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Abstract: Epilepsy is a common neurological disease characterized by seizures. A person with a 
seizure onset can lose consciousness which in turn can lead to fatal accidents. Electroencephalogram 
(EEG) is a recording of the electrical signals from the brain which is used to analyse the epileptic 
seizures. Physical visual examination of the EEG by trained neurologists is subjective and highly 
difficult due to the non-linear complex nature of the EEG. This opens a window for automatic detection 
of epileptic seizures using machine learning methods. In this work, we have used a standard database 
that consists of five different sets of EEG data including the epileptic EEG. Using this data, we have 
devised a novel 22 possible clinically significant cases with the combination of binary and multi class 
type of classification problem to automatically classify epileptic EEG. As the EEG is non-linear, we 
have devised 11 statistically significant non-linear entropy features to extract from this database. These 
features are fed to 10 different classifiers of various types for each of the 22 clinically significant cases 
and their classification accuracy is reported for 10-fold cross validation. Random Forest and Optimized 
Forest classifiers reported accuracies above 90% for all 22 cases considered in this study. Such vast 
possible clinically significant 22 cases from the combination of the data from the database considered 
has not been in the literature with the best of the knowledge of the authors. Comparing with the 
literature, several studies have presented one or few combinations of these 22 cases in this work. In 
comparison to similar works, the accuracies obtained by the classifiers were highly competitive. In 
addition, a novel integrated epilepsy detection index named EpilepIndex (IED) is able to differentiate 
between epileptic EEG and a normal EEG with 100% accuracy. 
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1. Introduction  

Epilepsy is a tenacious brain disorder that can affect anyone irrespective of their age [1]. Epilepsy 
occurs due to abnormal or excessive brain discharges of brain nerve cells. There will be a sudden onset 
of several neurons firing at the same time concurrently. According to the World Health Organization 
(WHO) report that is updated in February 2023 about 50 million population in the world are suffering 
from epilepsy [2]. Several of them (80%) are from the countries of low and middle income. WHO also 
feels that if they are diagnosed at the right time and properly treated 70% of them can live free from 
epilepsy. The risk of untimely death is three times more for epileptic patients than the normal people [2]. 
In many places of the world, people with epilepsy are not received well by the general public. Epilepsy 
has been one of the oldest diseases dating back to 4000 BC with the written records [2]. All these 
makes it very important to diagnose epilepsy and give the right treatment for the affected people. 

The Electroencephalogram (EEG) is a recording of the brain activity which is acquired from the 
scalp. EEG has been used in the diagnosis of epilepsy since a long time. Recently Magnetic Resonance 
Imaging (MRI) has also been used in the diagnosis of epilepsy. Predominantly, EEG is being used in 
epilepsy diagnosis for it is easy to acquire them even for 24-hour recordings. 

Much literature is available for automatic classification of epileptic EEG. Generally, the 
researchers use either the long term EEG recordings or short EEG segments for classification of 
epileptic EEG. Bonn University data has short term EEG segments [3]. Various literatures have 
presented binary and multiclass classification problems for this database [4–6]. In this study, we have 
presented 22 different clinically significant cases of Binary and Multiclass classification problems for 
this database which is not in the literature to the best of knowledge of the authors. A novel IED is also 
presented for easy identification of epileptic EEG from the normal EEG. A synopsis of the earlier 
works on Binary and Multiclass problems for this database is discussed as below. Zeng et al used Hurst 
exponent to classify the three types of EEG from this database [7]. They used support vector machines 
(SVM), Linear discriminant analysis (LDA) and a decision tree for classification. LDA achieved the 
highest accuracy of only 76.7%. Wang et al attempted to classify preictal and ictal using discrete 
wavelet transform and SVM and yielded a result of 99.9% accuracy [8]. Kaleem et al. presented 
predictive models and used empirical mode decomposition to extract the features and used SVM 
classifier yielding 88.3% accuracy [9]. Oliva et al. used measurements from bispectrogram, power 
spectrum and spectrogram as features along with back propagation based multilayer perceptron as a 
classifier and yielded an accuracy of 100% for the binary class and 98% for the multiclass type 
classification problem [10]. Like this, there is literature where various methods are presented yielding 
various ranges of accuracies up to 100% accuracy. Our method presented in this work is novel in terms 
of using 22 various cases of clinically significant 2–5 class classification problems of epilepsy 
detection using a combination of 11 unique promising non-linear features across ten different 
classifiers to yield the best possible accuracy under each respective 22 cases studied. We believe this 
is the first kind of such a detailed study in the literature for this database. We also devised a novel 
EpilepIndex IED index which is able to distinguish the epileptic EEG with the normal EEG, which will 
be a handy tool in a clinical setup.  



21672 

Mathematical Biosciences and Engineering  Volume 20, Issue 12, 21670-21691. 

This paper is organized in the following way. Section 2.1 presents our proposed model of our 
study and Section 2.2 lists the database that we have considered for our study in this work. The various 
features proposed to be extracted from the database considered is discussed in Section 3. Section 4 
presents the various types of classification problems from binary class to several multiclass 
classification problem. In this study, we have listed 22 different clinically significant cases of 
classification problems for this data. This is the first time in the literature such detailed cases are studied 
for this database to the best of knowledge of the authors. The various classifiers used in this study 
along with their performance evaluation metrics is presented in the Section 5. The results and 
discussions from this study forms the Section 6. We present the conclusion in Section 7.  

2. Methods and materials 

2.1. Proposed model 

An outlook of our proposed model is shown in the Figure 1. The raw EEG data from the database 
is supplied to the various non-linear features extractor. The extracted features are evaluated for 
significance using ANOVA. Then the significant features are feed to various classifiers, which are then 
evaluated further about the accuracy of the classifiers.  

 

Figure 1. Outlook of the proposed model. 

2.2. EEG database 

The highly used benchmark database of EEG data is the Bonn University database which is 
publically available [3]. This data has five sets of EEG data in five categories recorded from 5 patients. 
We have denoted these five sets as Sets A–E. The specific type of each of these sets are presented in 
the Table 1. Each set of data contain 100 segments of EEG data, which are sampled at 173.61 Hz with 
12-bit A to D resolution. They were filtered using a band pass filter 0.53 to 40 Hz with 12 dB/ octave. 
Each segment is for a fixed duration of 23.6 seconds, thus yielding 4067 samples in each type. The 
Figure 2 shows sample data from each category of this dataset. Thus, we have a total of 500 EEG 
segments each with 4067 samples. Sets A and B are from five healthy volunteers with their eyes open 
and close respectively following the standard International 10–20 electrode placement system over the 
scalp. Sets C and D were the recordings of epileptic patients during seizure free intervals with the help 
of depth electrodes implanted into hippocampal formations (Set C) and from the epileptogenic region 
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(Set D). These were also called as preictal EEG in the literature [4]. Set E is the recordings of EEG 
when the patient is experiencing seizures from both strip and depth electrodes placed in the neocortex 
basal and lateral regions. This is also called Ictal EEG [4].  

Table 1. Description of the data. 

Type Description 
Set A EEG Segments of healthy volunteers with their eyes open 
Set B EEG Segments of healthy volunteers with their eyes closed 
Set C EEG Segments from hippocampal formation of the opp. side of the brain 
Set D EEG Segments from within epileptogenic zone 
Set E EEG Segments during the seizure activity  

 

Figure 2. EEG signal sample from Sets A–E from the database. 

