value of 
K. Figure 10 shows the comparison of cloud pixel omissions for K = 5, 6 and 7. As the increase in the value 
of K, the number of omitted cloud pixels gradually decreases. When K = 7, the algorithm produces 
detection results for various types of clouds that closely align with the actual cloud coverage. Furthermore, 
as shown in Figure 11, there is tiny little difference in the detection results of cloud edge details between K 
= 7 and K = 8. Therefore, K = 7 ensures that the mixture model is both accurate and concise. 

5. Results and discussion 

5.1. Datasets and experimental platform 

The Himawari-8 data was provided by the Japan Aerospace Exploration Agency 
(https://www.eorc.jaxa.jp/ptree/). In this study, a dataset was constructed for AHI, encompassing 
partial data from 2021 and 2022. This dataset includes both full disk images and study area images, 
with over 1,400,000 pixels annotated.  

The computer used for the experiments has an AMD R5 5600G processor with a base frequency 
of 2900 MHz, a 1 TB solid-state drive and 16 GB of RAM. The experiment uses the OpenCV and 
Scikit-Learn packages to implement the proposed algorithm. 

5.2. Comparison of clustering algorithms 

The GMM algorithm selected in this study requires pre-determination of the number of clusters, 
similar to the K-means algorithm. Therefore, to demonstrate the advantage of GMM’s soft clustering 
capability over K-means, a comparison was made. The selected images were taken during early 
morning or evening when the reflectance of clouds is lower compared to daytime, posing a significant 
challenge to the clustering algorithms. As shown in Figure 12 within the red box, K-means wrongly 
classified many low-reflectance clouds as underlying surfaces. This is because K-means tends to 
rigidly assign data points to the nearest cluster center when dealing with non-convex shapes or 
overlapping regions. Consequently, some low-reflectance clouds were erroneously categorized as land 
features by K-means. On the other hand, GMM is capable of better reflecting the probability of data 
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points belonging to different clusters. Therefore, in such scenarios, GMM might more accurately 
identify areas with ambiguous boundaries. It excels in capturing complex data distributions and 
delineating regions with unclear boundaries, which might lead to a more precise identification of low-
reflectance clouds compared to K-means. 

 

Figure 12. Comparison of clustering algorithms. 

5.3. Analysis of cloud edges and broken clouds detection results 

The proposed algorithm uses a feature enhancement module to enhance the features of cloud 
edges and broken clouds, and it integrates the detection results of cloud edges and broken clouds in 
the final detection results, thereby improving the overall accuracy of the algorithm. Figure 13 shows 
the heatmap of the proposed algorithm, which reflects the aggregation of broken clouds and cloud 
edges with their respective categories. In Figure 13(a),(b), the model’s attention to broken clouds is 
evident (highlighted in yellow boxes). Figure 13(b),(c) depict the attention to cloud edges, and it can 
be observed that the cloud edges of thin clouds also receive significant attention (highlighted in yellow 
boxes).  

5.4. Cloud detection results comparison 

Traditional methods such as the multi-spectral threshold method are widely used, and machine 
learning methods like RF, KNN and GMM have efficient classification capabilities. Therefore, this 
paper implemented the proposed algorithm and the aforementioned algorithm and implemented cloud 
detection experiments on Himawari-8 images from different time phases and regions to validate the 
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applicability of the proposed algorithm. 

 

Figure 13. (a) and (b) Analysis of broken clouds detection results; (c) and (d) analysis of 
cloud edges detection results. 

Figure 14 presents the comparison of cloud detection results using the multi-spectral threshold 
method [10], RF [15], KNN [34], GMM and the proposed algorithm. In the figure, the true labels 
obtained through visual interpretation are depicted in yellow, while the detection results are shown in 
white rendering. Professionally trained experts or analysts, following the cloud definition method 
outlined in Section 3.1, utilized Photoshop software to meticulously annotate the cloud’s location pixel 
by pixel. 

In Figure 14(a), the detection results of GMM and the proposed algorithm are the most accurate, 
while the multi-spectral threshold method and RF exhibit a slight underestimation of cloud pixels, 
primarily at the cloud edges. KNN shows the highest number of cloud pixel omissions (highlighted 
within the green bounding boxes in the images). In Figure 14(b), GMM and the proposed algorithm 
provide the best detection results, with the multi-spectral threshold method and RF exhibit the greatest 
number of cloud pixels omission. KNN exhibits a large area of omissions in the lower right corner of 
the image and it also misclassifies some non-cloud pixels as clouds at the cloud edges (highlighted 
within the purple bounding boxes for omissions and the yellow bounding boxes for misclassifications). 
In Figure 14(c),(d), the cloud edges in the upper right corners of the images are somewhat blurred. 
Upon comparison, it is evident that the proposed algorithm produces the most accurate detection results. 
Moreover, the multi-spectral threshold method, RF and GMM all exhibit varying degrees of omissions 
at the cloud edges. Multi-spectral threshold method has the most pronounced omission phenomenon, 
followed by RF (highlighted within the blue bounding boxes for omissions and the yellow bounding 
boxes for misclassifications).  

