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The study explores the capabilities of OpenAI’s ChatGPT in solving di�erent

types of physics problems. ChatGPT (with GPT-4) was queried to solve a total of

40 problems from a college-level engineering physics course. These problems

ranged from well-specified problems, where all data required for solving the

problem was provided, to under-specified, real-world problems where not all

necessary data were given. Our findings show that ChatGPT could successfully

solve 62.5% of the well-specified problems, but its accuracy drops to 8.3% for

under-specified problems. Analysis of the model’s incorrect solutions revealed

three distinct failure modes: (1) failure to construct accurate models of the

physical world, (2) failure to make reasonable assumptions about missing data,

and (3) calculation errors. The study o�ers implications for how to leverage LLM-

augmented instructional materials to enhance STEM education. The insights also

contribute to the broader discourse on AI’s strengths and limitations, serving

both educators aiming to leverage the technology and researchers investigating

human-AI collaboration frameworks for problem-solving and decision-making.
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1 Introduction

The rapid advancement of Large Language Models (LLMs) has attracted substantial

attention from both the general public and academia. LLMs, such as GPT-4 by OpenAI, can

generate human-like textual responses to text-based queries in real-time. Since the public

launch of ChatGPT in November 2022, there has been a growing body of research exploring

its various capabilities, limitations, and implications across diverse disciplines and tasks. One

such field is education, where LLMs have far-reaching implications for both instructional

practices, or how we teach and assess; as well as for curriculum content, or what we teach

and assess.

Broadly speaking, problem-solving refers to the process of finding the solution to a

problem when the steps for solving are not known to the problem solver beforehand (Newell

et al., 1972; Mayer, 1992). Extensive research has been conducted to study problem-solving

in physics education (Ince, 2018). For example, using textbook-style physics problems, a

seminal study by Chi et al. (1981) found that experts abstracted the physics principles

underlying a problem as the basis for their problem-solving approach, while novices often

based their approaches on the surface-level features. More recently, the physics education

research community has begun to recognize the need for helping students acquire effective

practices and strategies for handling real-world, authentic problems beyond traditional
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textbook exercises (Bao and Koenig, 2019; Burkholder et al., 2020).

Such practices and strategies are key to prepare students for the

complex challenges that they will encounter in their professional

careers and daily lives.

In this study, we examined ChatGPT’s capacity for solving

problems from a college-level engineering physics course. ChatGPT

by OpenAI is one of most accessible and publicly used LLM-based

tools, and its most advanced underlying model to date is GPT-4.

GPT-4 has outperformed previous models like GPT-3 in an array

of standardized exams in disciplines such as law and medicine.

Notably, it has achieved scores in the 66th to 84th percentile

on the AP Physics 2 Exam (Achiam et al., 2023), which features

problems that are mostly situated in abstract scenarios and provide

all necessary data in the problem statement. However, the literature

has so far offered limited insights into the capability of GPT-4 in

solving problems that are in real-world contexts and/or do not

provide all the data needed for reaching a solution. Consequently,

the nuances of GPT-4’s problem-solving capability, including the

range of problems that it can effectively solve and the quality of the

generated solutions, remain largely unknown.

Investigating GPT-4’s problem-solving capability has

multifaceted implications that extend from enhancing educational

practices to fostering human-AI collaboration. First, a more

nuanced understanding of how GPT-4 solves different types of

problems can offer insights into how to design LLM-augmented

instructional materials to support student problem-solving. In

this study, we focused our attention on scientific problem-solving

with the long-term goal of leveraging LLM-based tools to enhance

Science, Technology, Engineering, and Mathematics (STEM)

education. This focus stems from the recognition that, despite

problem-solving being widely acknowledged as a fundamental

learning goal in STEM education (NGSS, 2013), effective ways to

teach problem-solving remain elusive and understudied. Second,

as students start using LLM-based tools such as ChatGPT for their

homework problems they need help with (Shoufan, 2023), they

need to be educated about its affordances and limitations to make

effective use of such tools for their own learning. Furthermore,

beyond its value in educational settings, knowledge of GPT-4’s

problem-solving capability contribute to the broader discourse on

human-AI collaboration. Understanding the areas where AI excels

and where it currently falls short can inform the development of a

human-AI collaborative problem-solving framework.

In this study, we pose the following research questions:

• How does ChatGPT’s problem-solving capability vary across

different types of physics problems?

• What are ChatGPT’s common failuremodes for different types

of physics problems?

• To what extent can a standard prompt engineering technique

improve ChatGPT’s performance for different types of

physics problems?

2 Background

Human problem-solving has been studied across diverse

research traditions and domains, including cognitive psychology,

information processing, and discipline-based education research

FIGURE 1

A two-dimensional plane to visualize the problem categorization

framework. The x-axis represents the context dimension, ranging

from abstract to real-world. The y-axis represents the data

specificity dimension and ranges from well-specified to

under-specified.

(Newell et al., 1972; Chi et al., 1981; Reif andHeller, 1982; Bransford

et al., 1986). As different types of problems call for distinct problem-

solving strategies and bodies of knowledge, one’s problem-solving

capability may significantly vary across problem types. Similarly,

to illuminate the problem-solving capability of AI models such as

GPT-4, we must first explicate the characteristics of the problems

given to the models, and study the performance of these models

across different problem types.

