
Service scheduling strategy for
microservice and heterogeneous
multi-cores-based edge
computing apparatus in smart
girds with high renewable energy
penetration

Kaiqiang Hu, Jing Qu*, Zexiang Cai, Xiaohua Li, Yuanyuan Liu and
Junjie Zheng1

1School of Electric Power Engineering, South China University of Technology, Guangzhou, China

The microservice-based smart grid service (SGS) organization and the
heterogeneous multi-cores-based computing resource supply are the
development direction of edge computing in smart grid with high penetration
of renewable energy sources and high market-oriented. However, their
application also challenges the service schedule for edge computing
apparatus (ECA), the physical carrier of edge computing. In the traditional
scheduling strategy of SGS, an SGS usually corresponds to an independent
application or component, and the heterogeneous multi-core computing
environment is also not considered, making it difficult to cope with the above
challenges. In this paper, we propose an SGS scheduling strategy for the ECA.
Specifically, we first present an SGS scheduling framework of ECA and give the
essential element ofmeeting SGS scheduling. Then, considering the deadline and
importance attributes of the SGS, amicroservice scheduling prioritizingmodule is
proposed. On this basis, the inset-based method is used to allocate the
microservice task to the heterogeneous multi-cores to utilize computing
resources and reduce the service response time efficiently. Furthermore, we
design the scheduling unit dividing module to balance the delay requirement
between the service with early arrival time and the servicewith high importance in
high concurrency scenarios. An emergencymechanism (EM) is also presented for
the timely completion of urgent SGSs. Finally, the effectiveness of the proposed
service scheduling strategy is verified in a typical SGS scenario in the smart
distribution transformer area.

KEYWORDS

smart grid services, edge computing apparatus, service scheduling, microservice,
heterogeneous multi-cores

1 Introduction

With the widespread integration of renewable energy sources and the increasing
marketization of the smart grid, the number and variety of smart grid service (SGS) at
the edge of the smart grid, such as the smart distribution transformer area—typically
functioning as the smallest unit of power supply management (Cen et al., 2022; Xiao, H.

OPEN ACCESS

EDITED BY

Yuqing Dong,
The University of Tennessee, Knoxville,
United States

REVIEWED BY

Lu Guanpeng,
Guangdong Water Conservancy and Electric
Power Survey and Design Institute Co., Ltd.,
China
Wei Qiu,
Hunan University, China

*CORRESPONDENCE

Jing Qu,
epquj27@mail.scut.edu.cn

RECEIVED 19 December 2023
ACCEPTED 05 January 2024
PUBLISHED 18 January 2024

CITATION

Hu K, Qu J, Cai Z, Li X, Liu Y and Zheng J (2024),
Service scheduling strategy for microservice
and heterogeneous multi-cores-based edge
computing apparatus in smart girds with high
renewable energy penetration.
Front. Energy Res. 12:1358310.
doi: 10.3389/fenrg.2024.1358310

COPYRIGHT

© 2024 Hu, Qu, Cai, Li, Liu and Zheng. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Energy Research frontiersin.org01

TYPE Original Research
PUBLISHED 18 January 2024
DOI 10.3389/fenrg.2024.1358310

https://www.frontiersin.org/articles/10.3389/fenrg.2024.1358310/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1358310/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1358310/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1358310/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1358310/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1358310/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2024.1358310&domain=pdf&date_stamp=2024-01-18
mailto:epquj27@mail.scut.edu.cn
mailto:epquj27@mail.scut.edu.cn
https://doi.org/10.3389/fenrg.2024.1358310
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2024.1358310

et al., 2023)—are expanding. These services encompass a diverse
range, including Vehicle-to-Grid (V2G) (Chukwu and Mahajan,
2014; Chamola et al., 2020; Peng and Niu, 2023), micro-grid energy
management and control (Mondal et al., 2022; Wu et al., 2022; Xiao
et al., 2023), and demand response at the user side (Bachoumis et al.,
2022; Jia et al., 2022). New demands are subsequently placed on edge
computing apparatus (ECA), a key computing node at the edge side
of the smart grid supporting the processing of the SGS (Li et al.,
2021; 2022). On the one hand, these large numbers of SGSs require
more efficient and powerful computing capabilities for the edge
computing node (Li et al., 2022). On the other hand, the services
deployed on ECA require a flexible service organization tomeet their
needs for flexibility and rapid iteration (Zhou et al., 2021). The
heterogeneous multi-cores-based computing resource supply and
microservice-based service organization can meet the
abovementioned requirements, hence emerging as the
development direction of ECA in smart grids (Zhang et al., 2019;
Jiang et al., 2020).

In the ECA, an SGS consists of multiple independent microservices
and can be realized by collaborating these microservices (Lyu et al.,
2020; Yin et al., 2022). These microservices have different
computational characteristics, such as matrix computation
operations, digital signal processing operations, power message
encapsulation, and encryption and parsing operations. During the
processing, microservices with different computational characteristics
have different computing speeds on different cores of the ECA (Lan
et al., 2022). For example, the microservice task for message parsing is

processed much faster on a specially customized FPGA core than on a
general-purpose core such as a CPU. Besides, some microservices
cannot execute in certain cores due to processing core instruction
set dependencies. Subsequently, a key question arises regarding how the
ECA can schedule the SGS task to different cores for better scheduling
performance. However, very little literature in the smart grid area carries
out a study of the above issues. The traditional smart grid apparatus
with the function of edge computing, such as TTU,DTU, and other IED
(Intelligent Electronic Device), carries a solidified and limited number
of services, and the development and deployment of services is in the
form of individual applications (Wojtowicz et al., 2018). The service
scheduling is usually fixed during the development session for the
apparatus. Thus, it is difficult to be applied to the ECA.