For the detection of broken clouds, as depicted within the red box in Figure 14(d), the multi-
spectral threshold method exhibits the highest number of missed broken cloud pixels, followed by RF 
and GMM. Additionally, KNN misclassifies numerous pixels as clouds. Analysis of the above 
comparison results reveals that in sufficient sunlight conditions during the day, the reflectance of 
clouds in the visible light spectrum is relatively high. During this time, the multi-spectral threshold 
method is more suitable. However, as it approaches evening, decreasing light levels can lead to higher 
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threshold values, which is not conducive to cloud detection. RF and KNN, as supervised learning 
algorithms, have high requirements for sample size and the balance of samples among different 
categories. However, the small and dispersed nature of scattered clouds poses challenges in creating 
training samples for RF and KNN, making it difficult for these algorithms to learn the necessary 
features effectively. 

 

Figure 14. (a) 2021-01-04 15:20; (b) 2021-01-26 17:20; (c) 2021-01-19 14:30; (d) 2021-04-21. 

In contrast, as an unsupervised learning algorithm, GMM can automatically learn the inherent 
relationships between different categories and perform classification without the need for an extensive 
set of training samples. Because the spectral characteristics of cloud edges are somewhat similar to 
those of underlying surfaces, the threshold set by the multi-spectral threshold method is relatively high 
for cloud edge detection. While GMM has several advantages in detecting large-area thick clouds, it 
does not consider the spectral feature similarity between cloud edges and underlying surfaces. 
Therefore, the proposed algorithm achieves the best detection results for various cloud types. 

Additionally, as shown in Figure 15, full disk RS data from September 24, 2022, at UTC 03:00 
are selected for cloud detection. Among the five algorithms, the multi-spectral threshold method and 
GMM achieve relatively good detection results, but there are instances of cloud underestimation in 
some regions (highlighted within the green boxes). RF and KNN show varying degrees of cloud false 
positives (highlighted within the red boxes). The proposed algorithm, an enhancement of GMM, 
reduces the underestimation of cloud pixels, resulting in the best detection performance among the five 
algorithms, demonstrating that this algorithm provides reliable results even for large-scale areas. 

To quantitatively evaluate these methods, this study uses two evaluation metrics, the hit rate (HR) 
and the Hansen-Kuiper skill score (KSS), to analyze 15 RS images from different times and regions. 
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The HR represents the proportion of correctly identified cloud and clear-sky pixels to the total number 
of pixels. The KSS score is used to provide a comprehensive overall measure. The formulas for 
calculating HR and KSS are as follows: 

 
TC TU

HR
PA


   (16) 

 
( )( )

TC TU TF FT
KSS

TC FT TU TF

  


 
  (17) 

In the formulas, TC represents the number of pixels correctly detected as clouds, TU is the number 
of pixels that are actually non-cloud but are detected as clouds, FT is the number of pixels that are 
actually clouds but are detected as non-cloud and PA is the total number of pixels in the image. 

 

Figure 15. (a) Visible light image; (b) detection results of multi-spectral threshold method; 
(c) detection results of RF; (d) detection results of KNN; (e) detection results of GMM; 
and (f) detection results of the proposed algorithm. 

Figure 16 shows the evaluation results of different algorithms for detecting thick clouds, cloud 
edges and broken clouds. The values of HR and KSS approaching 1 indicate superior algorithm 
performance. For thick cloud detection, the HR values of the multi-spectral threshold method, RF, 
KNN, GMM and the proposed algorithm are 0.793, 0.832, 0.799, 0.974 and 0.976, respectively, and 
the KSS values are 0.692, 0.763, 0.642, 0.973 and 0.974, respectively. It is evident that GMM and the 
proposed algorithm outperform the other three algorithms in thick cloud detection. For cloud edge and 
broken cloud detection, the HR values of the five algorithms are 0.619, 0.687, 0.624, 0.963 and 0.974, 
respectively, and the KSS values are 0.458, 0.561, 0.563, 0.947 and 0.973, respectively. Compared to 
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thick cloud detection, the HR and KSS values of the multi-spectral threshold method, RF and KNN 
significantly decrease in cloud edge and broken cloud detection, while those of GMM and the proposed 
algorithm remain above 0.96 and 0.94, respectively. Moreover, the proposed algorithm, which 
incorporates the feature enhancement module, shows an improvement of 0.011 in HR and 0.026 in 
KSS compared to GMM. This indicates that the feature enhancement module aids the classification 
model in extracting deeper cloud edge and broken cloud features. Additionally, as shown in Table 2, 
20 images sized at 256 × 256 were selected for quantitative analysis to demonstrate the overall 
performance of the algorithm. Compared to GMM, the proposed algorithm shows an improvement of 
0.002 in HR and 0.015 in KSS. 

 

Figure 16. (a) Evaluation metrics for thick cloud detection; (b) Evaluation metrics for 
cloud edge and broken cloud detection. 

Table 2. Evaluation metrics for cloud detection. 

