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Chimonanthus praecox is a famous traditional flower in China with high

ornamental value. It has numerous varieties, yet its classification is highly

disorganized. The distinctness, uniformity, and stability (DUS) test enables the

classification and nomenclature of various species; thus, it can be used to classify

the Chimonanthus varieties. In this study, flower traits were quantified using an

automatic system based on pattern recognition instead of traditional manual

measurement to improve the efficiency of DUS testing. A total of 42 features

were quantified, including 28 features in the DUS guidelines and 14 new features

proposed in this study. Eight algorithms were used to classify wintersweet, and

the random forest (RF) algorithm performed the best when all features were

used. The classification accuracy of the outer perianth was the highest when the

features of the different parts were used for classification. A genetic algorithm

was used as the feature selection algorithm to select a set of 22 reduced core

features and improve the accuracy and efficiency of the classification. Using the

core feature set, the classification accuracy of the RF model improved to 99.13%.

Finally, K-means was used to construct a pedigree cluster tree of 23 varieties of

wintersweet; evidently, wintersweet was clustered into a single class, which can

be the basis for further study of genetic relationships among varieties. This study

provides a novel method for DUS detection, variety identification, and

pedigree analysis.
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1 Introduction

Chimonanthus praecox (wintersweet) is an ornamental tree

commonly found in China. Wintersweet, an excellent and rare

winter ornamental garden plant with high garden application value,

blooms in the winter with a golden color and emits a pleasant scent.

Owing to its cultural significance and long-standing history, it

boasts a wide variety of cultivations. However, owing to the lack

of clear classification norms and systems, proper communication

and consensus regarding the statistics on the number of wintersweet

varieties are lacking. Consequently, researchers use their own

schools, which has resulted in “synonyms” and “foreign bodies of

the same name.” This has resulted in some serious problems, such

as the exact number of its varieties and their names being unknown

(Chen and Lu, 2001). This not only affects the actual production of

varieties but also the statistics, classification, and breeding of

wintersweet resources, thus limiting the development of

wintersweet seedlings. In 2013, China formulated and issued the

“Guidelines for the conduct of test for distinctness, uniformity and

stability—Wintersweet [Chimonanthus praecox (L.) Link.].” The

application of new varieties must be reviewed and tested by the

distinctness, uniformity, and stability (DUS) test to ensure that the

new varieties are protected by law. The DUS test has played a key

role in resolving confusion in the identification, management, and

naming of wintersweet varieties. To date, only 27 varieties of

wintersweet have been internationally registered (Chen et al.,

2017; Chen et al., 2020), which is far below the statistics reported

by Chinese researchers (Lu et al., 2010; Lu and Li, 2011; Lu and Ren,

2011; Lu et al., 2012; Song et al., 2012). The small number of

registered varieties is not conducive to the legal spread and trade of

wintersweet varieties worldwide. Therefore, establishing an effective

identification system for new plant varieties is crucial for variety

management and intellectual property rights (Fister et al., 2017).

DUS testing is a complex process based on the study of plant

morphological characteristics (Bernet et al., 2003). At present, DUS

testing of new plant varieties is carried out manually; however,

owing to the heavy workload of evaluation, the possibility of errors

is increased in the process of measurement and evaluation.

Additionally, the evaluation results are often inconsistent because

different testers have different subjective perceptions of

characteristics; moreover, the strategy of employing manual

testers has the limitations of yielding low efficiency and incurring

high labor costs (Kwon et al., 2005; He et al., 2020). In theory, as the

number of tested traits increases in a DUS, the recognition rate

improves accordingly. However, in actual classification,

information redundancy occurs in DUS, thus leading to a

decrease in recognition efficiency (Deng and Han, 2019). For

example, the peanut DUS test comprises a total of 37 important

candidate features, and when only 18 of these features are used, the

recognition rate exceeds 90% (Deng and Han, 2019). In a previous

study, among the 50 basic DUS traits specified for cucumber plants,

20 core traits were evaluated; consequently, the efficiency of variety

identification improved significantly, and up to 60% of labor and

time costs were saved (Zhang et al., 2022). Therefore, scientific trait

combinations can be screened to efficiently identify varieties.
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With continuous developments in computer science,

researchers have applied pattern recognition and machine

learning techniques to plant recognition (Sachar and Kumar,

2021), disease detection (Sharif et al., 2018), and plant genotype

prediction (Heidari et al., 2020). This has led to the rapid

development of automation in the field of plant operation and

compensated for the limitations of low efficiency and high cost of

manual work. Pattern recognition, an automatic intelligent

technology that is similar to biochemical and molecular

technologies, has become widely popular for plant DUS testing

and has been recognized by the International Union for

Conservation (Deng and Han, 2019). Zhao et al. (2009) used the

pattern recognition correlation method to quantify DUS test traits

in corn ears. This method has the advantages of objectivity, high

efficiency, and low cost. Moreover, they believed that relevant

technology will play an increasingly important role in DUS

testing of other new plant varieties. She et al. (2019) proposed an

improved least squares support vector machine pixel classification

method to classify lawn plants. Nijalingappa and Madhumathi

(2015) used a multiclass support vector machine as a classifier

and proposed a plant recognition method based on leaf features,

which can effectively realize plant classification. Using a multiclass

support vector machine as a classifier, Nijalingappa and

Madhumathi (2015) proposed a plant recognition method based

on leaf characteristics, which can effectively realize plant

classification. Computer technology can replace manual and

automatic plant morphology measurements. It has various

advantages, such as strong recognition ability, short processing

time, and good repeatability and objectivity (Donis-Gonzalez

et al., 2013); additionally, it can compensate for the shortcomings

of traditional DUS testing methods (Deng and Han, 2019).