From the mathematical form, SGSs scheduling for ECA belongs to
the problem of scheduling a set of microservices with dependencies in a
heterogeneous system, which is an NP-C problem (Sahni et al., 2021;
Roy et al., 2023). There are three general solutions: heuristic-based list
scheduling algorithms, random search-based intelligent algorithms, and
machine learning-based methods. Some effective heuristic-based list
scheduling algorithms have been proposed, such as HEFT (Topcuoglu,
Hariri, andMin-YouWu, 2002), PEFT (Arabnejad and Barbosa, 2014),
CPOP (Kelefouras and Djemame, 2022). For the random search-based
scheduling strategy, microservice scheduling is established as an
optimization problem that is solved using intelligent algorithms such
as the Genetic Algorithm (Rehman et al., 2019), Ant Colony Algorithm
(Gao et al., 2019), and Particle SwarmAlgorithm (Rodriguez andBuyya,
2014). In recent years, with the rapid development and application of AI

FIGURE 1
The microservice scheduling framework for ECA.

Frontiers in Energy Research frontiersin.org02

Hu et al. 10.3389/fenrg.2024.1358310

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1358310

TABLE 1 Parameters of the SGSs.

Services (with its importance and
deadline)

Microsevices Execution time on each
core (milliseconds)

DAG structure
information

Plug-play service in the SDTA (importance = 5, deadline =
3,700 m)

Primary device registration
packet analysis

[100,120,20,∞] 0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Secondary device response
packet analysis

[50,120,50,∞]

SDTA mapping [300,400,∞,200]

Return the successful
registration packet

[50,100,25,∞]

Topology identification service in the SDTA (importance = 3,
deadline = 4,600 m)

Voltage pulse packet analysis [100,120,50,∞] 0 1 1 0
0 0 0 1
0 0 0 1
0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦Voltage fluctuation similarity
calculation

[200,250,∞,100]

Voltage fluctuation association
calculation

[300,250,∞,150]

Topology relationship analysis [200,250,∞,∞]

Loop resistance supervision service in the SDTA
(importance = 4, deadline = 3,950 m)

Voltage packet analysis [100,120,50,∞] 0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦Current packet analysis [100,120,50,∞]

Loop resistance matrix
calculation

[300,200,∞,100]

Operating condition evaluation [200,250,∞,∞]

Line loss analysis PIoT service in the SDTA (importance =
5 deadline = 6,700 m)

Line loss packet analysis [100,120,50,∞] 0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦Load packet analysis [100,120,50,∞]

Stationary test [300,400,∞,100]

Granger test [300,400,∞,100]

Electricity-theft identification [150,300,∞,∞]

Grid-connection management of photovoltaic generation
service in the SDTA (importance = 1, deadline = 11,150 m)

Photovoltaic generation
capacity packet analysis

[100,120,∞,∞] 0 1 1 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0
0 0 0 1 0 1 0 0 0 0
0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0

⎡⎢⎢⎣

⎤⎥⎥⎦

Current packet analysis [100,120,∞,∞]

Voltage packet analysis [150,180,50,∞]

Current harmonic distortion
calculation

[150,180,50,∞]

Harmonic elimination device
control

[150,200,∞,∞]

Voltage deviation calculation [250,200,∞,130]

Reactive power compensation
control

[100,200,∞,∞]

Voltage fluctuation calculation [250,200,∞,130]

Battery storage control [150,200,∞,∞]

Photovoltaic generation access
control

[200,300,∞,∞]

Electric vehicle charging management service in SDTA
(importance = 2, deadline = 6,900 m)

Electricity price packet analysis [100,120,50,∞] 0 0 0 1 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦Electric vehicle charging packet

analysis
[100,120,50,∞]

Load packet analysis [100,120,50,∞]

Charging period optimization [600,800,∞,300]

Electric vehicle charging control [150,220,∞,∞]

(Continued on following page)

Frontiers in Energy Research frontiersin.org03

Hu et al. 10.3389/fenrg.2024.1358310

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1358310

technology, machine learning-based methods have also been applied to
the study of this problem, such as deep reinforcement learning (Gao and
Feng, 2022) and deep Q-learning (Kaur et al., 2022). The above
literature mainly addresses the service scheduling problem for
scientific workflow in distributed computing system environments,
such as grid and cloud computing environments. In these scenarios,
the service workflow is typically non-real-time tasks, and the type and
number of services to be scheduled are fixed. However, in the SGS
scheduling problem for the ECA, service requests arrive dynamically
and concurrently in real-time, and different SGSs have different
importance and quality of service requirements. In addition, the

state of service request may change with the operational state of the
smart grid and some needs to be finished before the deadline in
emergencies (Li et al., 2018).

In this paper, we propose an ECA-orientedmicroservice scheduling
strategy based on the inspiration of list scheduling to address the issues
above and fill the gap in ECA-related research fields. The main
contributions of this paper are summarized as follows:

(1) A services scheduling framework is proposed for the ECA in
the smart grid. The problem of service scheduling is divided
into two sub-problems: microservice prioritizing and core

TABLE 1 (Continued) Parameters of the SGSs.

Services (with its importance and
deadline)

Microsevices Execution time on each
core (milliseconds)

DAG structure
information

Price-based demand response aggregated service
(importance = 1, deadline = 4,150 m)

Load packet analysis [50,70,25,∞] 0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0

⎡⎢⎢⎢⎣

⎤⎥⎥⎥⎦
Real-time electricity price
packet analysis

[50,70,25,∞]

Time-of-use electricity price
packet analysis

[100,140,∞,∞]

Load forecast [100,40,∞,∞]

Elastic matrix calculation [150,50,∞,40]

Demand response calculation [150,200,∞,100]

Load control [50,120,∞,∞]

FIGURE 2
The illustration for multi-services integration.

Frontiers in Energy Research frontiersin.org04

Hu et al. 10.3389/fenrg.2024.1358310

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1358310

selection. Microservice prioritizing can determine the
scheduling order of microservices for meeting the
execution order constraints of microservices in a service.
Then, the core selection can allocate the microservice to a
proper core for execution. Two novel mechanisms, namely,
scheduling unit dividing mechanism and emergency
mechanism, are also integrated into the framework, where
the former is used to balance the delay requirement between
the service with early arrival time and the service with high
importance in high concurrency scenarios; and the latter is
responsible for the timely completion of urgent SGSs.