Algorithm HR KSS 
Multi-spectral threshold method 0.763 0.572 
RF 0.811 0.65 
KNN 0.753 0.606 
GMM 0.973 0.958 
Proposed algorithm 0.975 0.973 

5.5. Algorithm runtime comparison 

When performing target detection and task analysis, the vast amount of RS data meant that the 
runtime of cloud detection algorithms is an important concern. To address this, RS images of sizes 
1000 × 1100, 2401 × 2401 and 60016001 are selected to compare the runtime differences between 
different algorithms. As shown in Figure 17, when the image sizes are 1000 × 1100 and 2401 × 2401, 
the runtime differences among the four machine learning algorithms does not vary significantly, with 
GMM having the shortest runtime, followed by the proposed algorithm, RF and KNN. However, when 
the image size is 6001 × 6001, KNN’s runtime is significantly longer than the other three algorithms 
(approximately 3.9 times longer than GMM and 3.65 times longer than RF), while the proposed 
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algorithm with the feature enhancement module has a runtime only 7.45 seconds longer than GMM. 
Therefore, for cloud detection in large-sized RS images, the algorithm proposed in this study can 
maintain high accuracy while having a relatively short runtime. 

 

Figure 17. Comparison of running times. 

5.6. Limitations of the algorithm 

While the proposed algorithm generally achieves satisfactory cloud detection results in most 
scenarios, it encounters errors, particularly when dealing with cloud overlap. This defect is especially 
obvious when dealing with cloud shadows. These shadows, appearing as dark regions in visible light 
images, share spectral characteristics similar to the underlying surfaces. The similarity poses a 
challenge in distinguishing clouds within these shadowed areas, leading to errors in identification. 
Figure 18 illustrates examples of cloud detection errors specifically within shadowed regions, 
highlighting numerous omitted pixels in the detection results. In addition, the proposed algorithm is 
tailored for satellites capable of providing 2 km resolution images. With higher image resolution, the 
diversity of surface types becomes more intricate, leading to fluctuations in the optimal K value. In 
such scenarios, extensive experimental analysis becomes crucial for re-evaluating the selection of the 
K value. Even then, pinpointing a stable K value can be challenging. For instance, in an image observed 
at 2 km resolution, a pixel m (x, y) might initially be identified as a cloud. However, as the resolution 
increases, the area represented by m (x, y) encompasses more pixels. Among these newly added pixels, 
some might reveal underlying surfaces that were previously unobservable at the 2 km resolution. 

The future research goal is to combine thermal infrared spectroscopy with neural network 
algorithms to enhance the algorithm’s transferability. Moreover, by exploring the imaging correlation 
between clouds and their shadows, there is potential to calculate the orientation and distance of 
shadows concerning cloud areas. This computational approach could be helpful in effectively filtering 
out these shadows from the detection results. 

6. Ethical considerations and potential societal impacts 

The improved cloud detection technology holds significant potential in disaster management. 
Accurate cloud coverage data is meaningful to monitoring and early warning systems for natural 
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disasters such as storms and floods, aiding in the proactive implementation of response measures and 
minimizing potential losses. However, when applying these technologies, the critical importance of 
data accuracy and timeliness in decision-making must be considered to prevent the potential risks of 
misinformation or delays. 

Furthermore, advancements in cloud detection technology may raise concerns regarding personal 
privacy, particularly in the monitoring and analysis of extensive areas. Therefore, safeguarding 
personal information and data privacy should be a crucial consideration when utilizing these 
algorithms, necessitating the establishment of stringent guidelines for data processing and sharing. 

 

Figure 18. Detection errors caused by cloud shadows. (a) Visible light image; and (b) 
detection result. 

7. Conclusions 

In this paper, we propose a multi-spectral data cloud detection algorithm based on a feature 
enhancement module and Gaussian mixture model (GMM) clustering. First, the spectral data of clouds 
and underlying surfaces are statistically analyzed. Based on the analysis results, an appropriate feature 
scheme is selected to achieve cloud detection throughout the day. Second, the Laplacian operator is 
used to enhance the spectral features of cloud edges and broken clouds. The enhanced data is then 
input into a GMM classifier for cloud edge and broken cloud detection. The original RS data is 
simultaneously subjected to GMM clustering to obtain thick cloud detection results. Finally, the results 
from the both branches are combined to obtain the final cloud detection result.  

Comparing the results of the multi-spectral threshold methods, RF, KNN, GMM and the proposed 
algorithm, the following conclusions are drawn: The proposed algorithm achieves the highest accuracy 
with a hit rate (HR) of 0.976 for the case of thick cloud detection and a Hansen-Kuiper skill score (KSS) 
of 0.974 for the case of cloud edges and broken cloud detection. This means the proposed algorithm 
demonstrates significant advantages over other algorithms, with an HR and KSS improvement of 0.011 
and 0.026, respectively, compared to GMM. Furthermore, the inclusion of the feature enhancement 
module in the proposed algorithm maintains a relatively short runtime. This further demonstrates that 
the proposed algorithm can achieve fast and high-precision cloud detection for different types of clouds. 
Therefore, the proposed algorithm can provide real-time cloud detection results for various tasks such 
as vegetation change analysis, disaster monitoring and cartography, offering a viable solution to 
alleviate the challenges posed by cloud interference. 
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