When establishing efficient classification models for plant

recognition, the information contained in the features should be as

rich as possible, and the number of features should be as small as

possible, which makes feature selection a crucial step. Inappropriate

features may lead to a sharp increase in the number of data

dimensions, the introduction of noise features, or an unnecessary

increase in complexity, which may weaken the performance and

generalization ability of the model. Redundant or irrelevant features

not only increase the computational cost but may also lead to a

reduction in classification accuracy (Ghasab et al., 2015; Khan et al.,

2019). Therefore, the best discriminant features must be determined

for an efficient classification. In the identification of apple diseases,

Khan et al. (2019) optimized the extracted features using a genetic

algorithm (GA) and a multi-support vector machine for

classification. The results showed that this method could improve

the classification accuracy for apple diseases. Kheirkhah and Asghari

(2019) adopted principal component analysis (PCA) to select the best

features from a plant leaf feature set, which improved the recognition

accuracy and speed. Elnemr (2017) extracted and normalized leaf

texture features; subsequently, they employed the neighborhood

component feature selection method to reduce the feature space

and selected 16 important features that can effectively distinguish

different categories. Consequently, the accuracy of the k-nearest

neighbor (kNN) algorithm reached 98%. Ghasab et al. (2015) used
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the ant colony algorithm to search the internal feature search space to

obtain the best feature set for leaf recognition and then used a support

vector machine (SVM) to classify species with an accuracy of 95.53%.

For the rapid classification and identification of honeysuckle leaf

defects, Xiao and Wang (2020) employed PCA for feature extraction

and selection, thereby achieving high accuracy and significantly

improved recognition speed.

In plant recognition, different features, such as shape, color,

morphology, texture, and vein structure, are extracted from images

of leaves, fruits, flowers, and other plant organs to evaluate their

impact on plant recognition (Ghasab et al., 2015). Vegetative organs

are easily affected by the environment, and the characteristics of the

reproductive organs are relatively stable (Li, 2009). Therefore,

flower and fruit characteristics are crucial for plant recognition.

In the classification of wintersweet, the leaf and fruit traits of

different varieties vary very little, which contributes little value to

the classification of wintersweet varieties (Zhao et al., 2007). In the

DUS test of wintersweet, the number of flower traits tested

corresponds to nearly two-thirds of all the traits. In previous

studies, the classification of wintersweet varieties was aimed

primarily at flowers; therefore, this study used floral organs as the

research object. To optimize the accuracy of the DUS test of

wintersweet and ensure the interpretability of the optimization

process, a traditional machine learning method was used to

accurately screen the traits in the test. The research framework of

this study is shown in Figure 1. First, the flower images were

preprocessed, the traits in the DUS test were quantified, and new

features were proposed. Using these features, different algorithms
Frontiers in Plant Science 03
were applied to classify varieties, and an optimal classification

model was selected. Moreover, the importance of different parts

of the flowers for variety classification was evaluated. Furthermore,

all the features were used to form the feature search space, and a GA

was used for feature screening to determine the core feature set of

the wintersweet variety classification. The core feature set was used

to classify the varieties, and the performance was compared with

that of all the feature sets in the model to test the optimization effect.

The distribution of features in low-dimensional space can be

directly observed via t-SNE visualization. In addition, the k-

means algorithm was used to analyze the potential genetic

relationships among the varieties, which provided insight into

their genetic background.
2 Materials and methods

2.1 Wintersweet sample and
image acquisition

Herein, 23 different wintersweet varieties were collected from

the resource nursery, and 100 flowers in the bloom period were

selected for each variety. The collected flowers were placed in a

laboratory studio and photographed using a CanonPowerShotG1X

camera. With respect to the camera parameters, the exposure times

for the black and white backgrounds were 1/30 and 1/125 s,

respectively, whereas the other parameters were consistent. The

front, outer perianth, inner perianth, and sides of the flower were
FIGURE 1

Research framework.
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photographed (Figure 2), and 100 images were collected for each

part, resulting in a total of 9,200 images.
2.2 Image preprocessing and
feature extraction

Image preprocessing is a key step in the initial stage of image

analysis. Its purpose is to eliminate noise, enhance the important

features of the image, and ensure the accuracy and reliability of the

subsequent analysis. Figure 3 illustrates the preprocessing steps

used in this study. First, the collected images were converted into

grayscale images, which can better highlight the contour and

morphological information and reduce the complexity of the data

processing. Next, binary processing was performed to highlight the

structural characteristics of the wintersweet more clearly. In

addition, a closed operation was employed to eliminate potential

small noise or breaks. Specifically, the small noise was corroded

first, and the main structure of the image was restored by the

expansion step. Subsequently, the image contour was calculated to

obtain its area, perimeter, and other key parameters, which

provided the basis for subsequent classification and analysis.