This database serves as one of the benchmark database for various researches to compare their 
model with the result of others who have developed other models in the literature. In addition, this 
dataset is small and yet robust, presenting five different categories of EEG data which is excellent for 
developing multiclass classification problem. The disadvantage is again as the small size.  

3. Features 

3.1. Feature extractor 

The feature extractor extracts 11 different non-linear features from the EEG database. The raw 
EEG data is fed into the feature extractor. The 11 various non-linear features extracted are Approximate 
Entropy (ApEn), Sample Entropy (SampEn), Fourth order Cumulant (Cum), Fractal dimension (FD), 
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Hurst Exponent (H), Fuzzy Entropy (Fz), Kolmogorov entropy (K), Kurtosis (Ku), Permutation 
Entropy (P), Reyni’s entropy (Re) and Tsallis entropy (TE). These features are amply available in the 
literature [4–6] for the applications of measures of various kinds of complexities including epilepsy. 
Hence, we are presenting a short discussion of them here.  

3.1.1. Approximate entropy (ApEn) 

Entropy measures the disorderliness in the system. ApEn has been in the literature for a long time 
to measure the complexity of a system. This has been used in the detection of epilepsy in various 
literature [4–6]. The EEG signal is a complex signal whereas epilepsy signal is mostly repetitive. Hence, 
measuring the entropy of it gives a unique value and this can be useful as a feature towards automatic 
detection of the epilepsy signal. Given embedding space BA with samples s(1), s(2), s(3), …, s(S), 
where S is the total number of sample points, ApEn is defined as 

ApEn ሺ𝐴, 𝑏, 𝑆ሻ ൌ ଵ

ௌି஺ାଵ
∑  ௌି஺ାଵ

௞ୀଵ log 𝐷௞
௠ሺ𝑏ሻ െ ଵ

ௌି஺
∑  ௌି஺

௞ୀଵ log 𝐷௞
௠ାଵሺ𝑏ሻ                        (1) 

where  

𝐷௞
஺ ൌ ଶ

ௌಲሺௌಲିଵሻ
∑  ௌಲ

௞ୀଵ ∑  ௌಲ
௟ୀଵ,௟ஷ௜ Θሺ𝑏 െ ∥∥𝑥௞ െ 𝑥௟∥∥ሻ                                 (2) 

3.1.2. Sample entropy (SampEn) 

SampEn measures complexity of any time series. Sample entropy is a better form of ApEn entropy 
where the self matches are not added [6]. Higher measure of SampEn indicates that the signal is more 
complex and lower measure of it indicates that the signal is less complex. We believe SampEn would 
be a resourceful feature in our study as well. 

3.1.3. Fourth order cumulant (Cum) 

In statistics, cumulants provide an alternative to moments. Biomedical signals are highly non-
linear in general. EEG as already stated is very random. Epileptic signals are relatively repetitive. Thus, 
higher order cumulant could be a good feature to discriminate them. The first order cumulant is mean, 
the second order cumulant is variance and the third order cumulant is the third central moment. The 
fourth order cumulant is different from the third order. The fourth order cumulant is also used in the 
literature for EEG [6]. Hence, in this study, we have used the fourth order cumulant as a feature. 

3.1.4. Kolmogorov entropy (K) 

Kolmogorov entropy is another form of entropy which calculates the uncertainty of a signal over 
time. Normal EEG and an epileptic EEG has a lot of variation in the uncertainty. Thus, we propose to 
use this Kolmogorov entropy as a feature in our study.  
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3.1.5. Hurst Exponent (H) 

Hurst exponent identifies the self-similarity of a time series. It also detects how smooth a time 
series is in relation to the asymptotic behavior of it. This derives its name from Harlod Edwin Hurst 
who developed this exponent in relation to hydrology to size a dam. If N is sample data duration, the 
rescaled range being RS/std, RS being the mean difference between maximum deviation and minimum 
deviation and std being the standard deviation, Hurst Exponent (H) is defined as  

𝐻 ൌ ୪୭୥ ሺோ௦/௦௧ௗሻ

୪୭୥ ሺேሻ
                                                                    (3) 

The slope of the above equation gives the Hurst exponent (H). H was applied to various other types 
of research including epilepsy detection [6]. We have used Hurst exponent in our study, assuming it 
will be a promising feature for our data. 

3.1.6.  Fractal dimension (FD) 

Fractal geometry is the origin of fractal dimension. FD can detect transients. Hence, it can be used 
as a feature towards detection of epileptic seizure. A fractal is considered to be a geometric shape that 
can be divided into smaller shapes, and each of these shapes represent the original in a reduced form. 
FD can be calculated in various methods for any signal. The standard method used in the literature [6] 
is considered in this study.  

3.1.7. Kurtosis (Kut) 

Kurtosis measures the tail details of the distribution of the signal. This is the fourth order of 
statistical moments. Kurtosis informs about how the data in the distribution is dense in the tails in 
opposite to the mean. This will be a salient feature as it has the capacity to present the information at 
the tail of the distribution of the signal.  

3.1.8. Fuzzy entropy (FzE) 

Fuzzy entropy calculates the unpredictability of any signal. The nature of the EEG signal being 
highly unpredictable makes Fuzzy entropy a valid choice for extracting the salient features of the signal. 
Fuzzy entropy has been already used for EEG signal [11–14]. We have used the same calculations as 
presented from the literature [11] in this study. 

3.1.9. Reyni’s entropy (Re) 

The Reyni’s entropy (Re) is yet another wise tool which is used in the literature for EEG signal 
and other areas. We have used the method devised by Arunkumar et al. for calculating Re in this 
study [14].  
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3.1.10. Permutation entropy (PE) 

Permutation entropy is there in the literature for long time. This has been applied towards EEG 
signals as well [11]. Here, we have used the method as presented by Arunkumar et al. [14] to calculate 
the PE. 

3.1.11. Tsallis entropy (TsE) 

TsE has been in the literature for various applications. In this paper, we have devised the method 
as described by Rajeeva Sharma et al. [11] to calculate the TsE. The non extensivity index is fixed at 2 
for calculating the TsE for the EEG data in this study. 

This novel combination of these specific 11 cured feature set have not been used in the literature 
earlier, to the best of our knowledge. 

3.2. Feature selection and ranking using student t test 

A number of features are generally extracted by the feature extractor. All may not be significantly 
contributing to discriminating the two sets of the EEG—the epileptic EEG and the normal EEG. Hence, 
it becomes important to rank the features using their differentiating power between the normal EEG 
and epileptic EEG. The idea is to feed only the significant features to the classifier, thereby reducing 
the load on the classifiers which in turn will improve the performance of the classifiers. In order to 
identify the significant features, we have used students’ t test [11]. Then, the significant features are 
presented to the classifiers for classification.  

4. Building types of classification problems 

We have investigated several binary and multiclass classifiers for this database. In essence, we 
have devised 4 types of classification problems. It should be noted that such type of diversified 
classification problem definition has not been in the literature for this database to the best knowledge 
of the authors. They are presented below. 

Type I: Binary classification problem—2 classes 
Type II: Multiclass classification problem—3 classes 
Type III: Multiclass classification problem—4 classes 
Type IV: Multiclass classification problem—5 classes 
The significance of each case under each type is explained in their respective cases as below.  