(2) A novel SGS scheduling strategy is proposed. The SGS
scheduling models are built, including the service and ECA
models. The SGS is represented by a directed acyclic graph
(DAG), and the ECA is modeled as a heterogeneous system with
multiple cores. We design a microservice scheduling prioritizing
module considering the SGS attributes of importance and
deadline to determine the microservices scheduling sequence.
Then, the insert policy is introduced to allocate the microservices
to heterogeneous cores of ECA. In addition, both scheduling unit
dividing and emergency solutions are developed and integrated
into the SGS scheduling algorithm.

(3) Extensive simulations-based performance evaluation is
conducted. Based on the ideas of solutions in existing works,
several benchmark solutions are developed for performance
comparison. Three metrics are used to evaluate the
scheduling performance, and the performance comparisons
are conducted in different levels of service concurrency. The
simulation results demonstrate that the proposed strategy is
effective and superior for SGS scheduling of ECA.
Furthermore, the influence analysis of the algorithm
parameter scheduling unit length (SUL) is also performed for
the parameter selection of the algorithm in practical applications.

The remainder of this article is organized as follows. Section 2
introduces the SGSs scheduling framework for ECA and outlines its
basic operation principle. Section 2 introduces the SGS scheduling
model for ECA, including the ECA and SGSmodels. Section 3 describes
the proposedmicroservice scheduling strategy and gives the algorithm’s
pseudo-code. Section 4 evaluates and analyzes the performance of the
proposed strategy. Section 5 concludes this article.

FIGURE 3
Effect of changing the number of concurrent requests (A) on M1, (B) on M2 for different strategy, and (C) on M3.

FIGURE 4
Effect of changing SUL on M1 and M2.

FIGURE 5
Effect of changing SUL on M1 for the SGSs with different
importance.

Frontiers in Energy Research frontiersin.org05

Hu et al. 10.3389/fenrg.2024.1358310

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1358310

2 The SGS scheduling framework
for ECA

Figure 1 shows the proposed SGS scheduling framework for the
ECA. As shown in Figure 1, the diagram is divided into two layers by
boxes. The upper layer shows the main components of the scheduling
framework, while the lower layer uses examples to illustrate the basic
workflow of the scheduling framework. The upper layer has three parts:
the service request queue, scheduler, and scheduling list. The services
request queue storages the service request information. The scheduling
list records the microservice sequence that a processing core needs to
execute. The scheduler allocates services to the processing cores for
execution according to a certain service strategy. There are several
modules in the scheduler box. The request queue monitoring module
(RQMM) collects request queue information, including queue length
and service arrival time, and passes it to the scheduling unit dividing
module (SUDM). The SUDM is responsible for dividing the service
requests into multiple fixed-length request subgroups based on the
arrival time of service, and a service request group is briefly denoted

as a scheduling unit (SU). Each service request within an SU is sorted
according to its importance, which is one of the attributes of the SGS.
The microservice scheduling prioritizing module (MSPM) calculates the
scheduling priority of eachmicroservice in an SU through amicroservice
prioritizing algorithm (such as Algorithm 1 mentioned in Section 4.1),
forming a microservice scheduling sequence. Then, based on a core
section algorithm (such as Algorithm 1 mentioned in Section 4.2), the
processing core selection module (PCSM) allocates each microservice to
a processing core in turn. The algorithm needs to obtain scheduling
queue information throughmodule 1.When the RQMMfinds an urgent
request, it activates the emergency mechanism module (EMM). The
ongoing normal service will be logged and paused at the time, and then
the urgent service will be executed based on a predefined service
scheduling scheme.

The lower layer illustrates the SGS scheduling process under
normal conditions on an ECA with two processing cores, and the
length of the SU is set to 2. The SGS is represented by DAG. The
service is successfully completed when all the microservices are
executed according to directed edge constraints.

3 Service scheduling model for ECA

In this section, we introduce the service scheduling model for
ECA, including the ECA and SGS models. In addition, an evaluation
metric model is also presented for service scheduling according to
ECA’s actual performance demand.

3.1 The ECA model

The ECA belongs to a heterogeneous multi-core system, which
integrates different types and numbers of processing cores and can be
modeled as a set P � p#1 p#2 . . . px

r . . .{ }, where the element px
r

denotes the number x of core type r (x, r∈ Z+). The cores with the same
type have the same workload for the same microservice task.
Conversely, the cores with different types have different workloads
for the same microservices task. Additionally, some cores may only be

FIGURE 6
Effect of changing SUL on M2 for the SGSs with different importance.

FIGURE 7
Performance comparison result.

Frontiers in Energy Research frontiersin.org06

Hu et al. 10.3389/fenrg.2024.1358310

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1358310

able to handle one or more specific microservices. Thus, the execution
time of the microservice on the core pr can be calculated by:

wj
i,r �

Lij,r

Cr
(1)

where Lij,r denotes the workload of microservice j of service i on the
core r. Cr represents the computation speed of core pr.

The processing cores are interconnected via an on-chip high-
speed bus. It can be assumed that the communication bandwidth
among the cores is the same, and any two processing cores can
communicate in both directions without contention (Roy et al.,
2023). The communication bandwidth between the cores can be
described by an adjacency matrix, and for an ECA with z cores:

Az �
a11 a12 ... a1z
a21 a22 ... a2n
..
. ..

.
1 ..

.

az1 az2 ... azz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2)

whereAz is a symmetric matrix whose diagonal elements are infinite,
and the non-diagonal elements agh represent the communication
rate between the core g and the core ph. Thus, the communication
time between microservice j executed in core pg and microservice k
executed in core ph is:

cjg,kh � dj,k

agh
(3)

where dj,k denotes the data volume transmitted from microservice j
to microservice k.