Our research group has done extensive work to characterize

and assess authentic problem-solving expertise across science,

engineering, and medicine domains (Salehi, 2018; Price et al., 2021,

2022). Drawing on these work, we now characterize problems in

science and engineering domains along two dimensions: context

and data specificity (Figure 1). The first dimension refers to the

context where the problem is situated and spans from abstract

to real-world. Abstract problems employ simplified, idealized

scenarios that do not exist in the real world, such as frictionless

planes and massless pulleys. On the other end of the spectrum are

real-world problems that are based on scenarios that individuals

may encounter in their daily lives or in professional settings. The

second dimension is around the specificity of the data required

to solve a problem. Well-specified problems provide all the data

required for a solution, while under-specified problems lack some

essential data, requiring the problem solver to determine what data

is needed and how to obtain it for solving the problem. Textbook

problems typically present well-specified data and may have either

abstract or real-world context. These problems are designed to

make it easier for learners to grasp and practice domain-specific

concepts. In contrast, authentic problems bring with them the

complexity and ambiguity that comes from real-world challenges

and do not specify all the required data.

The above problem categorization framework is intended

for analyzing problems that are knowledge-rich, or requiring

the application of content knowledge from STEM disciplines.

These problems differ from the classic knowledge-lean problems
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employed to study problem-solving in the information processing

paradigm (Simon, 1973). The knowledge-lean problems, such as

the Tower of Hanoi, are often termed as “well-defined” to indicate

that they have clear initial and goal states and a set of clearly-defined

operators for moving from the initial state to the goal state (Simon,

1978; Jonassen, 1997). It is important to differentiate “well-defined”

and “ill-defined” from the “well-specified” and “under-specified”

terminology we used in the problem categorization framework. The

former terms capture the clarity of the initial and the goal states of a

problem and the constraints on the possible operations to navigate

from one to the other, while the latter terms are used for evaluating

the quantity and clarity of data given in the problem statement.

Most existing research has focused on examining AI’s

performance in handling textbook-style problems that are well-

specified and mostly abstract. For example, GPT-4 has performed

well in standardized tests such as AP Biology, Chemistry,

Environmental Science and Physics Exams (Achiam et al., 2023;

Nori et al., 2023). The model also demonstrated proficiency

surpassing average human performance in writing program

functions that solely depend on existing public libraries (Bubeck

et al., 2023). In contrast, there is a scarcity of research on

how AI approaches authentic problems that are under-specified

and situated in real-world contexts, even though such authentic

problems are likely to constitute a significant share of the tasks

that AI will encounter when deployed in the real world. Emerging

research that ventures into the related domain has investigated

AI’s capacity for inductive reasoning, which involves identifying

general principles from a small set of examples and applying

these principles to novel situations (Gendron et al., 2023; Wang

et al., 2023; Xu et al., 2023). Results of these investigations suggest

significant room for improvement in AI’s capability to make

generalizations from specific instances.

While GPT-4’s performance in solving textbook-style problems

should not be extrapolated to its performance on authentic

problems, a review of previous literature nonetheless provides

insights into some of its common failure modes. One common flaw

in GPT-4’s performance is related to calculation errors. Previous

studies have found that while the model can answer difficult high-

school level math questions and discuss advanced mathematics

concepts, it could also make basic errors in calculation (e.g.,

arithmetic mistakes) (Bubeck et al., 2023). Another limitation is

themodel’s deficiency in critically evaluating its own solutions. This

leads to failure in recognizing mistakes in its solution path (Bubeck

et al., 2023; Zhang et al., 2023). A separate study employed GPT-

3.5 and GPT-4 to answer open-domain questions, such as whether

the New Orleans Outfall Canals are the same length as the Augusta

Canal. The researchers summarized the models’ failure modes

in solving these problems into four categories: comprehension

error, factualness error, specificity error, and inference error (Zheng

et al., 2023). The study found that nearly half of the failures

were due to factualness error, or the model lacking the necessary

supporting facts to produce a correct answer, and another 25% of

the failures were due to inference error, or the model failing to

reason effectively.

In the context of physics education, a study reported

that ChatGPT (based on the GPT-3 model) could narrowly

pass a calculus-based college-level introductory physics course

(Kortemeyer, 2023). One test used for evaluation was the Force

Concept Inventory (FCI), which comprises well-specified multiple-

choice questions. GPT-3 solved 60% (18 of 30) of the FCI items.

Moreover, the researcher found that the model’s performance

variation was more influenced by the mathematics than the

physics concepts involved. Similar to the above mentioned studies,

this study found that ChatGPT had persistent problems with

calculation, especially in manipulating and calculating formulas

involving square roots.

In summary, the review of existing literature revealed a gap in

our understanding of generative AI models’ capability for solving

real-world problems where data is often incomplete or ambiguous.

The central aim of this paper is to explore how one AI model

(GPT-4) perform across an array of real-world physics problems

that vary in data specificity. Furthermore, we will investigate the

model’s common failure modes in solving these problems and

evaluate whether a well-studied prompt engineering technique

could improve AI’s problem-solving performance.

3 Methods

3.1 Problems used in the study

A total of 40 homework problems from an engineering physics

course taught by the second author were used in this study. The

course is a calculus-based engineering physics 1 course taught

at a public research-intensive university. The course is primarily

taken by engineering, chemistry, and physics majors and covers an

array of topics including static equilibrium (forces and torques),

conservation of momentum and kinematics (linear and angular),

conservation of energy, harmonic motion, mechanical waves, and

fluid mechanics. This particular course was developed by the

second author (Burkholder et al., 2022) and aims at developing

students’ problem-solving competencies. The course is designed on

the theory of deliberate practice (Ericsson et al., 1993) and uses

a template (Burkholder et al., 2020) to teach students real-world

problem-solving skills.