4.1. Type I: Binary classification 

Binary classification is very common for all learning problems where the machine is trained to 
distinguish between the two classes. This is a standard benchmark classification tool before going to 
multi class classification problem. This type of classification problem is an essential type in relation to 
epilepsy as well. We have to develop an automated system to tell if the EEG considered is epileptic or 
normal. This forms as a binary type of classification problem for this study. Considering the database 
that we have taken for this study [3], we have listed all the various possible Binary classification or 
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the 2 class classification problem in Table 2. It can be seen that there are thirteen different scenarios 
here that are listed from Case 1 to Case 13. The purpose and clinical significance of each of these cases 
is presented in their respective sections as presented below.  

Table 2. Various cases of Binary classifier. 
Type I Binary Classification (2 Class) 
Case 1 Set A vs Set E 
Case 2 Set B vs Set E 
Case 3 Set A, B vs Set E 
Case 4 Set A vs Set C 
Case 5 Set A vs Set D 
Case 6 Set B vs Set C 
Case 7 Set B vs Set D 
Case 8 Set C vs Set D 
Case 9 Set C vs Set E 
Case 10 Set D vs Set E 
Case 11 Set A, B vs Set C, D 
Case 12 Set C, D vs Set E 
Case 13 Set A, B, C, D vs Set E 

Case 1 (Set A vs Set E): As we have learned about each set of data for this database [3], we know 
that Set A is healthy individuals with their eyes open and Set E is from the patients with epilepsy during 
their seizure. This case presents 2 class classification problem between Sets A and E. This is significant 
to discriminate between the normal class and the epileptic class to build the classifier for automated 
diagnosis. 

Case 2 (Set B vs Set E): Case 2 is similar to Case 1, but Set B is EEG data with eyes closed verses 
Set E which is the epileptic EEG. Thus, this case also trains the classifier to detect between the normal 
and epileptic EEG. This is also essential to develop automated diagnosis of epilepsy. 

Case 3 (Set A, B vs Set E): Here, we combine Sets A and B to be in a single class as both these 
sets are from healthy individuals. Set E belongs to the other class, and we have attempted another type 
of 2 class classification problem. 

Case 4 (Set A vs Set C): In this case, we can see that it is between Sets A and C. As we know Set 
A is a normal EEG data but Set C is from epileptic patients but data is acquired when they are not 
experiencing seizures or during the intermittent time of seizures (Inter Ictal). Developing an automatic 
system to differentiate between Normal and Inter Ictal class is also most necessary as a pre tool towards 
prediction of the onset of epileptic seizures.  

Case 5 (Set A vs Set D): Case 5 is similar to Case 4. Set D is also of the type of Inter Ictal, but 
from an epileptogenic region of the brain, whereas Set C is from the hippocampal region. Again, a 
machine learning classifier is supposed to discriminate between a healthy individual and another type 
of Inter Ictal EEG which comes from the epileptogenic region.  

Case 6 (Set B vs Set C): This case gives a 2 class classification problem which will lead to 
discrimination between healthy eyes open EEG data with the Inter Ictal EEG data.  

Case 7 (Set B vs Set D): This is similar to Case 6. The difference is that the automatic detection 
tool will become robust in its design when learning to differentiate various type of clinical data. It 
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should be noted that such kind of detailed 2 class classification has not been in the literature for this 
database as far as the knowledge of the authors.  

Case 8 (Set C vs Set D): This is an interesting case that we have considered to evaluate our binary 
classifier to discriminate fine between the two types of Pre Ictal EEG data. This will test the 
performance of the classifier for these two similar yet different data.  

Case 9 (Set C vs Set E): In this case, we have given Inter Ictal and Ictal as 2 class problem to the 
classifiers. This is another interesting case, as clinically Inter Ictal stage is followed by the Ictal stage. 
This discrimination will give a way towards building predicting tools for epilepsy. This will be helpful 
in situations when the epileptic patient is swimming or driving and if they get an onset of a seizure, 
they will lose consciousness, which can lead to a fatal accident. If the patient can be informed of the 
oncoming seizure via prediction by identification of Inter Ictal EEG and discriminate it from the Ictal 
type, it could provide ample time for the patient to get to a safe location.  

Case 10 (Set D vs Set E): Again, this case would be similar to the previous Case 9, but this would 
be another type of Inter Ictal EEG. A robust automatic tool is supposed to get trained well with all 
aspects of Inter Ictal EEG to discriminate it from the Ictal type of EEG.  

Case 11 (Set C, D vs Set E): This case is similar to Case 3. In Case 3, we have combined the 
healthy data together and contrasted with the Ictal EEG, but we have combined both the Inter Ictal 
EEG with the Ictal EEG. This is clinically significant to study the onset of epileptic seizures.  

Case 12 (Set A, B vs Set C, D): Here, we have combined both Sets A and B to form a single class 
as normal class. Sets C and D are combined together as they both are typically Inter Ictal EEG and 
they form Inter Ictal Class forming another nature of a binary classification problem for the dataset 
considered in our work.  

Case 13 (Set A, B, C, D and Set E): This is a peculiar case where Sets A–D are all combined 
together to form a single class as they all are indirectly normal EEG in comparison to the seizure EEG 
or Ictal EEG, which is the real epilepsy onset where the person starts to experience convulsions which 
can lead to loss of consciousness. The system in real time is supposed to have clear discrimination 
between these two categories and forms the last case in our Binary classification problem.  

4.2. Type II: Multiclass classification problem—3 classes 

In general machine learning algorithms are designed for 2 class classification problems, but in 
reality, mostly multiclass classification problems exist. The database that we have considered have 5 
different types of data. The various clinically significant Case 3 class classification problem are listed 
in Table 3 and discussed as below. As listed in the Table 3, we have 5 different cases of 3 class 
classification problem for the database considered. A short summary of each of these cases is presented 
as below with their clinical significance.  

Case 14 (Set A vs Set C vs Set E): This case has 3 classes of normal (with eyes closed), Inter Ictal 
and Ictal from Set A, Set C and Set E. This is the real situation of real-world offline applications where 
an automatic detection tool is supposed to discriminate for the epilepsy detection.  

Case 15 (Set B vs Set D vs Set E): This is another set of 3 classes problem which we have defined 
with the data where the first class will be from healthy subjects from eyes open (Set B), the second 
class from another set of Inter Ictal EEG (Set D) and third class is the epileptic EEG (Set E).  

Case 16 (Set A vs Set D vs Set E): Here, healthy subjects with their eyes closed is considered as 
one class, Set D—another type of pre Ictal is considered as the second class and the third class is taken 
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as the epileptic EEG. This is a typical case of a real world scenario where an epileptic person can have 
normal or pre Ictal or epileptic EEG at any point of time. The device is supposed to identify all the 
three types correctly avoiding false positives.  

Case 17 (Set B vs Set C vs Set E): In this case, using healthy subjects with their eyes open, inter 
ictal EEG and the epileptic EEG are considered as various 3 classes. This is also a challenge to the 
machine to detect all the three different classes correctly. All these are essential for building a robust 
design and identify how various classifiers are going to perform. Hence, we have considered this case 
also as it is highly relevant to clinical significance.  

Case 18 (Set A & Set B vs Set C & Set D vs Set E): This is an interesting case, as all the healthy 
subjects EEG data (Sets A and B) are considered to be one class. All the inter ictal EEG (Sets C and D) 
are considered to be together in another class, and in the third class we have the epileptic EEG.  