Images were transferred from the RGB color space to the HSV

color space to capture the color characteristics of wintersweet more

accurately. In the HSV color space, the pixel mean of each channel

was calculated, which provides important information regarding

the color for image analysis.
Frontiers in Plant Science 04
Based on the different types of preprocessed images, 30 features

in the DUS test were quantified, and 12 new features were proposed.

According to the parts, the features were divided into three

categories: description of the overall (including shape and size),

outer perianth, and inner perianth, totaling 42 features (Table 1).
2.3 Application of classification algorithms

Various classification algorithms were selected to ensure the

accuracy and robustness of the wintersweet classification, and their

classification performances were compared. Among them, the

decision tree (DT) (Myles et al., 2004) is suitable for the intuitive

interpretation of the classification rules of wintersweet because of its

clear decision path. In addition, gradient boosting machine (GBM)

(Natekin and Knoll, 2013) and eXtreme gradient boosting (XGBoost)

(Chen and Guestrin, 2016) methods provide advantages in dealing

with complex data structures to improve classification accuracy. kNN

(Guo et al., 2003) provides an instance-based learning method and

another solution strategy for complex patterns in datasets. Logistic

regression (LR) (LaValley, 2008) and SVM (Noble, 2006) are

considered for their ability to address linearly separable and

nonlinear problems. Linear discriminant analysis (LDA) (Wei and

Croft, 2006) can reduce the dimensionality of the data while ensuring

the maximum distance between categories; thus, this approach is

helpful for subsequent data visualization and classification. RF

(Statistics and Breiman, 2001) provides high accuracy and adapts
FIGURE 2

Front, outer perianth, inner perianth, and side views of three sample varieties (each line represents one variety).
frontiersin.org

https://doi.org/10.3389/fpls.2023.1328603
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhu et al. 10.3389/fpls.2023.1328603
to high-dimensional data by combining the prediction results of

multiple decision trees; thus, it was also applied to our

classification problems.

The constructed dataset was divided into training and test sets

at a ratio of 0.75:0.25 to ensure the stability of the training and

accuracy of the evaluation. In addition, during the experiment, five-

fold cross-validation was performed for each classifier to obtain a

more stable performance evaluation. The performances of these

eight algorithms were comprehensively compared, and the model
Frontiers in Plant Science 05
with the best performance was selected as the basis for subsequent

feature selection and further optimization.
2.4 Feature selection procedure

The importance of feature selection has been widely recognized

(Li et al., 2018). The high number of features extracted from the

wintersweet image (42 features) ensured feature diversity; however,
TABLE 1 Characteristic list of the wintersweet blossom.

Feature
ID

Feature of overall Feature
ID

Feature of outer perianth Feature
ID

Feature of inner perianth

F1 Flower type F11 Number of outer perianth F27 Number of inner perianth

F2 Maximum diameter F12 Minimum rectangular length of
outer perianth

F28 Minimum rectangular length of
inner perianth

F3* Perimeter F13 Minimum rectangular width of
outer perianth

F29* Minimum rectangular width of
inner perianth

F4* Area F14 Outer perianth shape F30 Inner perianth shape

F5* Equal circle area F15* Outer perianth area F31* Inner perianth area

F6* Concave-convex ratio F16 Outer perianth apex shape F32 Inner perianth apex shape

F7* Circularity F17 Outer perianth apex state F33 Inner perianth apex state

F8* Compactness F18 Outer perianth marginal state F34 Average R value of inner perianth
main color

F9 Outer perianth
position relationship

F19 Average R value of outer perianth
main color

F35 Average G value of inner perianth
main color

F10 Outer perianth
extension angle

F20 Average G value of outer perianth
main color

F36 Average B value of inner perianth
main color

F21 Average B value of outer perianth
main color

F37 Average R value of inner perianth
secondary color

F22* Average R value of outer perianth
secondary color

F38 Average G value of inner perianth
secondary color

F23* Average G value of outer perianth
secondary color

F39 Average B value of inner perianth
secondary color

F24* Average B value of outer perianth
secondary color

F40 Percentage of secondary color area of
inner perianth

F25* Percentage of secondary color area of
outer perianth

F41 Whether the inner perianth
is polychromatic

F26* Whether the outer perianth
is polychromatic

F42 Inner perianth secondary color
distribution type
The features marked by * are those newly proposed in this study.
FIGURE 3

Schematic of the image preprocessing steps.
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this high number presented the dilemma of high dimensionality,

which may affect the classification. Therefore, feature selection was

necessary. The feature set obtained after screening is not only more

concise and intuitive but also helps improve the interpretability of

the model (Piri and Mohapatra, 2021), thus providing a theoretical

basis for further research on the characteristics related to the

recognition of wintersweet varieties.

Common feature selection methods include filter, wrapper, and

embedded methods (Saeys et al., 2007). The wrapper feature

selection method comprehensively considers the interactions and

nonlinear relationships among features and reflects the quality of

the feature set based on the performance of the current feature set in

the model to ensure that the feature set is more consistent with the

model. Therefore, the wrapper method was used for feature

selection in this study.