The homework problems in this course are a mixture of

textbook physics problems (for practice with basic calculations),

problems that ask students to explain a physical phenomenon, and

real-world problems that require students to make assumptions,

seek out information, and make modeling decisions (Price et al.,

2021). The real-world problems were designed to engage students

in more deliberate reasoning with particular concepts rather than

standardized procedures. They were also designed to have students

practice turning real situations into manageable models, rather

than providing simplified scenarios for them.We selected problems

that were written by the second author specifically to engage

students in real-world problem-solving, rather than the textbook

or conceptual explanation problems. Based on our proposed

problem categorization framework (Figure 1), we characterize

these problems along the two key dimensions: context and data

specificity. Regarding the context dimension, the problems are all

situated in real-world contexts. For example, one problem involves

calculating the total travel time for an elevator ascending to the top

floor of the Salesforce Tower in San Francisco, and another involves

Frontiers in Education 03 frontiersin.org

https://doi.org/10.3389/feduc.2023.1330486
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Wang et al. 10.3389/feduc.2023.1330486

selecting fishing lines that are strong enough to hang sculptures

from the ceiling of an atrium of a new building.

Regarding the data specificity dimension, the problems used in

this study span a spectrum from well-specified to under-specified.

On one end of the spectrum are problems that provide all the

data needed for solving, including values for key variables and

parameters. On the other end are problems with under-specified

or incomplete data, requiring the problem solver to determine

what data is needed and how to collect the missing data. This

variation in data specificity necessitates different levels of decision-

making by the problem solver regarding data collection, which is

a key practice for solving authentic problems as identified in our

previous research (Salehi, 2018; Price et al., 2021). By incorporating

this range of problem types, we are able to conduct a more

comprehensive and nuanced evaluation of ChatGPT’s problem-

solving capability.

Table 1 presents two sample problems used in the study. Both

problems are situated in real-world contexts. The first one is a

well-specified problem where all data needed to solve the problem

was provided in the problem statement. In contrast, the second

one represents an under-specified problem where the problem

statement does not provide any data, and necessitates the problem

solver to collect all the required data through conducting an

online query or making reasonable assumptions in order to solve

the problem.

3.2 Experiments and analysis

We used ChatGPT with GPT-4 selected as the underlying

model in the present study. The decision to use ChatGPT as

opposed to running the experiments through OpenAI’s API was

grounded in the interest of face validity and ecological validity. Face

validity refers to the appropriateness or relevance of a measurement

method for its intended purpose (Nevo, 1985), while ecological

validity refers to the extent to which the findings of a study can

be generalized to the natural environments and real-world settings

(Orne, 2017; Kihlstrom, 2021). Given students and instructors of

STEM courses are more likely to use ChatGPT than to access the

GPT-4 model directly through APIs, this methodological choice

allows our study’s findings to be more directly applicable to

the common STEM educational settings where LLM-based tools

are used.

Each problem statement of the 40 problems was pasted into

the dialogue interface of ChatGPT, accompanied by the prompt

of “solve the following physics problem.” No additional guidelines

or contextual knowledge was provided. If ChatGPT returned with

queries or statements indicating that the problem could not be

solved without additional information, a second prompt was put

into the dialogue box (e.g., “please make reasonable assumptions

about the missing information and solve the problem.”). Once the

model reached a final answer, its response was transferred to a

centralized document for record and analysis. This approach was

implemented to minimally influence ChatGPT’s problem-solving

approach and establish a baseline for its problem-solving capability.

In evaluating ChatGPT’s performance on solving the physics

problems in our data set, we adopted an approach similar to the

one we use for grading students’ worked-out solutions, where a

single knowledgeable evaluator can effectively grade a student’s

solution. Our goal is to not only determine the accuracy of its

final answers but also understand the steps it undertook to reach

the answer. In cases where ChatGPT failed to reach the correct

answer, we compared each step of its solution to the correct solution

prepared by the course’s lead instructor to determine where in

the solution process it failed. The instructor’s solutions loosely

follow a template that we have devised to scaffold students’ solving

of authentic problems in physics and typically incorporate the

following components:

• A clear representation of the problem highlighting its key

features using a diagram or a set of bullet points

• Identification of the relevant physics concepts and formulas

• Noting all the information required for solving the problem,

and for information not explicitly provided in the problem

statement, noting how such information can be obtained

through an internet search or a reasonable estimate based on

prior knowledge

• Carrying out the necessary calculations to reach the correct

answer.

It is important to note that we did not expect ChatGPT

to follow the problem-solving template. Rather, the goal of

comparing its solutions to the expert solutions is to determine

the primary factor that led to the erroneous final answer. This

analysis helps us ascertain whether the erroneous answer was

due to a misrepresentation of the problem, a misapplication of

physics principles, errors in the data used, or calculation errors.

By pinpointing the chief reason behind the incorrect solutions,

we aimed to gain a more nuanced understanding of the AI

model’s problem-solving potential and limitations. The results of

this error analysis were recorded for each individual problem and

collectively analyzed to identify patterns and recurrent themes in

ChatGPT’s problem-solving failures. To ensure both precision and

thoroughness in the analysis of ChatGPT-generated solutions, the

analysis was conducted by the first author, a researcher in STEM

education, in close collaboration with the third author, who is an

expert in physics and physics education.