Table 3. Multiclass classification—3 classes problem. 

Type II Multiclass Classification (3 classes) 
Case 14 Set A vs Set C vs Set E 
Case 15 Set B vs Set D vs Set E 
Case 16 Set A vs Set D vs Set E 
Case 17 Set B vs Set C vs Set E  
Case 18 Set A & Set B vs Set C & Set D vs Set E 

4.3. Type III: Multiclass classification problem—4 classes 

Type III presents various possible clinically significant 4 classes classification problem as listed 
in Table 4. This is a novel study in our work where we have considered 3 different cases of 4 classes’ 
classification problem. This is referred as Type III of our multiclass classification problem. Cases 19 
to 21, as listed in Table 4, encompass 4 classes from the considered database, which have 5 different 
types of EEG data.  

Table 4. Multiclass classification—4 classes problem. 

Type III Multiclass classification problem (4 classes) 
Case 19 Set A vs Set B vs Set C vs Set E 
Case 20 Set A vs Set B vs Set D vs Set E 
Case 21 Set A vs Set C vs Set D vs Set E 

When a neurologist visually examines a patient, they will classify between all these categories of 
data and tries to locate the epileptic EEG with his intelligence and experience. This is subjective and 
it will vary between neurologists. The automated tool designed will remove this subjective evaluation 
and should present concurrent results. Thus, when we are designing an automatic tool for detecting 
epilepsy, we have to consider the real-world situation (Type III) and attempt to replicate the intelligence 
and experience of the trained doctor.  
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4.4. Type IV: Multiclass classification problem—5 Classes 

Here, we have taken each of the five EEG dataset from the considered database to form five 
different classes. This also mimics the real-world discrimination of a neurologist doctor who is looking 
for epileptic patterns in the long-time recordings of the EEG. This is considered as Type IV of 
multiclass classification problem considering 5 classes which forms the Case 22 in our experiment. 
This experiment is also a novel case presented in our study.  

Table 5. Multiclass classification—5 classes problem. 

Type IV Multiclass classification problem (5 classes) 
Case 22 Set A vs Set B vs Set C vs Set D vs Set E 

5. Classifiers 

In this study, we have considered 10 different types of classifiers. They belong to various 
categories as Bayesian classifier, function-based classifier, meta classifier, rule-based classifier and 
decision tree-based classifier. The various classifiers considered in this study are Naïve Bayes, 
Multilayer Perceptron (MLP), Simple Logistic (SL), Radial Basis Function Classifier (RBF), 
Multiclass Classifier, Multi objective Evolutionary Fuzzy Classifier (MOEF), Non-Nested 
Generalized Exempler Classifier (NNge), Optimized Forest, J48 Classifier and Random Forest. The 
type of each of these classifiers is shown in the Table 6. 

Table 6. Classifiers used in this study. 

Classifier Nature / Type 
Naïve Bayes Bayesian type classifier 
Multilayer Perceptron (MLP) Function based classifier 
Simple Logistic (SL) Function based classifier 
Radial Basis Function classifier (RBF) Function based classifier 
Multiclass classifier Meta type classifier 
Multi Objective Evolutionary Fuzzy classifier (MOEF) Rule based classifier 
Non-nested Generalized Exempler (NNge) Rule based classifier 
Optimized Forest classifier Decision Tree type classifier 
J48 classifier Decision Tree type classifier 
Random Forest classifier Decision Tree type classifier 

All these classifiers were used in all the Types I–IV (22 cases) of the classification problems that 
was presented. All the classifiers considered in this study were executed using the Waikato Environment 
for Knowledge Analysis (WEKA) tool and computed to their default settings of WEKA [15]. 

5.1. Classifier performance evaluation 

We have used 10-fold cross validation. This gives reliable classification performance for any data. 
The classifiers are evaluated based on their accuracy in their classification. In the literature there are 
several other performance metrics such as sensitivity, specificity. Here, we have focused on presenting 
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the accuracy of the classifier as this is most essential towards building an automatic tool for epilepsy 
detection. Accuracy is defined as the ratio between total numbers of correctly classified EEG segments 
(TC) with the total number of EEG segments (TNO). Listing all the other performance metrics for all 
the 22 cases discussed will make the study very detailed and incoherent to the purpose.  

Accuracy = TC / TNO                                                                  (4) 

where TNO = TP + TN + FP + FN, TC = TP + TN, TP = True Positives, TN = True Negatives, FP = False 
Positives and FN = False Negatives. 

5.2. EpilepIndex (IED) 

To make a more meaningful way for easy detection of epileptic EEG, we have developed the 
EpilepIndex IED index from the features that discriminate between the normal EEG with the epileptic 
EEG. This concept of Integrated Index is available in the literature for various applications [11]. Here, 
the most significant features based on its highest p value is considered. With trial and error method, 
we have devised the following equation for the index IED using the top ranked four features. We have 
discussed the details of this index in the Section 6.3. 

𝐼ா஽ ൌ
ൣଵ଴଴ ሺ௞∗஺௣ா௡ሻమାଵ଴൫ௌ௔௠௣ா௡ାோ௘మ൯൧

ସ଻ହ
െ 6                                            (5) 

6. Results and discussion 

6.1. Significant features extraction and selection using t test 

Table 7. Statistical t test p-value for features. 

Features Mean (Set A) Std (Set A) Mean (Set E) Std (Set E) p-value Rank 
ApEn 0.548374 0.060308 0.651661 0.061226 3.8 E-22 4 
SampEn 1.010935 0.163356 0.495863 0.144952 2.04 E-34 3 
Cum4 953423.9 1518535 1.02E+10 3.79E+10 0.008 8 
FD -1.49284 0.073948 -1.316 0.113469 1.4 E-12 7 
H 0.657052 0.061209 0.435487 0.096808 0.016 9 
FzE 0.027913 0.012109 0.021897 0.010435 0.2 11 
K 5.624378 0.243047 7.120629 0.523022 2.34 E-37 2 
Kut 3.226986 0.269942 3.428355 1.187349 0.039 10 
PE 1.486605 0.05663 1.235531 0.088102 1.39 E-20 5 
Re -15.9675 0.500365 -19.5353 1.018548 1.62 E-43 1 
TsE -9759521 5089083 -4.8E+08 4.11E+08 3.07 E-19 6 

The raw EEG data taken from the database is fed into the feature extractor. As discussed before, 
the feature extractor extracts all the 11 features (ApEn, SE, FD, Cum4, FzE, K, Kut, H, Pe, Re and 
TsE) for each of the data in all sets. Table 7 presents the mean and standard deviation of all 11 feature 
values for the Case 1 (Set A vs Set E). Statistical t test is performed on all these features to identify the 
p-value which evaluates the significance of these features for discriminating the various category of 
data. The features are ranked based on its p value, the lowest p value obtaining the rank 1. Re obtains 
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the lowest p value and it is marked in bold. Thus, we can understand that Re has the highest 
discriminating capacity for this case. It is found that the p value obtained is very less than 0.05 for all 
features except FzE, which implies that all the features extracted except FzE for this database are 
statistically significant. All the 22 cases considered in this study are evaluated similarly and only Case 
1 is discussed above as a representative.  

These significant features are fed as input to the various classifiers considered. Each classifier is 
tested with 10-fold cross validation. The classification results for each type of classification problem 
are presented below. 