To select the most suitable feature subset in the feature selection

process, the following steps are usually used: First, a feature subset is

generated from the initial feature set, and the next subset is

generated by evaluating its advantages and disadvantages. Then,

the newly generated subset is evaluated, and the next subset is

generated according to the evaluation results. This cycle is iterated

until no better feature subset can be found. Therefore, in the process

of feature selection, the search and evaluation of feature subsets are

the most critical, and they have an important effect on the quality of

the final selected feature subset (Dash and Liu, 1997).

Therefore, in the wrapping method, the best performing

classifier is encapsulated with the search algorithm, and the

evaluation function is embedded as a criterion to measure the

quality of the selected feature set.

2.4.1 Search for feature subsets
The feature subset search algorithm is an important tool for

optimizing feature selection and can significantly improve the

performance of machine learning models. The ant colony

algorithm (ACO) (Dorigo et al., 2006), GA (Holland, 1992), and

particle swarm optimization algorithm (PSO) (Poli et al., 2007) are

widely used in feature subset searches and have stable performance

and good feature reduction ability. These methods are combined

with classifiers to find excellent feature subsets. In this study, the

ACO, PSO, and GA algorithms were tested, and based on their

performance, the GA (an evolutionary-inspired global optimization

algorithm) was selected. The GA considers the interaction between

features and adaptively searches for the optimal feature subset.

Thus, the solution closest to the optimal solution is determined,

which has a certain robustness and global search ability (Smith

et al., 2012).

2.4.2 Evaluation function
The evaluation function plays a key role in feature selection, as it

directly affects the quality of the final selected feature subset (Dash

and Liu, 1997). In this study, the evaluation function was embedded

in the wrapper method; that is, the feature sets of different

combinations were evaluated by the classifier, the best feature sets

were updated over time, and the final feature sets were obtained

after several iterations. In the wrapping process, the evaluation of

the feature subset is based on the performance of the current feature
Frontiers in Plant Science 06
subset on the target classifier (i.e., it is evaluated by combining the

current error rate and current number of features), and the

performance must simultaneously meet the requirements of a low

error rate and small number of features to improve the overall

performance and interpretability of the model. Therefore, the

evaluation function of this study is expressed as follows:

Cost(St)¼ l1E(St)þl2N(St)

where t is the number of the current iteration, St is the feature

subset selected in the iteration process, E(St) is the error rate of

using the feature subset on the classifier, N(St) is the length of the

feature subset, and l 1 and l 2 are adjustable parameters that are

used to regulate the weight of the error rate and the selected number

of features in the evaluation function, respectively. The ratio of the

mean error rate to the mean number of features is used to determine

the order of magnitude gap between the two, and based on this,

appropriate fine-tuning is used to determine the final values of l1
and l2, ranging from [0,1]. This implies that the subset selected in

this study was the global optimal subset that satisfies both the

minimum error rate and the shortest feature subset length.
2.4.3 Search termination criteria
The last criterion that must be clearly stated in the algorithm is

the search process termination condition. The objective of the stop

condition is to provide accurate guidance for the feature search

process, essentially avoiding infinite loops or excessive searching. In

this study, the stop condition was used to achieve the maximum

number of iterations and minimize the value of the evaluation

function. This ensured that the feature search was completed in a

limited time and that a relatively optimal feature subset was found.
2.4.4 Structure of the GA
The GA is an optimization algorithm that simulates the process

of natural evolution (Leardi et al., 1992). The fitness of individuals

in a population is gradually improved through the basic steps of the

GA. Through a series of iterations, the algorithm constantly updates

the population via selection, crossover, and mutation operations to

gradually approach the optimal solution.

The workflow of the GA can be simplified as follows (Figure 4):

First, initialization is performed to generate individuals with the

same number of features. Each individual represents the selected

status of the feature in binary code (1 represents selected, 0

represents unselected). Then, individuals are evaluated by a

fitness function and selected by the tournament strategy. The

selected winners undergo crossover and mutation operations to

increase diversity and generate the next generation of individuals.

Crossover operations involve exchanging genes to create new

individuals, while mutation operations randomly change an

individual’s genes. After the offspring individuals are reevaluated,

if the stop condition is met, the algorithm returns the best feature

subset. Otherwise, the tournament continues to select the winner,

and the above steps are repeated until the stop condition is met.

Parameter selection of the GA is very important, and it is

necessary to comprehensively consider the performance of the

algorithm, convergence speed, final result, and rational utilization
frontiersin.org
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of resources. This study alternately optimized the parameters

several times to select appropriate parameters. After many

experiments, the final parameters were set as follows: the

population size was 50 to ensure a wide search for the solution

space, 20 generations were selected as the number of iterations to

balance the computational cost and the quality of the solution, the

tournament selection strategy was adopted, and the tournament size

was three (i.e., three individuals were randomly selected for

competition in each generation), and the one with the highest

fitness was selected as the next generation parent individual.
3 Results

3.1 Classification abilities of different parts
of the wintersweet

To identify the models with the strongest classification ability,

eight commonly used machine learning models, namely, DT, GBM,

kNN, LR, RF, SVM, XGBoost, and LDA, were used herein.