Next, we examined whether simple prompt engineering could

improve ChatGPT’s problem-solving performance. In the context

of AI research, prompt engineering refers to the process of

designing, testing, and refining inputs given to AI models to

enhance their performance (Liu et al., 2023). Prompting strategies

such as zero-shot chain-of-thought, which involves literally telling

the model to “think step-by-step,” have demonstrated success in

improving LLMs’ performance in solving multi-step arithmetic

word problems (Kojima et al., 2023). In the second phase of

the study, we adopted a similar prompting strategy for the

problems in our data set. Specifically, the prompt was updated

to “solve the following physics problem step-by-step” just before

presenting the problem statement to ChatGPT. The intention was

to explore whether ChatGPT could decompose a problem into

more manageable sub-problems and circumvent the errors it made

during its initial problem-solving attempt. At the same time, it

is important to note that the specific approach to decomposing
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TABLE 1 Two sample problems used in the study.

The log cabin problem (well-specified) The dresser tip-over problem (under-specified)

You are planning to build a log cabin and will need to pull the logs up a hill to the

building site by means of a rope attached to a winch. In order to buy the rope,

you need to know how strong the rope must be and decide to do a quick

calculation for this. The heaviest of the logs weigh 500 lbs. You estimate the

coefficient of friction between the log and the hill to be 0.8, and the hill you have

to pull them up is at an angle of 30 degrees. How strong must the rope be?

IKEA has had some issues with children climbing their dressers by pulling on the

drawers and getting hurt when the dressers tip over. Their solution has been to

provide wall mounts that you can use to secure the top of the dresser to the wall.

Figure out how strong this wall mount has to be to keep the dresser from tipping

over. You should include an equation showing how your answer depends on the

weight of the child and the size and weight of the dresser.

TABLE 2 ChatGPT’s problem-solving performance grouped by the

problems’ data specificity.

Problem type Number
of

problems

Number
correctly
solved

Accuracy
rate

Well-specified 16 10 62.50%

Under-specified 24 2 8.33%

individual problems vary case-by-base, depending on the unique

context and nature of each problem. Consequently, the efficacy

of the prompt in improving the model’s performance may not

be consistent.

4 Results

In this section, we first present ChatGPT’s problem-solving

success rate without the use of prompt engineering. Next, we

discuss three distinct failure modes based on a comparative analysis

between ChatGPT’s incorrect solutions and the instructor’s correct

solutions. Finally, we explore how prompt engineering impacted

ChatGPT’s problem-solving performance.

4.1 Problem-solving performance

Our analysis revealed a substantial difference in the ChatGPT’s

ability to solve well-specified vs. under-specified types of problems

(Table 2). ChatGPT successfully solved 62.5% of the well-specified

problems and only 8.3% of the under-specified problems. This

discrepancy in accuracy rate was statistically significant (Fisher’s

exact test, p < 0.001).

At the same time, ChatGPT demonstrated a high level of

proficiency in identifying the relevant physics concepts to apply

based on the given problem statement. This capacity was evidenced

by the model’s consistent performance of outlining the relevant

physics concepts at the beginning of the solutions it generated.

ChatGPT’s strength in this facet of problem-solving differs from

typical human performance, as students often struggle to identify

what concepts to apply as the starting point in solving unfamiliar

problems. Additionally, students may struggle with complexities

that arise in correctly identifying, applying and integrating domain

knowledge learned at different times. In contrast, LLMs like GPT-

4 are not constrained by such linear learning pathway, and their

training data is likely to incorporate a more comprehensive range

of domain-specific knowledge compared to what students learn in

a typical college-level curriculum. This expansive knowledge base

is one of AI’s strengths in addressing real-world challenges.

4.2 Types of failure modes

A detailed table of all 40 problems used in the study, along with

their underlying physics concepts and ChatGPT’s performance, is

available in the Supplementary material. In examining where all

of ChatGPT’s incorrect solutions diverged from the instructor’s

solutions, we identified three distinct types of failure modes. These

failure modes can help us understand the underlying causes of the

AI model’s difficulties in problem-solving.

4.2.1 Failure to construct accurate models of the
physical world

One of the failure modes is related to ChatGPT’s failure to

construct accurate models of the physical world based on the

problem statement. Table 3 presents a problem from our dataset

and ChatGPT’s incorrect solution that falls into this type. The

problem asks for an estimation of the force required from each

of the 950 friction piles to prevent the Millennium Tower in San

Francisco from sinking. This is an under-specified problem, as the

problem statement does not specify the density of concrete. The

highlighted texts in the problem statement are information that

ChatGPT did not account for in its modeling of the problem.

A human problem solver could intuitively construct a model

of the problem, that both the building and the concrete slab are

on top of the 950 concrete piles, as depicted by the first model in

Figure 2. This model helps the problem solver focus on the key

objects and forces involved. The force required from each friction

pile to support the building and concrete slab in addition to its own

weight would therefore be: Ffriction = (Wbuilding + Wslab)/950 +

Wpile. In contrast, the second model in Figure 2 was created by

the researcher based on ChatGPT’s incorrect solution. ChatGPT

failed to consider the weight of the concrete slab and piles in its

calculations, indicating that it did not correctly conceptualize the

spatial relationship between the building, the concrete slab, and the

950 piles. This led to an oversimplified and erroneous calculation of

the force required from each pile.

Out of the 28 problems that ChatGPT did not solve, 14 can

be attributed to this failure mode of it not being able to accurately

model the physical world, especially regarding spatial relationships.