6.2.  Classifier results 

1) Type I 
Type I consists of 13 cases of binary classification problems. All ten proposed classifiers are tested 

for each of the 13 cases considered. The accuracies achieved by each of the classifiers are presented in 
the Table 8. The highest accuracy achieved for each case is highlighted in bold.  

Case 1: It can be noted from the table that for case 1, almost all the classifiers have given 100 
percent accuracy classifying Set A and Set E correctly. This shows that the feature set that we have 
considered in this study is extremely suitable in discriminating all the 100 data from each set A and E 
correctly. A 100 percent accuracy is achieved by various classifiers namely Naïve Bayes, MLP, SL, 
RBF, NNge and optimized forest classifiers. The other 3 classifiers presented an accuracy with 99.5%. 
Our investigation finds that all classifiers considered for this case is able to accurately classify between 
the normal EEG and the epileptic EEG. 

Case 2: Case 2 presents another type of normal EEG (with eyes closed) with the epileptic EEG 
(Set B vs Set E). Here, we can see that the highest accuracy achieved is 99.5% by the MLP and the 
RBF classifier. The lowest accuracy was achieved by MOEF at 97%. Although 100% accuracy was 
not achieved by any of the classifier for this case, we can see that all the classifiers considered reported 
over 97% accuracy.  

Case 3: The next interesting case is case 3 where 100% accuracy was obtained by MC Classifier. 
This proves that our feature combinations possess the ability discriminate all the normal EEG and the 
epileptic EEG. Five of the other classifiers namely Naïve Bayes, MLP, SL, RBF and NNge all produced 
accuracies over 99%. The lowest accuracy for case 3 was reported at 97.67% by the MOEF classifier. 

Case 4: Here, we move into Set A vs Set C. The highest accuracy was achieved by SL with 98.5%. 
Generally, to classify a normal EEG with the preictal EEG is very difficult, as can be seen from 
literature. Our study produced 98.5% with the SL classifier. It can be observed that even the lowest 
accuracy was reported at 93.5% with the MOEF classifier.  

Case 5: This case is similar to case 4 normal vs preictal EEG. Four classifiers, namely SL, RBF, 
Optimized Forest and Random Forest, gave 98% highest classification accuracy. This demonstrates 
the robustness of our feature set which was given as input to these classifiers. More than one classifier 
is able to give the same highest accuracy proving that our selected classifiers are performing well. 

Case 6: In this case, we try the binary classification with Normal subjects with their eyes closed 
with the preictal EEG. 99.5% classification accuracy is reported by RBF and Multiclass classifier 
proving the versatile nature of our feature set to classify various type of EEG accurately. Even the 
lowest accuracy stands at 92.5% by the MOEF classifier. 
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Case 7: This is similar to case 6 but with different preictal EEG as input. MLP and RBF gave the 
highest accuracy at 99.5% with just one error. On the other hand, Naïve Bayes resulted only in 87%. 
This lower accuracy of Naïve Bayes cannot be marked because of the feature set, as the same feature 
set with MLP and RBF produced 99.5% accuracy. All other classifiers result with an accuracy above 97% 
except J48 classifier with an accuracy of 94.5%. Hence, the accuracy reported by Naïve Bayes is 
inherent to its own classification algorithm and thus cannot be attributed to the proposed feature set. 

Case 8: This is a peculiar case. From the clinical point of view, Sets C and D are preictal type 
EEG but with different areas of acquisition. This can be seen from the classifier results that none of 
the classifiers considered were not able to produce accuracy higher than 86.5%. We have considered 
this case to evaluate the classifier how they behave for almost similar type of data. The failure of the 
classifiers for this case is evident when the case is seen from the clinical point of view.  

Case 9: This is another interesting case - preictal EEG vs Epileptic EEG. Preictal EEG is a kind 
of EEG which comes before the onset of epileptic seizure. Hence, an automatic tool to detect the 
epileptic EEG in real time for patients should be made to learn the preictal type of EEG and this 
automatic detection tool has to discriminate it with the epileptic EEG. RBF achieves 100% accuracy 
for this case, which is a remarkable achievement for any artificial intelligence (AI) tool for this 
important case. This can be further experimented and developed towards predicting the onset of 
epileptic seizures in real time, which is the ultimate aim of the research in automatic detection of 
epileptic EEG using the AI tools. We are happy to present this result to researchers where this can be 
further evaluated towards real time detection. All other classifiers considered in this study also reported 
accuracies above 98%. 

Case 10: This is similar to the previous case, where another set of preictal (Set D) vs the epileptic 
EEG is considered. In this case also, 99.5% accuracy is achieved by the J48 classifier. This again 
illustrates that the considered feature set is extremely good in providing ability for the classifiers to 
classify accurately across all types of EEG for the given dataset.  

Case 11: This case is considered to further rigorously test our classifiers. Here, we have combined 
both types of preictal type EEG (Set C and Set D) and tested the classifiers if they can discriminate 
with the epileptic EEG (Set E). We can see that 99.3% accuracy is obtained by J48 and Random Forest 
classifiers. The lowest accuracy at 96.37% by the Naïve Bayes classifier. All other classifiers have 
reported accuracies above 97.6%. Thus, this case further clearly demonstrates the more robustness of 
the feature set to solving real time detection of epileptic EEG and prediction of the onset of the 
epileptic EEG. 

Case 12: This is another important case where both types of normal EEG are considered to be in 
a class and both types of preictal EEG are considered to be in another class. The significance of this 
case is that an AI tool is supposed to 21683ecognizes a normal EEG and a preictal EEG where the 
patient can be altered about the possibility of the upcoming epileptic seizure onset. If this variation can 
be detected in real time, then this will give ample time for the patient to move to a safe location if the 
patient was driving or swimming as the onset of epileptic seizure can lead of loss consciousness. The 
proper classification that is needed in this case is also important to reduce the false positive alarms. 
Here, we can see that SL brings out an accuracy of 98.75% which is highly appreciated. Except for 
Naïve Bayes, all other classifiers resulted in accuracies above 94.75%. The lowest accuracy obtained 
by Naïve Bayes at 78% needs further evaluation.  
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Table 8. Accuracies obtained by various classifiers for Type I classification problem. 

Classifiers 

/Type I 

A vs E 

(Case 1) 

B vs E 

(Case 2)

AB vs E

(Case 3)

A vs C 

(Case 4)

A vs D 

(Case 5)

B vs C 

(Case 6)

B vs D 

(Case 7) 

C vs D 

(Case 8)

C vs E 

(Case 9)

D vs E 

(Case 10) 

CD vs E 

(Case 11) 

AB vs CD

(Case 12) 

ABCD vs E 

(Case 13) 

Naïve Bayes 100 % 99 % 99 % 98 % 91.5 % 95.5 % 87 % 67.5 % 99.5 % 94.5 % 96.37 % 78 % 97 % 

MLP 100 % 99.5 % 99.67 % 97.5 % 97.5 % 98.5 % 99.5 % 86.5 % 99.5 % 98 % 99 % 97.75 % 99.4 % 

Simple Logistic 100 % 98.5% 99.67 % 98.5 % 98 % 98.5 % 99 % 83.5 % 98.5 % 97.5 % 98.6 % 98.75 % 98.6 % 

RBF 100 % 99.5 % 99.67 % 96.5 % 98 % 99.5 % 99.5 % 83 % 100 % 98 % 99 % 98.25 % 97.8 % 

MultiClass classifier 99.5 % 98 % 100 % 94.5 % 97 % 99.5 % 99 % 86.5 % 99 % 98 % 98 % 97.75 % 97.6 % 