3.2 The SGS model

A set of SGSs in the SGSs request queue is denoted as S = {S1,S2,Sn},
and n is the concurrent number of SGSs. An SGS Si = {Ai, Di, Ti, Ii, Gi}
contains several basic information. Ai and Di represent the arrival time
and deadline of the Si; Ti represents the request state of service, which is
a binary value, where 0 and 1 represent normal and urgent states,
respectively; Ii denotes the importance of Si, which is given based on
expert experience. Gi is a DAG, Gi = (Vi, Ei), where V is the set of v
microservices, and E is the set of e edges between themicroservices. The
edge represents the data dependency between two microservices. The
non-entry node microservice may have one or more inputs and is
triggered to execute when all input data from the directly connected
nodes are available. The node in a DAGwith zero in-degree denotes the
entry microservice, and the node with zero out-degree denotes the exit
microservice. Suppose there are multiple exit microservices or entry
microservices for a service DAG. In that case, they can be connected
with zero time-weight edges to a single pseudo-exit task or a single entry
task with zero time-weight. The microservice j of the Si denotes v

j
i . In

addition, there are several scheduling attributes for each microservice.

(1) The average execution time. It is the average value of the execution
times required on different processor cores for amicroservice. The
average execution time of microservice vji can be calculated by:

wj
i �

∑p
r�1
wj

i,r

p
(4)

wherewj
i,r is the execution time of the microservice vji on the core pr,

and p is the number of processing cores of ECA.

(2) The average communication time. It is the average value of the
communication time betweenmicroservices on any two cores. The
average communication time ofmicroservice vji can be defined by:

cji,k �
dj
i,k

∑p
r�1

∑p−1
s�r+1

Ar,s/ p2 − p()/2() (5)

(3) The earliest execution start time (EST). The EST of
microservice vji in core pr is defined by:

EST vji , pr() � max
available vji , pr(),

max
vki ∈pred v

j
i() EFT vki , pl() + ck,j,l,r()⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠ (6)

where available(vji , pr) represents the earliest time that the core pr
can execute vji . pred(vji) denotes the set of predecessor
microservices for vji .

(4) The earliest execution finish time (EFT). The EFT of
microservice vji in core pr is defined by:

EFT vji , pr() � wj
i,r + EFT vji,r() (7)

3.3 Evaluation metric model

Generally, the average response time of services is a basic metric
for service scheduling, and it can evaluate the overall scheduling
performance. Aiming to the ECA in the smart grid, if these services
can be completed before the deadline, they can get a better effect on
the smart grid operation. Especially when the smart grid is in an
emergency or unhealthy state, some services must be completed
before the deadline to offer help for restoring normal operation as
soon as possible. Otherwise, it will lead to serious safety accidents
and economic losses. Thus, this study introduces the service meeting
deadlines rate (SMDA) for the performance evaluation, including
the SMDA of normal service and the SMDA of urgent service. The
above three metrics are abbreviated as M1, M2, and M3, and their
definitions are formulated as follows.

(1) M1 represents the average response time of services and can
be calculated by:

M1 � ∑n
i�1

tfinishi − tarrivali()/n (8)

where n is the concurrent number of SGSs. tfinishi and tarrivali represent
the finished time and the arrival time of the SGS si, respectively.

(2) M2 represents the SMDA of normal service and can be
calculated by:

M2 � ∑
si∈S n

si⎛⎝ ⎞⎠/ S n| |

Ti � 0, tfinishi <Di

1, tfinishi i≥Di

{
(9)

Frontiers in Energy Research frontiersin.org07

Hu et al. 10.3389/fenrg.2024.1358310

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1358310

where S_n is the set of normal service requests,|S_n| is the number
the normal services.

(3) M3 represents the SMDA of urgent service and can be
calculated by:

M3 � ∑
si∈S urgent

si⎛⎝ ⎞⎠/ S urgent
∣∣∣∣ ∣∣∣∣

si � 0, tfinishi <Di

1, tfinishi ≥Di

{
(10)

where S_u is the set of urgent services requests, and |S_u| is the
number the urgent services.

4 SGS scheduling strategy for ECA

In this section, the specific scheduling algorithms are presented
based on the proposed framework.

4.1 Microservice prioritizing

Microservice prioritizing generates the priority of each
microservice using a rank value, which is used to
determine the execution order of microservices. The pseudo-
code of the proposed microservice prioritizing method is
shown in Algorithm 1, which mainly includes the following
three steps.

Step 1: Calculate the average execution time and average
communication time of a microservice vi

j according to Eq. 1 and
Eq. 2, respectively.

Step 2: Calculate the critical path length for the
microservice. The critical path length for microservice is
computed by:

cp vji() � wj + max
vk∈succ vji() ci,k + cp vk()() (11)

Step 3:Calculate the rank value of eachmicroservice. The rank for a
microservice vi

j is computed by:

rank vij() � cp vij()
cp vientry()/ ~I

i + ~Q
i() (12)

where the vientry is the entry node of the service i, and it is defined as
the critical path of the service i; ~I

i
and ~Q

i
represents the normalized

value of importance of service i, and the normalized value of
deadline of the service i.

~Ii �
Ii −min

i∈I
Ii{ }

max
i∈I

Ii{ } −min
i∈I

Ii{ } (13)

~Qi �
Qi −min

i∈I
Qi{ }

max
i∈I

Qi{ } −min
i∈I

Qi{ } (14)

1: For each SGS deployed in ECA do

2: calculate the CP of the DAG of the SGS

3: For each microservice in the DAG do

4: calculate its average execution time according

to Eq. (4)

5: calculate its average communication time

according to Eq. (5)

6: calculate the CP of the microservice according

to Eq. (11)

7: calculate the rank value of the microservice

according to Eq. (12)

8: End for

9: End for

10: Output the rank value for each microservice

Algorithm 1. Smart grid microservices prioritizing.

4.2 Insertion-based core selection

The insertion-based core selection method can insert a
microservice into the earliest idle time slot between two
microservices already scheduled on the same processing core.
The execution time of the being scheduled microservice is less
than or equal to the idle time slot, and its earliest execution
finish time is less than or equal to the end time of the idle time slot.