Another example of this failure mode is the Dresser Tip-over

problem that asks students to determine the force exerted by a

wall mount to prevent a dresser from tipping over when children

pull down on the drawers (see the problem in Table 1). Solving
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TABLE 3 The Millennium Tower problem and ChatGPT’s solution.

Prompt: Solve the following physics problem: The Millennium Tower in San Francisco was completed in 2009 and has received a lot of attention recently due to problems

with the building settling and leaning. The building is 605 feet tall, has a base of about 20,000 square feet, and weighs about 7 tons per square foot of its foundation. The

tower sits on a 10-ft thick concrete slab, which is in-turn supported by 950 friction piles, which are 14-inch square concrete pillars embedded in the bay sand.

The piles are 80 feet long. Estimate the approximate force required from each friction pile to keep the building from sinking.

ChatGPT: To estimate the force each pile needs to exert, we need to determine the weight of the building and distribute that weight across the number of friction piles.

The total weight of the building is given as 7 tons per square foot of its foundation. The foundation is∼20,000 square feet. Therefore, the total weight is 7 tons/ft * 20,000 ft =

140,000 tons.

Since 1 ton is equivalent to 2,000 pounds, the total weight of the building is 140,000 tons * 2,000 pounds/ton = 280,000,000 pounds.

The force each pile needs to exert is 280,000,000 pounds/950 = 294,737 pounds (approximately), assuming an even distribution of the weight of the building.

FIGURE 2

Two contrasting models for the Millennium Tower problem. The first

one (left) is the accurate model and the second one (right) was

created based on ChatGPT’s incorrect solution.

the problem requires an accurate model representing the center

of mass of the dresser, the pulling by a child, the location of

the wall mount, and most importantly, the pivot point and the

distances to the pivot point for each of the forces. One of its

persistent challenges observed in our analysis is that ChatGPT

cannot correctly identify the pivot point. In other words, it cannot

correctly conceptualize how the dresser would fall if pulled by

a child.

4.2.2 Failure to make reasonable assumptions
about missing data

A second failure mode of ChatGPT in problem-solving was

its limitations in making reasonable assumptions about missing

data in under-specified problems. When presented with problems

that lack complete data, ChatGPT usually attempted to fill in the

missing data and generate a solution on its own. Only for two

under-specified problems did it respond to the initial problem

statement by stating that the problem doesn’t provide all the

necessary information to calculate the exact value for a solution.

In such cases, a follow-up instruction was entered into ChatGPT’s

dialogue box, directing the model to make reasonable assumptions

about the specific value it noted and solve the problem. Table 4

presents such an instance where ChatGPT explicitly listed the

missing information.

ChatGPT was successful at filling in well-known factual

information that was not provided in the problem statement, such

as the speed of light in a vacuum, the speed of sound in water, the

density of seawater, and even the height of the Salesforce Tower

in San Francisco. However, its success rate dropped when the

missing data involves more nuanced real-world understanding. In

the Floating Duck problem presented above (Table 4), ChatGPT

made an incorrect assumption about the density of a duck being

950 kg/m3 even after receiving the prompt to make reasonable

estimates. A more accurate density value can be inferred from the

information that 20% of the duck’s body is submerged in salt water,

making its average density∼260 kg/m3.

Table 5 presents another problem that illustrates this failure

mode. The problem asks a problem solver to estimate how long a

driver should take to come to a stop while driving at 10mph, so that

a coffee cup that was accidentally left on the car’s roof won’t fly off.

In analyzing ChatGPT’s solution to this problem, we found that the

model failed to provide a reasonable value for the friction coefficient

between the coffee cup and the roof of the car (µ). While the typical

ceramic-on-metal and metal-on-metal static coefficients of friction

are between 0.4 and 0.6, ChatGPT assumed the friction coefficient

to be 1, as implied by its equating acceleration to the gravitational

constant g in the solution (highlighted in Table 5). This incorrect

assumption led to an erroneous value of the horizontal acceleration,

which in turn resulted in an underestimate of the time it takes to

stop the car safely.

To its credit, ChatGPT did hedge on its solution by making the

following statement at the end:

ChatGPT: Please note that this calculation assumes that the

friction between the cup and the roof is strong enough to keep

the cup from sliding when the car is decelerating at a rate equal

to g. The actual time could be much longer if the friction is

weaker than assumed. This is a simplified model and doesn’t

account for all factors that might be present in a real-world

situation.

This acknowledgment indicates that ChatGPT recognizes the

potential error in it solution introduced by inaccurate assumptions.

Nonetheless, we should be aware of its limitations, that it may
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TABLE 4 An example of ChatGPT requesting more information for the Floating Duck problem.

Prompt: Solve the following physics problem: Off-shore oil-drilling can be controversial due to the possibility of oil spills. A sea duck can float on salt water with only about

20% of its body submerged below the surface. How thick would a layer of crude oil have to be for the duck to drown? For reference, the BP oil spill in 2010 reached a depth of

41.5 m.

ChatGPT: To solve this problem, we first need to understand the concept of buoyancy. Buoyancy is the force exerted on an object that is wholly or partly immersed in a fluid.

In our case, the fluid is the combination of salt water and crude oil. The sea duck floats with only 20% of its body submerged in the water because the buoyancy force from

the submerged part of the duck equals the weight of the duck. This means that the duck is in equilibrium.

If a layer of oil were to cover the surface of the water, the duck would start to submerge into the oil, since oil is less dense than water. If the oil layer is thick enough, the duck

could potentially sink below the surface and drown. To find the thickness of the oil layer that would cause the duck to drown, we need to find the point where the duck’s

buoyancy in the oil equals its weight.