Multiobjective 

evolutionary fuzzy 

Classifier 

99.5 % 97 % 97.67 % 93.5 % 96.5 % 92.5 % 98.5 % 77.5 % 98 % 96 % 98 % 94.75 % 97.6 % 

NNge 100 % 99 % 99 % 95.5 % 97 % 97.5 % 97 % 83 % 98 % 97.5 % 97.67 % 96 % 97.4 % 

Optimized Forest 100 % 98.5 % 98.67 % 98 % 98 % 97.5 % 98 % 86.5 % 99 % 98.5 % 99 % 97.25 % 98.4 % 

J48  99.5 % 97.5 % 98 % 97 % 97 % 97 % 94.5 % 82 % 99 % 99.5 % 99.3 % 95 % 98.8 % 

Random Forest 100 % 98.5 % 98.3 % 98 % 98 % 98 % 98.5 % 86 % 99 % 98.5 % 99.3 % 97.25 % 98.6 % 

Case 13: This case is also very important where all types of EEG from the dataset except the epileptic EEG is considered to be in a class and 
epileptic EEG in another class. Thus, 400 data (Sets A–D) in one class and 100 data (Set E) in other class. Ultimately, any AI tool has to discriminate 
correctly between other types of EEG with the epileptic EEG. This particular aspect is evaluated in this case and we can see that the highest 
accuracy is achieved by the MLP classifier at 99.4% which is excellent. It should be noted that all the other classifiers also resulted in accuracies 
higher than 97%. All these experiments clearly demonstrates that the feature set considered in this study forms a versatile set in designing an AI 
based tool for automatic detection of epileptic EEG. An interesting observation about the RBF is worth highlighting here. It can be observed that 
RBF has attained the highest accuracy for six different cases (cases 1, 2, 5, 6, 7 and 9) among the thirteen presented. Thus, for binary classification, 
RBF classifier looks a good choice towards design of AI tool for binary classification of epileptic EEG. Naïve Bayes, on the other hand, has 
produced very low accuracies for Cases 7 and 12. It should also be noted that MOEF classifier although produced accuracies above 92% for all 
the thirteen cases considered, but did not produce the highest accuracy for any of the considered cases. 
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2) Type II 
Type II is a multiclass classification problem presenting the various possible three class 

classification problem. The accuracies obtained in each case under Type II is presented in the Table 9.  
Case 14: This is a vital case where the classifier is tested for real world situations where there is 

a normal EEG (Set A), PreIctal EEG (Set C) and Epileptic EEG (Set E). MLP leads all the other 
classifiers and produces 98.6% accuracy. The lowest accuracy obtained was also above 92.3% by the 
MOEF Classifier. Thus, we can see that the classifiers are able to discriminate between all these to 
good accuracies. 

Case 15: This is similar to the previous case where another type of preictal EEG is used. The 
highest accuracy of 97.67% was reported by three classifiers, namely SL, Optimized Forest and 
Random Forest. The lowest accuracy was reported by Naïve Bayes at 89.6%. 

Case 16: This takes another type of normal EEG (Set A) as input in comparison to Case 14. Again, 
MLP reported a highest accuracy of 98.6%. The lowest accuracy was reported at 89.67% by the MOEF 
classifier. From Cases 14 and 16 we can deduce that MLP produces an excellent accuracy of 98.6% 
for all types of available normal EEG class.  

Case 17: Here, again the highest accuracy was presented by the MLP classifier at 98.6%. The 
lowest was by Naïve Bayes with 86.6%.  

Case 18: This is an important case where the classifiers are elaborately and rigorously tested for 
their performance. Here, both normal EEG (Set A and Set B) are considered to be in a single class and 
both types of preictal EEG (Set C and Set D) forms another class and Set E (Epileptic EEG) forms the 
other class. We can see that both MLP and SL gives the highest accuracy of 98%. The lowest accuracy 
was again by the Naïve Bayes.  

From the above, we can identify that MLP performs well for the 3 class classification problem 
across all cases. It was able to consistently produce accuracies above 98.5%. Even in Case 15, the 
accuracy was above 97%. On the other hand, we find that Naïve Bayes is not a good choice for Type 
II cases.  

Table 9. Accuracies obtained by various classifiers for Type II classification problem. 

Class/Type A vs C vs E 
(Case 14) 

A vs D vs E 
(Case 15) 

B vs C vs E 
(Case 16) 

B vs D vs E 
(Case 17) 

AB vs CD vs E 
(Case 18) 

Naïve Bayes 97.6% 89.6% 95.3% 86.6% 81.2% 
MLP 98.6% 97.3% 98.6% 98.6% 98% 
Simple Logistic 97.6% 97.67% 98.3% 98.3% 98% 
RBF 95.33% 97.33% 96.33% 97.33% 96% 
Multiclass Classifier 96.33% 96% 97.67% 95.67% 96.6% 
Multiobjective 
evolutionary fuzzy 
Classifier 

92.33% 92.33% 89.67% 89.33% 89.4% 

NNge 96.33% 96.33% 97.33% 95.67% 95.4% 
Optimized Forest 98% 97.67% 96.33% 97.67% 97.2% 
J48  96.6% 97.3% 95% 93.3% 93.8% 
Random Forest 98% 97.6% 97% 97.3% 97.2% 
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3) Type III 
Here, we discuss the results obtained from all cases of the Type III, which is a four class type 

classification problem. The accuracies obtained for this type is shown in Table 10. 
Case 19: Here, Sets A, B, C and E are considered to be of independent classes. Again, we can see 

that MLP classifier outperforms all other classifiers and yields an accuracy of 98%. The lowest was 
RBF with 87% and yet Naïve Bayes was at 87.5% denoting that Naïve Bayes in general not a good 
classifier for multi class classification problem.  

Case 20: Here, Sets A, B, D and E are independent classes. MLP gives the highest classification 
accuracy for this case as well. Although accuracy obtained by the MLP was 92.75%, it was best 
accuracy in comparison to other classifiers considered in this study. Naïve Bayes yielded only 79.5% 
and MOEF presented the lowest accuracy at 72.75%. 

Case 21: Sets A, C, D and E were considered to be independent classed, forming a four-class 
classification problem. Optimized Forest gave the highest accuracy of 92.25% and MLP is not too far 
yielding 92%. The lowest was again from the Naïve bayes classifier at 79.2%. In essence, we can mark 
that MLP classifier is being a very good choice for the four class classification problem as well for 
this dataset.  

Table 10. Accuracies Obtained by various classifiers for the Type III classification problem. 

Class/Type A vs B vs C vs E  
(Case 19) 

A vs B vs D vs E 
(Case 20) 

A vs C vs D vs E 
(Case 21) 

Naïve Bayes 87.5% 79.5% 79.2% 
MLP 98% 92.75% 91% 
Simple Logistic 90% 91.5% 90.2% 
RBF 87% 88.25% 81.25% 
Multiclass Classifier 92.75% 89.75% 88.25% 
Multiobjective evolutionary fuzzy Classifier 73.25% 72.75% 71.25% 
NNge 90.5% 90.5% 89% 
Optimized Forest 92.75% 91.5% 91.25% 
J48  90% 90% 87% 
Random Forest 92.7% 91.5% 91.2% 

4) Type IV 
Type IV is a multiclass classification problem with 5 classes. The accuracy obtained by this Type 

IV problem is showing in Table 11. 
Case 22: Here, we have considered Sets A–E to be all independent classes, forming a five class 

classification problem. This will further test the performance of the classifiers. The highest accuracy 
was obtained by the Random Forest classifier at 90%. MLP is not far away and it produced 88% 
accuracy. The lowest accuracy was presented by the RBF classifier 73.4%.  