The process for inserting microservice vji into an idle time slot
on proper processing core is shown in Algorithm 2, where the
EST(vbottom,r) represents the last microservice in the scheduling list
of core pr, the EFT(vbottom−1,r) represents the second last
microservice in the scheduling list of core pr.

1: for each processing core of ECA do

2: while PQr (the scheduling list of processing core

r) ≠∅ and EST(vbottom,r) > (max
vk
i∈pred(vj

i)
(EFT(vk

i ,pl)) + ck,j,l,r) do
3: if wi

j,r ≤EST(vbottom,r) − EFT(vbottom−1,r)and
EFT(vbottom−1,r)≥ maxvi

k∈pred(vi
j)(EFT(vi

k,pl) + ck,j,l,r) then
4: available(vi

j,pr) = EFT(vbottom−1,r)
5: else if EFT(vbottom−1,r)< max

vi
k∈pred(vi

j)
(EFT(vi

k ,pl)+
ck,j,l,r)and
wi
j,r ≤EST(vbottom,r) − max

vi
k
∈pred(vi

j)
(EFT(vi

k ,pl) + ck,j,l,r) then
6: available(vi

j,pr) = max
vi
k
∈pred(vi

j)
(EFT(vi

k ,pl) + ck,j,l,r)
7: remove the last microservice from the PQr.

8: end if

9: end while

10: EST(vi
j,pr) � max(available(vi

j ,pr), max
vi
k
∈pred(vi

j)(EFT(vi
k,pl) + ck,j,l,r))

11: EFT(vj
i ,pr) � wj

i,r + EFT(vj
i,r)

12: end for

13: if there are same EFT on different processing cores

for microservice vi
j

14: insert it into the core which has the minimal

execution time

15: else

16: insert it into the core which has the minimal EFT

17: end if

Algorithm 2. Insertion policy-based processing core selection algorithm.

Frontiers in Energy Research frontiersin.org08

Hu et al. 10.3389/fenrg.2024.1358310

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1358310

4.3 SGS scheduling strategy considering the
scheduling unit dividing and emergency
mechanisms

There are still two scenarios that we have to consider. One is in the
high concurrency scenario, how to balance the processing delay demand
between the service, which has an earlier arrival time and low importance,
and the service, which has a later arrival time and high importance. The
other is how to meet the urgent services’ response time demand, which
must be completed before the deadline in the emergency state of the
smart grid. In response to the above issues, we design the scheduling unit
dividing and emergency mechanism, respectively, which have been
introduced in the above-proposed microservice scheduling framework
for ECA in Section 1, and integrated them into the scheduling strategy.
The pseudo-code of the SGSs scheduling algorithm is shown in
Algorithm 3. The emergency mechanism program has preset the
processing core allocation results of the microservices for the services
in an emergency state, and its processing core allocation results can be
determined by Algorithm 2.

1: While true do

2: if the MQMM detects an urgent service request then

3: stop the currently executing microservice, and

execute the established scheduling plan for the

urgent services.

4: continue

5: end if

6: While SGS request queue Q is not empty

7: calculate the length of the SGS request queue |Q|.

8: if |Q| ≥ ε then//where ε is the threshold for

scheduling unit dividing, and it is equal to

the SUL then

9: divide the service requests into multiple

scheduling units

10: sort the service microservices within each

scheduling unit in order of rank and move them to

the microservice unscheduled list

11: else

12: sort the service microservices within services

request queue in order of rank and move them to the

microservice unscheduled list

13: end if

14: end while

15: While unscheduled list is not empty do

16: remove the first microservice at the unscheduled

list and schedule the microservice to a processing

core by the Algorithm 2

17: end while

18: end while

Algorithm 3. SGSs scheduling strategy for ECA

5 Simulation

This section reports the numerical simulation result of the
proposed strategy. All programs are implemented by Matlab and
executed on an HP workstation.

5.1 Simulation background

Some typical SGSs in a smart distribution transformer area (Cen
et al., 2022) are chosen to deploy in the ECA with four
heterogeneous processing cores. The parameters of the SGSs are
shown in Table 1. The service DAG structure information is
represented by an adjacency matrix. The execution times on the
four processing cores are represented by a vector, where the symbol
‘∞’ indicates the microservice cannot execute in the core. SGS
importance is given based on expert experience and divided into five
levels from 1 (high) to 5 (low). Because the workload of microservice
is difficult obtained accurately, the execution time of microservices
on the different processing cores can be obtained by using an
application profiler (Sahni et al., 2021) or using the statistics
from multiple runs (Bochenina et al., 2016). Due to the low data
transfer volume between microservices and the very high
transmission rate between processing cores, the communication
time is much shorter than the computation time, so
communication time is ignored in the simulation. We assume all
the kinds of SGSs have the same arrival probability. The number of
concurrent service requests is set within the range [10–80], where
the proportion of urgent service requests is set to 10%. Considering
the service requests arrive at random, we repeat the experiment
100 times for each concurrency situation and take the average value
as the simulation result to ensure the effectiveness of the
simulation results.

5.2 Performance evaluation

Some benchmark solutions based on the ideas of solutions in
existing works are developed to compare the performance.

(1) Improved Heterogeneous Earliest Finish Time (HEFT)-based
strategy(S1): The strategy first integrates all the services DAG
into a big DAG by adding a virtual common zero entry node
and a virtual common zero exit node, and then the integrated
DAG uses the HEFT algorithm, which selects the
microservice with the highest upward or lowest downward
rank and then assign the tasks to the core, which can
minimize its earliest finish time. Figure 2 illustrates the
integration of multi DAGs.

(2) Importance-based scheduling strategy (S2): The strategy first
sorts service requests based on arrival time and then executes
each service in sequence based on the HEFT algorithm.

(3) First Come First Serve-based scheduling strategy (S3): this
strategy is similar to S2, but it first sorts the service
requests based on importance.

For the proposed scheduling strategy, the trigger threshold of the
SUDM is set to 20, and the scheduling unit length (SUL) is set to 10.
The performance comparison result of these scheduling strategies
under different concurrent service requests is shown in Figure 3.