Accuracy and F1-scores were used to evaluate the performance of

the model. The experimental results showed that the RF model

performed the best when all features were used for classification,

with an accuracy of 98.81% (Table 2). When using only the 28

flower features of the DUS test, the RF model exhibited the highest

classification accuracy (98.43%). This indicates that the traits
Frontiers in Plant Science 07
proposed in the DUS test have good classification ability for

wintersweets. When classified by parts, the SVM classifier was

used to classify the outer perianth, and it achieved the highest

accuracy (91.68%). The accuracy of the inner perianth was high

(86.12%) when the XGBoost model was used. These results indicate

that both the outer and inner perianths play crucial roles in the

classification of wintersweet varieties. In particular, the outer

perianth has the strongest classification ability; thus, this

information can be used as an important basis for the

classification of wintersweet varieties. Among the eight

classification models, the RF and SVM models exhibited the best

performance. The RF model had the highest accuracy when all

features were used in the DUS test. Moreover, the RF model

achieved the second highest accuracy for classifying the other

three sets of features. This indicates that the RF model exhibits

high classification accuracy.
3.2 Analysis of wintersweet feature
characteristics and importance

The 15 most important features of each algorithm were ranked,

as shown in Figure 5. The experimental results showed that for the

DT and LDA algorithms, F39 was the most important feature. For

GBM and XGBoost, F40 ranked first, and F39 and F40 were related

to the color characteristics of the inner perianth. In the kNN model,
FIGURE 4

Flow chart representation of GA feature selection.
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F17 ranked first. For LR and SVM, F20 ranked first. F17 and F20 are

related features of the outer perianth. In the RF model, F1 ranked

first in importance. Among the first 15 features, features F1, F12,

F15, F17, F18, F20, and F40 appeared in seven algorithms (dark

green). Except for F1 and F40, all the features were associated with

outer perianth-related traits. Additionally, F7, F35, and F39

appeared for six algorithms (green), whereas F19, F27, and F37

appeared for five algorithms (light green). Among the features,

except for F7 and F19, the other features were associated with inner

perianth traits. These features may play an important role in the

classification of wintersweet.
Frontiers in Plant Science 08
3.3 Core feature selection

Although the highest recognition rate of varieties reached

98.81% when all 42 features were used, some redundancy may

exist among the features owing to the excessive number of features

considered. This redundancy can reduce the recognition efficiency

and increase the difficulty in practical application. Therefore, the

GA was used to screen features to improve classification accuracy

and reduce implementation costs.

Herein, the wrapping method was employed to select features

for RF model optimization because the overall performance of the
FIGURE 5

Top 15 important features of the eight algorithms.
TABLE 2 Classification results of 23 varieties by eight algorithms.

All DUS Entirety Outer perianth Inner perianth

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

DT 92.31% 92.23% 91.27% 91.03% 49.98% 49.65% 81.14% 81.02% 75.37% 75.42%

GBM 96.87% 96.85% 95.86% 95.79% 51.82% 52.04% 87.72% 87.35% 84.14% 84.58%

kNN 95.23% 95.06% 94.89% 94.77% 54.29% 53.91% 85.04% 84.69% 72.13% 71.77%

LR 98.12% 98.03% 96.35% 96.31% 53.11% 51.56% 88.80% 88.74% 79.26% 78.61%

RF 98.81% 98.72% 98.43% 98.43% 55.05% 54.75% 90.92% 90.91% 85.28% 85.19%

SVM 98.22% 98.10% 97.81% 97.82% 56.83% 55.55% 91.68% 91.64% 82.74% 82.61%

XGBoost 98.05% 98.05% 97.57% 97.55% 53.70% 53.32% 89.28% 89.12% 86.12% 86.15%

LDA 98.54% 98.53% 97.36% 97.31% 51.30% 50.25% 91.58% 91.61% 80.59% 80.67%
fro
Bolded red font indicates the highest score, whereas only bold font indicates the top two with the highest scores.
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RF model was better than that of the other models. The error rate of

the variety classification and the length of the feature subset under

the current iteration number were considered the two factors of the

evaluation function. The results in Table 3 suggest that among the

five groups of better feature sets selected by each of the algorithms,

GA, ACO and PSO, the third repetition of the GA corresponds to

the smallest number of features and has the highest classification

accuracy. When only 22 features were used, the accuracy of the

model reached 99.13%, which is higher than the best accuracy

obtained using all the features. The results showed that these 22

features play a key role in the classification task of wintersweets and

can significantly improve the performance of the model. Therefore,

the feature set of the third group was considered the core feature.

Since the GA selects the optimal feature set, the change trend of

the evaluation function (cost) based on the number of iterations for

the five feature sets selected by the GA algorithm was calculated

(Figure 6). The value of the evaluation function differs because the
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error rate and number of selection features constantly change during

the iterative process. In this search process, since the GA is updated

based on the outstanding individuals in the previous generation

population, each generation population will retain at least the

outstanding individuals of the previous generation. This feature

allows the value of the evaluation function to be maintained and

decreased. As a better feature set is found, the value of the evaluation

function gradually decreases and finally converges to a stable point.