Here’s where we run into a problem, though. To find this value, we need additional information that isn’t provided in the problem:

1. The volume of the duck. This would give us the amount of oil (or water) displaced by the duck, which we could use to calculate buoyancy.

2. The density of the crude oil. Different types of crude oil can have different densities, and the density would affect the buoyancy.

3. The density of the duck. In order to figure out the weight of the duck, we would need to know both its volume and its density. This would allow us to figure out when the

duck’s weight equals the buoyancy force in the oil.

Prompt: Can you make some reasonable estimates and solve the problem?

ChatGPT: To make some reasonable estimates, let’s say the following:

1. The volume of the duck: This can vary, but we can estimate an average duck to have a volume of 1 liter or 0.001 cubic meter.

2. The density of the crude oil: The density of crude oil varies based on its specific type and temperature, but a common value is around 850 kg/m3 .

3. The density of the duck: Most birds have a density slightly less than water due to their feathers and air-filled bones. Let’s estimate it at about 950 kg/m3 , slightly less than

the density of sea water which is about 1025 kg/m3 .

TABLE 5 The co�ee cup on car problem and ChatGPT’s solution.

Prompt: Solve the following physics problem: You are driving your electric car to work one morning and forget your coffee cup on the roof. As you leave your driveway, you

speed up to 10 mph and then remember your coffee cup and decide you need to stop. If you stop too fast, the cup could go flying and hit a pedestrian. How long should you

take to come to a stop to be sure the cup doesn’t fly off the roof?

ChatGPT: To solve this problem, we need to consider the forces acting on the coffee cup, primarily gravity and friction. The friction force is given by the equation:

Ffriction = µN, where µ is the coefficient of friction and N is the normal force.

However, we don’t have a specific value for the coefficient of friction between the cup and the roof of the car.

Let’s assume that the coffee cup will stay on the roof if the car stops with an acceleration equal to or less than g (the acceleration due to gravity), which is∼9.81 m/s2 .

not make accurate assumptions about missing information from

the outset. Such difficulty in making reasonable estimates for real-

world quantities is also typical of novice students.

Another example that falls into this failure mode is ChatGPT’s

solution to a problem that involves estimating how the velocity

of a merry-go-around would change once a person hops on

after first pushing it around for 3 s. As the problem does

not specify the initial speed of the merry-go-around, ChatGPT

first estimated it to be around 14 mph through calculation.

However, this estimate substantially exceeds the safe speed

for merry-go-arounds, which are typically around 9 mph as

stipulated by the US Consumer Product Commission. This

example further illustrates that ChatGPT cannot always align

and verify computational results with real-world standards and

constraints. ChatGPT’s solutions to eight problems had this

failure mode.

4.2.3 Calculation error
While the first two failure modes are mostly associated with

under-specified problems, the last failure mode, calculation error,

has been observed in both well-specified and under-specified

problems in the dataset. A total of six incorrect solutions, four

for well-specified problems and two for under-specified problems,

had this failure mode. The errors range from arithmetic to

trigonometry, and underscore ChatGPT’s well-known difficulties

with mathematical computations.

TABLE 6 A problem for which ChatGPT reached the correct solution

without using the data provided.

The horsepower problem

Engine power is sometimes expressed in terms of “horsepower.” One horsepower

was defined by James Watt, who observed that a horse could turn a mill wheel

with a radius of 12 ft at a constant rate of 144 times per hour, exerting a nearly

constant force of 800 N tangentially to the wheel. Derive the conversion for

horsepower to kilowatts.

4.2.4 An idiosyncratic solution case
In addition to the three failure modes discussed above, we also

identified an idiosyncratic case where ChatGPT reached the correct

answer (therefore coded as correctly-solved) while completely

disregarding the data provided in the problem. The problem is a

well-specified one and involves the conversion of horsepower to

kilowatts (Table 6).

Despite being provided with data in the problem statement,

ChatGPT opted to utilize different data, that one horsepower is

defined as the ability to lift 550 pounds one foot in one second,

for its calculations. This behavior raises questions regarding how

the underlying GPT-4 model potentially prioritizes its training data

over new information in problem-solving.

4.3 Chain-of-thought prompt engineering

To what extent did prompt engineering enhance ChatGPT’s

problem-solving performance? In the second experiment, we
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TABLE 7 ChatGPT’s updated solution to the co�ee cup on car problem after prompt engineering.

ChatGPT: We can analyze this scenario by considering the forces acting on the coffee cup. Since the car is accelerating in the opposite direction of its motion (decelerating),

there will be a frictional force trying to keep the cup in place. Let’s assume the coefficient of static friction between the cup and the car’s roof is µs , and that this is the only

force preventing the cup from sliding.

1. Find the maximum deceleration: The force of static friction is given by: Ffriction = µs · Fn , where Fn is the normal force, which is equal to the weight of the coffee cup:

Fn = m·g. Here,m is themass of the cup, and g is the acceleration due to gravity (9.8m/s2 ). Themaximum static frictional force before the cup starts sliding is: Fmax = µs ·m·g.

2. Calculate the deceleration: This frictional force provides a maximum deceleration the car can undergo without the cup sliding. Using Newton’s second law, F = ma:

µs ·m · g = m · a, Solving for a, we find: a = µs · g.

3. Find the time to stop: Nowwe have themaximum deceleration, we can calculate the time it will take to stop the car from 10mph under this deceleration. Using the equations

of motion: vf = vi + at, where vf = 0m/s (final velocity), vi = 10mph = 4.47m/s (initial velocity), and a = −µs · g (deceleration). Solving for t: t =
vf −vi

a
=

−4.47
−µs ·9.8

.