Figure 3A shows the calculation results of M1 under different
numbers of concurrent requests n for these scheduling strategies. It
can be seen that the proposed strategy obtains better average
response time in all situations. As the number of service requests
increases, the advantages of the proposed strategy become more

Frontiers in Energy Research frontiersin.org09

Hu et al. 10.3389/fenrg.2024.1358310

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1358310

apparent. Compared with S1, S2, and S3, the proposed strategy
reduces the average response time by approximately 14.5%, 34.8%,
and 25.4% at n = 10, respectively, and the decrease reached 26.5%,
53.6%, and 41.2% at n = 80. For the S2, all microservices of different
services are mixed to schedule. Thus, the microservice at the exit
node always requires more time to be scheduled. Consequently, it
has the worst performance onM1. The services are scheduled one by
one in the strategies S1 and S2. In strategy S1, the services are
scheduled according to their arrival time. Thus, the early arrival
service can be scheduled and finished in time. However, in strategy
S3, the services are scheduled according to their importance value.
Thus, it will lead to a larger response time for the early arrival service
when services arrive later but have higher importance. Especially
when the execution time of the services is long, the performance
will worsen.

Figure 3B shows the calculation results of M2 under different
concurrent service requests for these scheduling strategies. The
performance of the proposed strategy is better than other
strategies in all concurrent situations. When the number of
concurrent requests is low, i.e., n = 10, all the strategies can
complete the services before their deadlines. As the concurrent
requests increase, the M2 gradually decreases in all the strategies.
The S1 has the worst performance on M2 because of its bad
performance on average response time, and M2 has already
decreased to zero at n = 50. Thus, it is not easy to apply to high-
concurrency scenarios in a smart grid.

Figure 3C shows the calculation results of M3 under different
concurrent service requests for these scheduling strategies. The
proposed scheduling strategy can complete the urgent services
before their deadlines in all concurrent situations due to the
emergency mechanism, while the other strategies achieved similar
performance as M2. Considering the demand for urgent service
requests and high concurrency scenarios in the smart grid,
emergency mechanisms in the SGS scheduling strategy
are necessary.

5.3 Influence analysis of the parameter SUL

This section conducts a simulation analysis for the effect of the
SUL and assesses the effectiveness of SUDM. We set the maximum
number of concurrent service requests to 80 and set eight
experiment groups at intervals of 10 within [10, 80], where the
case of SUL = 80 represents the case without considering SUDM.
Regardless of the value of SUL, urgent services are always completed
before the deadline due to the emergency mechanism, so the urgent
service were ignored to avoid interference with the
simulation results.

Figure 4 shows the performance evaluation results under
different SUL. It can be seen that the proposed method also
improves the performance to some extent. Overall, better M1 and
M2 will be achieved as the SUL decreases. Compared with the
case without considering the SMDA, M1 decreases by
approximately 31.4% under the case of SUL = 10. The change
in M2 is relatively small before the length of the SUL is less than
40, and the degree of change in M2 increases sharply and

nonlinearly. M2 increases by approximately 76.1% under the
case of SUL = 10.

Figures 5, 6 show the performance results for services with
different importance. It can be seen that the SUDM can effectively
balance the performance of services with different levels of
importance. Compared with the case without considering the
SMDA, the services with low importance can reduce their
average response time, as shown in Figure 5, and increase the
rate of meeting deadlines, as shown in Figure 6. For example, the
services with the lowest importance have a 51.1% reduction in
M1 compared to without using SMDA. However, the services
with the highest importance have a 17.1% reduction in
M1 simultaneously. As for M2, all services achieved varying
degrees of improvement compared to not using SMDA. It should
be noted that a lower average response time only sometimes means a
higher on-time completion rate because some overtime services are
completed close to the deadline.

5.4 Performance comparison with the
homogeneous multi-cores ECA

This section conducts a simulation analysis for the
performance comparison with the homogeneous multi-cores
ECA. In the simulation, the homogeneous multi-cores ECA
have the same number of cores as the heterogeneous multi-
cores ECA, but all the processing cores are set to type 1, whose
execution time corresponds to the first element in the vector in the
third column of Table 1. The performance comparison result is
shown in Figure 7. At the low concurrent requests situation, such
as n = 10, the two kinds of ECAs have similar performance in
M1 and M2. As the concurrent requests increase, the
heterogeneous multi-cores ECA has achieved better
performance due to its dedicated core’s advantages in
differentiated computation ability for different SGSs, and it
leads up to 1 and 2 improvements in M1 and M2, respectively,
at n = 80. In addition, the performance result of M3 shows that
both can complete the urgent services before the deadline under all
the concurrent situations due to the emergency mechanism.

6 Conclusion

In this article, we have proposed an SGS scheduling strategy for
ECA in smart grids. A microservice scheduling framework was
presented to meet the demand for microservice-based SGS
processing in the smart grid. Considering the SGS scheduling
attributes of deadline and importance, a microservice prioritizing
method was designed, and then the insert-based policy was utilized
to schedule the microservice to the cores for efficient utilization of
ECA’s computing resources. Two novel mechanisms, SUDM and
EPM, were presented to deal with urgent services under abnormal
smart grid conditions and balance the performance of SGS with
different importance, respectively. Extensive simulation
experiments have demonstrated that the proposed strategy can
effectively solve the SGS scheduling problem for the ECA.

Frontiers in Energy Research frontiersin.org10

Hu et al. 10.3389/fenrg.2024.1358310

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1358310

Compared with other benchmark solutions, the proposed strategy
can effectively reduce the average response time of services, improve
the on-time completion rate, and guarantee the completion of
urgent services before the deadline.