This demonstrates that the algorithm successfully reduces the error

rate and effectively reduces the length of the feature subset by

identifying powerful features and ignoring redundant features. The

evaluation function curve of the third group sharply decreases,

converges in the shortest time, and determines the feature set with

the lowest cost. Among the selected core features, 9 of the 14 newly

proposed features were selected (namely, F4, F5, F6, F7, F8, F15, F22,

F23, and F31), indicating that our newly proposed features play an

important role in the classification of wintersweet.
TABLE 3 Results of the feature selection based on GA, ACO, and PSO.

Algorithms Repetition Feature subsets
Length
of subsets Accuracy

GA 1
F1, F2, F4, F5, F7, F8, F11, F12, F14, F15, F9, F16, F17, F18, F19, F20, F21, F22, F23, F25, F27,
F28, F30, F31, F35, F39, F40, F41, F42 29 99.13%

2
F1, F3, F4, F6, F7, F8, F11, F12, F15, F9, F17, F18, F10, F20, F21, F22, F25, F27, F29, F30, F31,
F32, F33, F34, F35, F38, F40 27 98.88%

3
F1, F4, F5, F6, F7, F8, F11, F12, F15, F17, F20, F21, F22, F23, F29, F30, F31, F33, F35, F39,
F40, F41 22 99.13%

4
F1, F2, F8, F11, F12, F13, F15, F17, F19, F20, F21, F23, F24, F27, F29, F31, F32, F35, F38, F40,
F41, F42 22 98.81%

5
F1, F2, F7, F11, F12, F13, F14, F15, F17, F18, F20, F21, F23, F24, F26, F27, F28, F29, F31, F34,
F37, F42 22 99.02%

ACO 1
F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13, F14, F15, F16, F17, F18, F19, F20, F21, F22,
F23, F24, F25, F26, F27, F28 27 98.57%

2
F1, F2, F3, F4, F5, F6, F10, F12, F13, F14, F15, F16, F17, F18, F19, F20, F21, F22, F24, F25, F26,
F27, F29, F30, F31, F32, F33, F35, F36, F37, F38, F39, F40, F41, F42 35 98.74%

3
F1, F2, F3, F4, F5, F6, F7, F9, F10, F11, F12, F13, F14, F15, F18, F20, F21, F22, F23, F24, F25,
F27, F28, F30, F31, F32, F34, F37, F42 29 98.12%

4
F1, F8, F13, F15, F16, F18, F19, F20, F21, F25, F31, F36, F37, F38, F39, F40, F4, F11, F14, F9,
F17, F5, F7, F34 24 98.88%

5
F1, F3, F4, F6, F8, F10, F11, F13, F16, F15, F18, F22, F23, F24, F26, F27, F28, F30, F31, F32,
F33, F34, F35, F37, F41, F42 26 97.66%

PSO 1
F1, F2, F4, F5, F6, F8, F10, F11, F12, F13, F14, F17, F19, F20, F21, F23, F25, F26, F29, F33, F34,
F35, F36, F39, F42 25 98.25%

2
F1, F2, F4, F6, F8, F11, F12, F13, F14, F15, F17, F19, F20, F22, F23, F25, F26, F30, F31, F34,
F35, F37, F38, F40, F41, F42 26 98.64%

3
F1, F3, F5, F8, F9, F10, F14, F15, F16, F18, F20, F23, F24, F27, F28, F29, F30, F31, F33, F34,
F35, F36, F37, F38, F40 25 98.95%

4
F1, F2, F3, F5, F7, F10, F12, F13, F14, F16, F18, F20, F22, F26, F27, F28, F29, F30, F31, F33,
F35, F37, F39, F42 24 97.87%

5
F1, F2, F4, F6, F7, F10, F12, F13, F15, F16, F17, F18, F20, F21, F25, F27, F29, F32, F34, F36,
F37, F40 22 98.88%
Bold group indicates the smallest number of features and has the highest classification accuracy.
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3.4 Correlation analysis of all features and
core features

Correlation analysis was performed using all 42 features and 22

core features respectively, as shown in Figure 7. According to the

correlation analysis results for all the features, strong correlations

(Pearson correlation coefficient | r | ≥ 0.5) were found among F2, F3,

F4, F5, and F12; F6, F7, F8, and F16; F12, F13, and F15; F22, F23,

F24, F25, and F26; F28, F29, and F31; F34, F35, and F36; and F37,

F38, F39, F41, and F42. Among the 42 features, many had a high

correlation. Moreover, the variance inflation factor (VIF) of most

features was greater than 10 (Supplementary Table S1). This
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indicates the existence of a multicollinearity problem between the

features. The above calculations and analyses show that information

redundancy exists among these features.