We need the coefficient of static friction to calculate the exact value of t, which will tell us how long the driver should take to come to a stop to ensure the coffee cup doesn’t

fly off the roof. If we had that value, we could plug it into our equation to find the time. In real-world scenarios, the coefficient of static friction might vary widely depending

on the materials in contact and the conditions, so without specific information, it’s hard to give a precise time.

Prompt: Please make reasonable assumptions about the coefficient of friction and solve the problem.

ChatGPT: Certainly! To solve the problem, we’ll make a reasonable estimate for the coefficient of static friction between the coffee cup and the car’s roof.

In general, the coefficient of static friction for smooth surfaces like a car roof and a typical coffee cup might range from 0.5 to 0.8. However, since a car roof is usually not

designed to hold objects and the bottom of a coffee cup may be somewhat smooth, we’ll use a more conservative estimate of µs = 0.6. Now, we’ll use our earlier formula for

the time taken to stop:

t = −4.47
−µs ·9.8

Substituting µs = 0.6:

t = −4.47
−0.6×9.8

≈ 0.76 s.

So the driver should take∼0.76 s to come to a stop to ensure that the coffee cup doesn’t fly off the roof. Of course, this is a simplified model, and in a real-world scenario,

other factors such as wind resistance, the curvature of the roof, and the exact materials of the cup and roof would also influence the outcome.

applied the “solve the following physics problem step-by-step”

prompt to all 40 problems in the dataset. Among the 12

problems that ChatGPT initially solved correctly, it generated

consistent correct solutions for 11 of them under prompt

engineering. However, ChatGPTmade a calculation error involving

trigonometry in one of the problems. Interestingly, in the

idiosyncratic case where ChatGPT reached the correct answer

without utilizing the given data in its initial solution, the step-by-

step prompt helped it incorporate the data provided in the problem

statement in its calculation for the correct solution.

Among the 28 problems that ChatGPT initially failed to

solve, it was able to correctly solve three with the step-by-step

prompting. Two of the three were related to the failure mode of

ChatGPT not being able to construct accurate models about the

real world. For the first one, ChatGPT initially did not subtract

the weight of the water from a squid when it ejected water to

create a form of jet-propulsion. For the other one, it initially

treated a marble as a non-rotating block and did not account

for the rotational kinetic energy as it rolled up a ramp. The last

one of the three was associated with the initial failure mode of

not being able to make reasonable assumptions about missing

data, in this case the coefficient of friction in the Coffee Cup on

Car problem. Table 7 presents ChatGPT’s updated solution. The

prompt of solving the problem step-by-step led to more precise and

deliberate problem-solving as illustrated in this example. ChatGPT

first broke down the solution process into discrete steps, then noted

that without knowing the coefficient of static friction, a specific

numerical answer could not be provided. After receiving a follow-

up instruction through the dialogue input box to make reasonable

assumptions, it chose a reasonable value of 0.6 for the friction

coefficient and successfully solved the problem, unlike what it did

in the absence of prompt engineering.

Overall, the results suggest that prompt engineering had

a moderate effect on enhancing ChatGPT’s problem-solving

performance by constructing accurate models of the problem

and making reasonable assumptions, though this effect is not

statistically significant (Chi-squared (1) = 0.06, p = 0.81). It should

also be noted that step-by-step prompts had no impact on reducing

calculation errors.

5 Discussion

The present study found a marked difference in ChatGPT’s

problem-solving performance between well-specified and under-

specified problems. The problems used in the study are all

situated in real-world contexts and require the application of

physics knowledge, yet differ in how much information is specified

in the problem statement. ChatGPT performed better in well-

specified problem, although it made occasional calculation errors.

In contrast, it was far less accurate in solving under-specified

problems. Two specific failure modes were observed: the first one

being failure to construct accurate models of the physical world and

reason about relationships between different variables in a model,

and the second one being failure to make reasonable estimates

or assumptions about the missing data. Prompt engineering

produced a moderate improvement in ChatGPT’s problem-solving

performance. The prompt of solving a problem step-by-step

proved moderately beneficial in guiding the AI model to be

more deliberate and accurate in estimating missing data and

constructing models of the problems, though it did not alleviate

calculation errors.

5.1 Implications for education

The problem-solving process adopted by experts in science

and engineering domains can be characterized as a series
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of interlinked decisions (Price et al., 2021). Utilizing this

framework to analyze ChatGPT’s performance on solving

problems situated in real-world contexts, we note that ChatGPT

(based on GPT-4 model) demonstrated proficiency in deciding

on the relevant domain-specific concepts and formulas based

on a problem statement. At the same time, it fell short in

making several key decisions, including determining how

to construct a suitable model of a problem, and deciding

how to make reasonable assumptions or estimates about

incomplete data.