The summary of results obtained is presented as follows: From all the types (Types I–IV) 
problems that has been studied here, we can note that the RBF was a good classifier for Type I cases 
listed. However, as the number of classes increased from 2 class to 5 class classification problem—
RBF performance went down as can be seen from the results. RBF produced only 73.4% for the Type 
IV problem. It can be noted that MLP always produces accuracies above 97.5% for all cases of Type I 
problems, above 97.3% for all cases of Type II problems, above 91% for all cases of Type III problems 
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and 88% for the Type IV problem. It should also be noted that Random Forest and Optimized Forest 
also yielded accuracies higher than 90% for all cases of Type I to Type IV problems, except optimized 
forest reaching close to 90% (89.4%) for the Type IV (5 class classification problem). Hence, we can 
declare that the identified feature set was able to produce excellent discrimination for all the 22 cases 
under all types of problems considered in this study. In summary, MLP classifier has produced, in 
general, good accuracies, and Random Forest and Optimized Forest classifiers were also equally good 
with their performance metrics.  

Table 11. Accuracies Obtained by various classifiers for Type IV Classification Problem. 

Class/Type A vs B vs C vs D vs E (Case 22) 
Naïve Bayes 75.2% 
MLP 88% 
Simple logistic 87.4% 
RBF 73.4% 
Multiclass classifier 86.6% 
Multiobjective evolutionary fuzzy classifier 58% 
NNge 85% 
Optimized forest 89.4% 
J48  84.2% 
Random forest 90% 

A salient comparison of our work with essential and similar type of work in the literature is 
presented as follows: It should be noted that we have used all ive sets of data from this database in our 
work, whereas Oliva et al. [10] used only four sets. Set C was ignored by them [10] for the reason 
mentioned as it could lead to imbalance in their classifier results. In our work, we have clearly included 
the full set C and designed 22 different clinically significant cases of various binary and multiclass 
problems and established how our classifier is able to classify all these various sets of data. Oliva et 
al. [10] also presented their results with error rate of the classifiers whereas we have presented with 
the accuracies of the classifiers. In general, accuracy is the direct implication of any problem and thus 
we present it. Khaleem et al. considered only Sets A, B vs E in their study with empirical mode 
decomposition as feature extraction and SVM classifier [16]. They achieved a highest accuracy of 92.9%. 
Again, this is just one case among the 22 cases considered in our work. In our study, we have listed 
this as 3 different cases as Set A vs Set E, Set B vs Set E and Set A, Set B vs Set E (Cases 1–3). In all 
these cases, we achieve a highest accuracy of 99.5% (Case 2) and 100% (Cases 1 and 3). Even the 
lowest accuracy was 97%. This shows that our method is superior in terms of yielding higher 
accuracies. There are several literatures that present one or several combinations of the 22 cases that 
we have discussed in our study, listing their accuracies obtained, but to the best of our knowledge, 
none of them have discussed all the possible clinically significant 22 cases for this database.  

6.3. EpilepIndex (IED) value 

Although all the features listed in Table 7 expect FzE are statistically significant, we have used 
the top four ranked features for forming the IED index. The IED index is designed using the top four 
ranked features (Re, K, SampEn and ApEn) from the t test to identify whether the input given is an 
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epileptic EEG or a normal EEG. This will be easier for a clinical set up in diagnosis of epileptic EEG. 
Considering this, we have tested the IED index with cases where Set E (Epileptic EEG) is one set and 
the other combinations as another set (for the binary type—Type I problem). Under this criterion, the 
following cases are shown: Cases 1–3, 9, 10, 12, 13 and 22 are evaluated to check the robustness of 
our IED index. 

Table 12 shows the mean, standard deviation and p values for the cases considered. We can see 
clearly that, in each case, the normal EEG mean IED values distinctly low in comparison to the epileptic 
EEG. The p value for these two classes with shows that IED index being a single measure has the ability 
to differentiate the normal EEG to the epileptic EEG. 

Table 12. IED - Mean, Standard deviation and p value for cases. 

Cases Normal EEG Epileptic EEG p value 
Case 1 1.42 ± 0.63 6.67 ± 1.73 2.18 E-56 
Case 2 2.32 ± 0.72 6.67 ± 1.73 1.97 E-48 
Case 3 1.87 ± 0.81 6.67 ± 1.73 6.98 E-52 
Case 9 1.80 ± 0.96 6.67 ± 1.73 3.01 E-55 
Case 10 3.20 ± 1.71 6.67 ± 1.73 2.94 E-31 
Case 12 2.50 ± 1.59 6.67 ± 1.73 2.02 E-48 
Case 13 2.18 ± 1.30 6.67 ± 1.73 1.21 E-49 

Figure 3 shows the box plot for each of these cases. In addition to Table 12, Figure 3 also 
demonstrates visually how IED has the potential to discriminate the epileptic EEG and the normal EEG. 
We can see that how for each case, the IED has a distinctive difference for the considered two classes, 
separating them clearly. In general, for all cases, it can be seen that IED value of less than 4 is a normal 
EEG and greater than 5 is an epileptic EEG. Box plot of Case 12 is a specific one to be mentioned: It 
has the preictal type of EEG in one class and the epileptic EEG in another class. IED is able to 
discriminate this as well with the same index value of 4 between these two classes. This opens the 
windows towards prediction of the onset of epilepsy. Box plot of Case 13 clearly says that for all the 
normal EEG in broad sense Sets A–D—the IED is less than 4 and for Set E is above 5. The same can 
be seen more clearly in case 22 where each of the five types of EEG are kept as independent classes to 
each other. We can see from the Figure 3 that for Case 22 that expect Set E all other types of EEG has 
an IED less than 4. Thus, we can deduce that our IED index has the capacity to clearly differentiate the 
epileptic EEG with all other types of EEG, including the preictal type of EEG with 100% accuracy.  

Advantages of this study: 1) To the best of our knowledge, no other study in the literature has 
elaborately discussed all the possible cases for this database. 2). The features were selected very 
precisely based on their impact from various literature [6,11–14,17–20] and were ranked based on the 
t test for each case. We have also used ten different classifiers from several categories of the classifier 
type. Such a vast study on the classifiers for the 22 cases is presented, for first time, by us. 3) In addition, 
all the features are easy to extract with minimum computation time and thus can give a window towards 
real time detection of epileptic seizures into the future. We have also tested each of the ten classifiers 
with 10 fold cross validation for each of the 22 cases listed and identified good classifiers to be MLP, 
Random forest and Optimized forest for this database. 4) We also devised a novel EpilepIndex IED 
index which demonstrated its capacity to differentiate the epileptic EEG and the normal EEG with 
less computation.  
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Figure 3. Box plots of IED index for cases considered. 