The correlation analysis of the 22 core features after selection

found that some features of the above highly correlated features

were deleted. Similarly, the VIF was calculated for the 22 core

features (Supplementary Table S1). The results showed that the

VIFs of all the features significantly decreased, and the core features

alleviated the influence of multicollinearity on the classification

model. The above results indicate that the core feature set selected

by the GA reduces redundancy among features, thereby improving

the classification efficiency of wintersweet varieties.
FIGURE 7

Correlations between all the traits (lower triangle) and the core traits (upper triangle).
FIGURE 6

Variation in the evaluation function of five groups of feature sets.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1328603
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhu et al. 10.3389/fpls.2023.1328603
3.5 Model performance and t-SNE
visualization of the datasets

The core feature set was used to identify varieties and construct

a confusion matrix (Figure 8). A confusion matrix was used to

evaluate the performance of the classification model, and the

relationships between different varieties were also visually

observed. Figure 8 shows the performance results on a divided

test set with a total of 2,300 data samples. The overall recognition

accuracy was 99.13%. Thus, the core feature set obtained by feature

selection could be used to effectively identify wintersweet cultivars

via the RF model, thus demonstrating the effectiveness of selecting

the core feature set based on the GA for wintersweet cultivar

classification. This strategy has the advantage of reducing feature

dimensions and better utilizing the effective search space. However,

some varieties were not well identified; for example, varieties 5, 6, 8,

and 16 were identified as varieties 7, 4, 5/13, and 13, respectively,

because these varieties are similar in appearance and can be easily

confused with each other.

Both sets of features, all features (Figure 9A) and core features

(Figure 9B), were considered for t-SNE dimensionality reduction.

The image features of 2,300 wintersweet flowers were visualized in

the first two projection spaces, and different colors were selected

based on the variety to directly observe the feature distribution of

the images of different varieties extracted by the model. The two

scatter plots show that the first two projection spaces have a high

explanatory ability for evaluating the image features of the 23

varieties of wintersweet. After dimensionality reduction using

different numbers of features, the distribution results for the 23

varieties were essentially the same. Moreover, overall, the intra-

cluster distance was small (right side of the figure), whereas the

inter-cluster distance was large (Supplementary Table S2), thus

indicating that the varieties could be clearly distinguished. This

further proves that the core feature set has a strong ability to

accurately distinguish between different species of wintersweet.
Frontiers in Plant Science 11
As shown in Figure 9, the samples of varieties 8, 9, 10, 11, 12, 13,

and 16 were closely aggregated, with a small intra-cluster distance

and good classification effect. Varieties 1, 2, 17, and 22 exhibited

poor aggregation and relatively large intra-cluster distances.

Additionally, some varieties overlapped; these included 1 and 14,

2 and 21, 13 and 8, 8 and 5, and 5 and 7. The flowers of these

overlapping varieties had similar colors or shapes. Furthermore, the

varieties that were easily misclassified in the confusion matrix and

some varieties that overlapped in the t-SNE dimensionality

reduction were the same, such as varieties 5 and 7, 8 and 5, and 8

and 13, because these varieties were closely related. Therefore, all

the varieties were clustered to explore their genetic relationships.
3.6 K-means clustering of 23 varieties

K-means clustering was performed using the average value of each

variety feature to explore the relationships between the varieties

(Figure 10). According to the classification system proposed by

(Chen, 2012), wintersweet can be divided into three groups: the

concolor, intermedius, and patens groups. The clustering results of

this study showed that the 23 varieties could be divided into three

groups. Varieties 11, 12, 9, 16, 8, and 13 were clustered in group I.

These varieties belonged to the concolor group; that is, their inner

perianth is yellow without purple. In the other two groups, II and III,

the inner perianth was purple. Among them, most varieties in group II

belonged to the intermedius group, whose inner perianth was covered

by a small amount of purple (red) color, whereas group III primarily

belonged to the patens group, whose inner perianth was purple (red)

in color. This finding highlights the importance of flower color in the

classification of wintersweet. The k-means clustering results showed

that the misclassified varieties in the confusion matrix were clustered

into one group. Similarly, in the t-SNE dimensionality reduction

visualization, varieties prone to overlap were clustered more closely.

These results prove that these varieties are closely related.
FIGURE 8

Core feature set using the confusion matrix of the RF model.
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4 Discussion

4.1 Evaluation of variety recognition ability

Recently, the rapid development of computer science has

powered research and development in various disciplines.

Remarkable progress has been made in the field of plant

recognition based on machine learning (Sachar and Kumar, 2021;

Wang et al., 2023), which has promoted the interdisciplinary

development of plant research. However, research combined with

DUS testing is currently limited.

In this study, a pattern recognition-related method was first

used to efficiently quantify the shape, size, color, and other features

of wintersweet. Compared with traditional manual measurements,

image analysis provides more objective quantitative information;

thus, it can rapidly and accurately process a large amount of data

and improve the efficiency of identification. Herein, features

including the description of flower traits in the DUS test and

some newly proposed traits, totaling 42 features, were considered

and classified. Eight algorithms were used to classify the varieties

based on different feature sets. Overall, the RF algorithm exhibited

the best performance. Based on the feature set in the DUS test, the

identification accuracy of the varieties reached 98.43%, and it had a
Frontiers in Plant Science 12
strong ability to distinguish them, thus verifying the effectiveness of

the DUS test guidelines. Similarly, in the identification of peanut

varieties, five form features were used, and the DUS test traits had

the best recognition abilities (Deng and Han, 2019). The DUS test

plays an important role in the identification and protection of new

plant varieties. Therefore, the traits mentioned in the DUS test have

a strong ability to be recognized. In this study, the recognition

accuracy improved when the new features were used in the

classification, together with the traits in the DUS test, thus

indicating that the new features contribute to the classification of

wintersweet varieties.