These results have significant implications for STEM education,

especially around how to leverage LLM-based tools like ChatGPT

to help students develop expertise in problem-solving. First,

the study identified facets of problem-solving where ChatGPT

is indeed effective, namely identifying the relevant physics

concepts needed for solving a problem based on the problem

statement. This opens the possibility for ChatGPT to serve

as a tutor for domain-specific problems and support students

to pinpoint the essential knowledge underlying each problem

and enhance their understanding of conceptual knowledge

through problem-solving. This tutoring capability is particularly

important as students struggle to decide on relevant physics

concepts and formulas through analyzing the problem’s statement,

instead they rely on ineffective strategies such as searching for

equations that contain the same variables to solve problems

(Ogilvie, 2009; Burkholder et al., 2020). Given the capability

of ChatGPT in deciding on relevant concepts, students can

query ChatGPT with prompts such as “identify the relevant

concepts associated with the following problem.” However, one

concern associated with this use case is that ChatGPT may

generate articulate, plausible-sounding, yet incorrect solutions

based on the identified concepts. This presents a risk of

misleading students and inducing misconceptions. Therefore, it

is crucial to educate students on the problem-solving capabilities

of ChatGPT (e.g., identifying the relevant concepts) as well as

its shortcomings (e.g., generating inaccurate solutions due to

failure to construct accurate models, failure to make reasonable

assumptions, or calculation errors, particularly in the case of under-

specified problems).

Second, the findings point to what we should prioritize

in STEM education in an era of increasingly powerful AI

technologies. To prepare students for solving authentic problems

in their professional and personal lives, STEM courses must

place an emphasis on fostering effective decision-making practices.

Specifically, students must have opportunities to practice making

decisions related to construct appropriate models based on

complex, real-world scenarios, as well as practice making decisions

on what data is needed for solving a given problem, how to collect

the data, and how to critically evaluate data quality.Mastery in these

decisions will help students decompose complex, under-specified

real-world challenges into a series of tractable, well-specified sub-

problems for AI tools like ChatGPT to solve. The emphasis on

developing problem-solving and decision-making expertise aligns

well with the broader educational goal of preparing students to

navigate a future of human-AI collaboration.

Lastly, our findings have immediate implications for how

to design homework and exam problems that are resilient to

automatic solving by tools like ChatGPT. The key strategy

involves incorporating authentic problems into teaching and

assessment materials. These problems are not solvable by

ChatGPT alone, and necessitate students to make informed

decisions on how to utilize ChatGPT as a tool. At the same

time, students must remain actively involved in constructing

accurate models in real-world contexts and handle under-

specified information. The inclusion of such authentic problems

allows for a more valid assessment of student competencies in

STEM courses.

5.2 Implications for human-AI
collaboration

This study also provides insights for the future of human-

AI collaboration. While LLMs like GPT-4 can solve well-

specified problems, albeit with occasional calculation errors,

human intervention is needed to provide contextual understanding

and nuanced judgement that AI currently lacks, particularly

when navigating the complexities and ambiguities associated

with authentic problems. This insight suggests a complementary

relationship between human intelligence and artificial intelligence

in addressing complex, authentic problems in the real world.

Specifically, human experience and expertise can help construct

accurate models of the physical world and make reasonable

estimates or data collection plans for missing information. At

the same time, AI’s computational capability to instantly sift

through vast knowledge bases and pinpoint the relevant domain

knowledge constitutes an important asset to support human

problem-solving.

6 Limitations

One potential limitation of this study is that we did

not have two researchers independently evaluate all ChatGPT-

generated solutions to assess inter-rater agreement. Instead, our

analysis method mirrored the approach used in grading physics

coursework, where a single knowledgeable evaluator compares

students’ solutions with expert-generated correct solutions. To

mitigate the risk of bias, we also adopted a close, interdisciplinary

collaboration in the analysis process.

Next, in evaluating ChatGPT’s capacity for problem-solving,

it is important to recognize the inherent limitations associated

with the underlying algorithm’s probabilistic nature. ChatGPTmay

generate different answers each time a problem is posed, and this

variability presents a challenge in our analysis of its solutions. The

different releases and incremental builds of the algorithm could

further produce varied results. Therefore, the interpretation of

our findings must consider the specific version of the algorithm

utilized, which spans from May to August 2023. Additionally,

the current study did not ask ChatGPT to generate solutions for

identical problems and prompts multiple times. This absence of

repetitive testing restricts our understanding of the tool’s stability

and reliability in providing consistent solutions. The probabilistic

and evolving nature of LLMs underscore the need for continuous
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evaluation and validation of their problem-solving capabilities in

future studies.

7 Conclusion

This study probed the capabilities and limitations of LLM-

based technologies such as ChatGPT in solving authentic problems

that are situated in real-world contexts and under-specified in

terms of the requisite data. By focusing on the domain of physics,

we were able to incorporate a diverse set of real-world scenarios

into the problem set. The problem-solving practices and processes

adopted to solve these physics problems are also applicable in

the broader fields of science and engineering. Furthermore, the

decision to include problems fromwell-specified to under-specified

in terms of the amount of information provided in the problem

statement led to a nuanced understanding of ChatGPT’s capacity

for solving different types of problems. The findings revealed that

ChatGPT is adept at identifying relevant physics knowledge and

applying it to solve well-specified problems. At the same time, its

performance is less robust in modeling real-world complexities and

making reasonable assumptions when data is missing in under-

specified problems.

These findings lead to future studies to investigate how LLMs

can be utilized in STEM education to support student learning, such

as serving as personalized tutors to scaffold students in identifying

the relevant knowledge for solving a problem. Additionally, the

insights from this study shed light onwhat are the key competencies

for students to develop to prepare for a future where AI can

effectively address well-specified problems. These competencies

include the ability to construct accurate and concise models of

problems, make deliberate decisions regarding assumptions and

estimates, and devise plans for data collection. Students’ mastery

of these competencies, in conjunction with the advancement of AI

technologies, potentially pave the way for a future where human-

AI collaboration can effectively address complex challenges in the

real world.
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