Limitations of the study: 1) We focus only on a small database. In general, when the methods that 
are successful for a small database are taken to a large database or real time applications, it does not 
present similar accuracies for various reasons such as noise etc. The presented method in this study 
has to be tested across various other databases for epilepsy. 2) Only EEG segments of fixed duration 
is considered in this study, but in real time, they are continuous recordings for 24 hours. Only 500 
segments of EEG data are available in this database. The method needs to be tested long term EEG to 
check its proficiency before this can be applied for direct clinical purposes. We have planned to study 
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this method for two or three more large databases on epilepsy and propose to study what variations 
will be needed when expanded to several databases.  

7. Conclusions 

In this work, we have devised four types of binary and multiclass classification problems to detect 
epileptic EEG. A total of 22 possible clinically significant cases were listed under these four types of 
classification problems, which is, as far as we know, the first time this is presented in the literature. To 
achieve this, 11 non-linear features were extracted from the EEG database considered. These 
statistically significant features were given as input for each of the 10 different classifiers considered 
in this study. The classifiers were tested for accuracies with 10 fold cross validation. Multilayer 
Perceptron based classifier presented accuracies higher than 97.3% for Types I and II problem. On the 
whole, Random Forest and Optimized Forest classifiers presented accuracies higher than 90% for all 
the 22 cases listed. In addition, a novel EpilepIndex IED index was developed and it was able to 
differentiate the normal EEG and the epileptic EEG with 100% accuracy. These results need to be 
evaluated further in large databases to study their performance.  

Use of AI tools declaration 

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article. 

Conflict of interest 

The authors declare that there are no conflicts of interest. 

References 

1. R. S. Fisher, W. V. E. Boas, W. Blume, C. Elger, P. Genton, P. Lee, et al., Epileptic seizures and 
epilepsy: definitions proposed by the international league against epilepsy (ILAE) and the 
international bureau for epilepsy (IBE), Epilepsia, 46 (2005), 470–472. 
https://doi.org/10.1111/j.0013-9580.2005.66104.x 

2. World Health Organization, Epilepsy, 2023. Available from: http://www.who.int/news-room/fact-
sheets/detail/epilepsy. 

3. R. G. Andrzejak, G. Widman, K. Lehnertz, C. Rieke, P. David, C. E. Elger, The epileptic process 
as nonlinear deterministic dynamics in a stochastic environment: an evaluation on mesial temporal 
lobe epilepsy, Epilepsy Res., 44 (2001), 129–140. https://doi.org/10.1016/S0920-1211(01)00195-4 

4. U. R. Acharya, F. Molinarib, S. V. Sreec, S. Chattopadhyayd, K. Ng, J. S. Suri, Automated 
diagnosis of epileptic EEG using entropies, Biomed. Signal Process. Control, 7 (2012), 401–408. 
https://doi.org/10.1016/j.bspc.2011.07.007 

5. U. R. Acharya, S. V. Sree, J. S. Suri, Use of principal component analysis for automatic detection 
of epileptic EEG activities, Expert Syst. Appl., 39 (2012), 9072–9078. 
https://doi.org/10.1016/j.eswa.2012.02.040 

6. U. R. Acharya, S. V. Sree, G. Swapna, R. J. Martis, J. S. Suri, Automated EEG analysis of epilepsy: 
a review, Knowl.-Based Syst., 45 (2013), 147–165. https://doi.org/10.1016/j.knosys.2013.02.014 



21691 

Mathematical Biosciences and Engineering  Volume 20, Issue 12, 21670-21691. 

7. K. Zeng, J. Yan, Y. Wang, A. Sik, G. Ouyang, X. Li, Automatic detection of absence seizures with 
compressive sensing EEG, Neurocomputing, 171 (2016), 497–502. 
https://doi.org/10.1016/j.neucom.2015.06.076 

8. D. Wang, D. Ren, K. Li, Y. Feng, D. Ma, X. Yan, et al., Epileptic seizure detection in long-term 
EEG recordings by using wavelet-based directed transfer function, IEEE Trans. Biomed. Eng., 65 
(2018), 2591–2599. https://doi.org/10.1109/TBME.2018.2809798 

9. M. Kaleem, D. Gurve, A. Guergachi, S. Krishnan, Patient-specific seizure detection in long-term 
EEG using signal-derived empirical mode decomposition (EMD)-based dictionary approach, J. 
Neural Eng., 15 (2018), 056004. https://doi.org/10.1088/1741-2552/aaceb1 

10. J. T. Oliva, J. L. G. Rosa, Binary and multiclass classifiers based on multitaper spectral features 
for epilepsy detection, Biomed. Signal Process. Control, 66 (2021), 102469. 
https://doi.org/10.1016/j.bspc.2021.102469 

11. R. Sharma, R. B. Pachori, U. R. Acharya, An integrated index for the identification of focal 
electroencephalogram signals using discrete wavelet transform and entropy measures, Entropy, 
17 (2015), 5218–5240. https://doi.org/10.3390/e17085218 

12. K. P. Noronha, U. R. Acharya, K. P. Nayak, R. J. Martis, S. V. Bhandary, Automated classification 
of glaucoma stages using higher order cumulant features, Biomed. Signal Process. Control, 10 
(2014), 174–183. https://doi.org/10.1016/j.bspc.2013.11.006 

13. N. Arunkumar, K. R. Kumar, V. Venkataraman, Entropy features for focal EEG and non focal 
EEG, J. Comput. Sci., 27 (2018), 440–444. https://doi.org/10.1016/j.jocs.2018.02.002 

14. N. Arunkumar, K. Ramkumar, V. Venkatraman, E. Abdulhay, S. L. Fernandes, S.  Kadry, et al., 
Classification of focal and non focal EEG using entropies, Pattern Recognit. Lett., 94 (2017), 
112–117. https://doi.org/10.1016/j.patrec.2017.05.007 

15. Weka Tool, Available from: http://www.cs.waikato.ac.nz/ml/weka/. 
16. M. Kaleem, D. Gurve, A. Guergachi, S. Krishnan, Patient-specific seizure detection in long-term 

EEG using signal-derived empirical mode decomposition (EMD)- based dictionary approach, J. 
Neural Eng., 15 (2018), 056004. https://doi.org/10.1088/1741-2552/aaceb1 

17. U. R. Acharya, H. Fujita, V. K. Sudarshan, S. L. Oh, M. Adam, J. E. Koh, et al., Automated 
detection and localization of myocardial infarction using electrocardiogram: a comparative study 
of different leads, Knowl.-Based Syst., 99 (2016), 146–156. 
https://doi.org/10.1016/j.knosys.2016.01.040 

18. N. Arunkumar, K. R. Kumar, V. Venkataraman, Automatic detection of epileptic seizures using 
permutation entropy, Tsallis entropy and Kolmogorov complexity, J. Med. Imaging Health Inf., 6 
(2016), 526–531. https://doi.org/10.1166/jmihi.2016.1710 

19. N. Arunkumar, K. R. Kumar, V. Venkataraman, Automatic detection of epileptic seizures using 
new entropy measures, J. Med. Imaging Health Inf., 6 (2016), 724–730. 
https://doi.org/10.1166/jmihi.2016.1736 

20. I. Tasci, B. Tasci, P. D. Barua, S. Dogan, T. Tuncer, E. E. Palmer, et al., Epilepsy detection in 121 
patient populations using hypercube pattern from EEG signals, Inf. Fusion, 96 (2023), 252–268. 
https://doi.org/10.1016/j.inffus.2023.03.022 

©2023 the Author(s), licensee AIMS Press. This is an open access 
article distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/4.0) 