The work of this article aims to fill the related research gap in
smart grids and promote the development of the ECA in the smart
grid. In future work, we will further study the SGS offloading
strategy to meet the quality of service demand for resource-
constrained ECA by offloading microservices to the cloud center
or other ECAs in smart grids.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

Author contributions

KH: Conceptualization, Data curation, Formal Analysis,
Methodology, Validation, Writing–original draft, Writing–review
and editing. JQ: Data curation, Formal Analysis, Investigation,
Methodology, Validation, Writing–original draft, Writing–review
and editing. ZC: Funding acquisition, Methodology, Project
administration, Supervision, Writing–review and editing. XL:
Conceptualization, Funding acquisition, Software, Supervision,
Writing–review and editing. YL: Formal Analysis, Software,
Validation, Writing–review and editing. JZ: Formal Analysis,
Software, Validation, Writing–review and editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This work is
supported by the Key-Area Research and Development Program of
Guangdong Province under grant No. 2019B111109002.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fenrg.2024.1358310/
full#supplementary-material

References

Arabnejad, H., and Barbosa, J. G. (2014). List scheduling algorithm for heterogeneous
systems by an optimistic cost table. IEEE Trans. Parallel Distrib. Syst. 25 (3), 682–694.
doi:10.1109/TPDS.2013.57

Bachoumis, A., Andriopoulos, N., Plakas, K., Magklaras, A., Alefragis, P., Goulas, G., et al.
(2022). Cloud-edge interoperability for demand response-enabled fast frequency response
service provision. IEEETrans. CloudComput. 10 (1), 123–133. doi:10.1109/TCC.2021.3117717

Bochenina, K., Butakov, N., and Boukhanovsky, A. (2016). Static scheduling of
multiple workflows with soft deadlines in non-dedicated heterogeneous environments.
Future Gener. comput. Syst. 55, 51–61. doi:10.1016/j.future.2015.08.009

Cen, B., Hu, C., Cai, Z.,Wu, Z., Zhang, Y., Liu, J., et al. (2022). A configurationmethod
of computing resources for microservice-based edge computing apparatus in smart
distribution transformer area. Int. J. Electr. Power Energy Syst. 138, 107935. doi:10.1016/
j.ijepes.2021.107935

Chamola, V., Sancheti, A., Chakravarty, S., Kumar, N., and Guizani, M. (2020). An IoT
and edge computing based framework for charge scheduling and EV selection in V2G
systems. IEEE Trans. Veh. Technol. 69 (10), 10569–10580. doi:10.1109/TVT.2020.3013198

Chukwu, U. C., and Mahajan, S. M. (2014). Real-time management of power systems
with V2G facility for smart-grid applications. IEEE Trans. Sustain. Energy 5 (2),
558–566. doi:10.1109/TSTE.2013.2273314

Gao, Y., and Feng, K. (2022). “A deep reinforcement learning-based approach to the
scheduling of multiple workflows on non-dedicated edge servers,” in Parallel distrib.
Comput. Appl. Technol. Editor H. Shen Cham, Switzerland: Springer International
Publishing, 261–272. doi:10.1007/978-3-030-96772-7_24

Gao, Y., Zhang, S., and Zhou, J. (2019). A hybrid algorithm for multi-objective
scientific workflow scheduling in IaaS cloud. IEEE Access 7, 125783–125795. doi:10.
1109/ACCESS.2019.2939294

Jia, Q., Chen, S., Yan, Z., and Li, Y. (2022). Optimal incentive strategy in cloud-edge
integrated demand response framework for residential air conditioning loads. IEEE
Trans. Cloud Comput. 10 (1), 31–42. doi:10.1109/TCC.2021.3118597

Jiang, Y., Hu, S., Niu, Z., and Wu, L. (2020). Software architecture analysis of
intelligent distribution and transformation terminal based on container

technology. J. Phys. Conf. Ser. 1646 (1), 012085. doi:10.1088/1742-6596/1646/1/
012085

Kaur, A., Singh, P., Singh Batth, R., and Peng Lim, C. (2022). Deep-Q learning-based
heterogeneous earliest finish time scheduling algorithm for scientific workflows in
cloud. Softw. Pract. Exp. 52 (3), 689–709. doi:10.1002/spe.2802

Kelefouras, V., and Djemame, K. (2022). Workflow simulation and multi-threading
aware task scheduling for heterogeneous computing. J. Parallel Distrib. Comput. 168,
17–32. doi:10.1016/j.jpdc.2022.05.011

Lan, D., Taherkordi, A., Eliassen, F., Liu, L., Delbruel, S., Dustdar, S., et al. (2022).
Task partitioning and orchestration on heterogeneous edge platforms: the case of vision
applications. IEEE Internet Things J. 9 (10), 7418–7432. doi:10.1109/JIOT.2022.3153970

Li, B., (2018). Application prospect of edge computing in power demand
response business. Power Syst. Technol. 42 (1), 79–87. doi:10.13335/j.1000-
3673.pst.2017.1548

Li, J., Gu, C., Xiang, Y., and Li, F. (2022). Edge-cloud computing systems for smart
grid: state-of-the-art, architecture, and applications. J. Mod. Power Syst. Clean. Energy
10 (4), 805–817. doi:10.35833/MPCE.2021.000161

Li, X., Chen, T., Cheng, Q., and Ma, J. (2021). Smart applications in edge computing:
overview on authentication and data security. IEEE Internet Things J. 8 (6), 4063–4080.
doi:10.1109/JIOT.2020.3019297

Lyu, Z., Wei, H., Bai, X., and Lian, C. (2020). Microservice-based architecture for an energy
management system. IEEE Syst. J. 14 (4), 5061–5072. doi:10.1109/JSYST.2020.2981095

Mondal, A., Misra, S., and Chakraborty, A. (2022). Dynamic price-enabled strategic
energy management scheme in cloud-enabled smart grid. IEEE Trans. Cloud Comput.
10 (1), 111–122. doi:10.1109/TCC.2021.3118637

Peng, C., and Niu, Y. (2023). Optimal serving strategy for vehicle-to-grid business:
service agreement, energy reserve estimation, and profit maximization. Front. Energy
Res. 11, 1199442. doi:10.3389/fenrg.2023.1199442

Rehman, A., Hussain, S. S., ur Rehman, Z., Zia, S., and Shamshirband, S. (2019).
Multi-objective approach of energy efficient workflow scheduling in cloud
environments. Concurr. Comput. Pract. Exp. 31 (8), e4949. doi:10.1002/cpe.4949

Frontiers in Energy Research frontiersin.org11

Hu et al. 10.3389/fenrg.2024.1358310

https://www.frontiersin.org/articles/10.3389/fenrg.2024.1358310/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1358310/full#supplementary-material
https://doi.org/10.1109/TPDS.2013.57
https://doi.org/10.1109/TCC.2021.3117717
https://doi.org/10.1016/j.future.2015.08.009
https://doi.org/10.1016/j.ijepes.2021.107935
https://doi.org/10.1016/j.ijepes.2021.107935
https://doi.org/10.1109/TVT.2020.3013198
https://doi.org/10.1109/TSTE.2013.2273314
https://doi.org/10.1007/978-3-030-96772-7_24
https://doi.org/10.1109/ACCESS.2019.2939294
https://doi.org/10.1109/ACCESS.2019.2939294
https://doi.org/10.1109/TCC.2021.3118597
https://doi.org/10.1088/1742-6596/1646/1/012085
https://doi.org/10.1088/1742-6596/1646/1/012085
https://doi.org/10.1002/spe.2802
https://doi.org/10.1016/j.jpdc.2022.05.011
https://doi.org/10.1109/JIOT.2022.3153970
https://doi.org/10.13335/j.1000-3673.pst.2017.1548
https://doi.org/10.13335/j.1000-3673.pst.2017.1548
https://doi.org/10.35833/MPCE.2021.000161
https://doi.org/10.1109/JIOT.2020.3019297
https://doi.org/10.1109/JSYST.2020.2981095
https://doi.org/10.1109/TCC.2021.3118637
https://doi.org/10.3389/fenrg.2023.1199442
https://doi.org/10.1002/cpe.4949
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1358310

Rodriguez, M. A., and Buyya, R. (2014). Deadline based resource provisioningand
scheduling algorithm for scientific workflows on clouds. IEEE Trans. Cloud Comput. 2
(2), 222–235. doi:10.1109/TCC.2014.2314655

Roy, S. K., Devaraj, R., and Sarkar, A. (2023). SAFLA: scheduling multiple real-time
periodic task graphs on heterogeneous systems. IEEE Trans. Comput. 72 (4), 1067–1080.
doi:10.1109/TC.2022.3191970

Sahni, Y., Cao, J., Yang, L., and Ji, Y. (2021). Multihop offloading of multiple DAG
tasks in collaborative edge computing. IEEE Internet Things J. 8 (6), 4893–4905. doi:10.
1109/JIOT.2020.3030926

Topcuoglu, H., Hariri, S., and Wu, M.-Y.(2002). Performance-effective and low-
complexity task scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib.
Syst. 13 (3), 260–274. doi:10.1109/71.993206

Wojtowicz, R., Kowalik, R., and Rasolomampionona, D. D. (2018). Next generation of
power system protection automation—virtualization of protection systems. IEEE Trans.
Power Deliv. 33 (4), 2002–2010. doi:10.1109/TPWRD.2017.2786339

Wu, J., Qiu, R.,Wang, M., Han, R., Huang,W., and Guo, Z. (2022). Control strategy of
distributed energy micro-grid involving distribution system resilience. Front. Energy
Res. 10, 841269. doi:10.3389/fenrg.2022.841269

Xiao, H., He, H., Zhang, L., and Liu, T. (2023). Adaptive grid-synchronization based
grid-forming control for voltage source converters. IEEE Trans. Power Syst., 1–4. 2023,
doi:10.1109/TPWRS.2023.3338967

Yin, X., Zhu, Y., and Hu, J. (2022). A subgrid-oriented privacy-preserving microservice
framework based on deep neural network for false data injection attack detection in smart
grids. IEEE Trans. Ind. Inf. 18 (3), 1957–1967. doi:10.1109/TII.2021.3102332

Zhang, J., (2019). Conception and application of smart terminal for distribution
internet of things. High. Volt. Eng. 45 (6), 1729–1736. doi:10.13336/j.1003-6520.hve.
20190604007

Zhou, J., Cen, B., Cai, Z., Chen, Y., Sun, Y., Xue, H., et al. (2021). Workload modeling
for microservice-based edge computing in power internet of things. IEEE Access 9,
76205–76212. doi:10.1109/ACCESS.2021.3081705

Frontiers in Energy Research frontiersin.org12

Hu et al. 10.3389/fenrg.2024.1358310

https://doi.org/10.1109/TCC.2014.2314655
https://doi.org/10.1109/TC.2022.3191970
https://doi.org/10.1109/JIOT.2020.3030926
https://doi.org/10.1109/JIOT.2020.3030926
https://doi.org/10.1109/71.993206
https://doi.org/10.1109/TPWRD.2017.2786339
https://doi.org/10.3389/fenrg.2022.841269
https://doi.org/10.1109/TPWRS.2023.3338967
https://doi.org/10.1109/TII.2021.3102332
https://doi.org/10.13336/j.1003-6520.hve.20190604007
https://doi.org/10.13336/j.1003-6520.hve.20190604007
https://doi.org/10.1109/ACCESS.2021.3081705
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1358310

	Service scheduling strategy for microservice and heterogeneous multi-cores-based edge computing apparatus in smart girds wi ...
	1 Introduction
	2 The SGS scheduling framework for ECA
	3 Service scheduling model for ECA
	3.1 The ECA model
	3.2 The SGS model
	3.3 Evaluation metric model

	4 SGS scheduling strategy for ECA
	4.1 Microservice prioritizing
	4.2 Insertion-based core selection
	4.3 SGS scheduling strategy considering the scheduling unit dividing and emergency mechanisms

	5 Simulation
	5.1 Simulation background
	5.2 Performance evaluation
	5.3 Influence analysis of the parameter SUL
	5.4 Performance comparison with the homogeneous multi-cores ECA

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