When the features of different parts were used to distinguish

between the varieties of wintersweet, the differentiation ability of the

outer perianth was the strongest, followed by that of the inner

perianth. In previous studies on the classification of wintersweet,

many researchers believed that the relevant features of the outer

perianth should be used as the first classification standard. For

example, Zhao et al. (2004) used clustering and PCA to determine

that the length of the outer perianth should be used as the first

classification standard. The results of Jing (2008) and Zhang (2010)

proved that the length-width ratio (shape) of the outer perianth

plays the most important role in clustering. Subsequently, Cheng

and Zhou (2012) reported that the color of the outer perianth
A

B

FIGURE 9

T-SNE dimensionality reduction of (A) all features and (B) core features.
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should be used as the primary standard for classifying varieties.

These conclusions were drawn possibly because the outer perianth

contains a wealth of information. First, the color information of the

outer perianth is crucial, the color of the upper petal represents the

color of the entire flower, whereas the purple area and color value at

the bottom of the petal reflect various other information in the

patens group. Moreover, the length of the outer perianth reflects the

size of the flower, and the shape of the outer perianth may be related

to the overall shape of the flower.

Among the eight algorithms, in the ranking of the first 15

important features of each algorithm, the features with the highest

importance and more occurrence times were almost all related to the

traits of the outer perianth and the color traits of the inner perianth.

Zhao et al. (2007); Sun (2007); Lu and Sun (2008), and Ren (2010)

believed that the color of the inner perianth is a crucial standard for

the classification of wintersweet. Based on the results of this study and

those of previous studies, the color, shape, size, and other features of

the outer perianth and the color features of the inner perianth play

important roles in the classification of wintersweet.
4.2 Improvement in identification efficiency
using core features

An efficient classification model should obtain the maximum

amount of information using the smallest number of features. A

large number of features can lead to redundancy and noise, increase

the computational burden, and reduce the classification effect

(Ghasab et al., 2015; Khan et al., 2019). In previous studies on the

classification of wintersweet varieties (Zhao et al., 2004; Zhao et al.,

2007; Lu and Sun, 2008), researchers primarily employed PCA to

reduce the dimensions of the characteristics and classified them by

obtaining comprehensive indicators with nonoverlapping

information. In terms of feature processing, PCA is

computationally simple; however, it may ignore important

features related to the target variables. In this study, a GA based

on the wrapper strategy was used to search the core feature set for

wintersweet identification. This method can more comprehensively
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search the feature subset space and determine near-optimal feature

combinations. Of the total 42 features, from the DUS test and newly

proposed features, 22 core features were selected using the feature

selection method proposed in this experiment, and the recognition

accuracy improved from 98.81% to 99.13%. After the selection, the

number of features was reduced by approximately half, and the

recognition accuracy was significantly improved. This feature

combination can more accurately identify wintersweet varieties.

In a previous study on apple disease identification and recognition

methods, a GA was used to select the best features, and multi-SVM

was used for classification. The results showed that the proposed

feature selection method performed well in terms of both accuracy

and execution time (Khan et al., 2019).

Correlation analysis of all features and core features revealed

that some features had a high correlation among all features, and

some of them were eliminated in the core feature set. This indicates

that the 22 features of the core feature set contain more key

attributes that can accurately describe the classification of

wintersweet varieties and can thus reduce redundant information,

improve the accuracy and efficiency of wintersweet classification,

and better meet the needs of classification tasks.
4.3 Reliability of phenotypic characteristics
for the identification of wintersweets

The core features were used for confusion matrix analysis for

evaluating and verifying the performance of the classification model

for wintersweet variety identification. The overall recognition

accuracy of the confusion matrix calculation was high. However,

some varieties were prone to misclassification. t-SNE was used to

reduce the dimensionality of all the features and the core features.

After dimensionality reduction, the aggregation results of the two

feature sets for the different varieties were basically the same, thus

demonstrating the strong explanatory power of the core features. The

genetic relationships of the 23 varieties were analyzed using k-means

clustering, and according to the results, the 23 varieties were grouped

into three groups. Group I was the concolor group, whereas the inner
FIGURE 10

Twenty-three varieties of cluster trees.
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perianth of the other two groups was purple. Interestingly, in the

cluster analysis, the varieties misclassified by the confusion matrix

and the varieties overlapping in the t-SNE dimensionality reduction

showed relatively close relationships. Note that the use of phenotypes

for variety identification and phylogenetic analysis has been

previously confirmed for several plants. Lu and Du (2007) used

flower morphology and RAPD markers to classify the varieties of

wintersweet, and the results were consistent. Jing (2008) showed that

flower morphology and ISSR markers were consistent in judging the

morphological evolution and genetic relationships of wintersweet

plants. This finding demonstrated the reliability of phenotypic

characteristics in identifying wintersweet varieties. Similar results

have been reported for other species as well. During cucumber

variety identification, the DUS and SNP markers exhibited highly

similar variation curves, thus confirming the consistency of the DUS

and DNA fingerprinting results for cucumber variety identification

(Zhang et al., 2022). Deng and Han (2019) used 18 phenotypic

features to cluster 20 peanut varieties, and the clustering results were

significantly affected by pod type and origin. Morphological data play

an indispensable role in investigating maize polymorphisms and

genetic relationships. Only by utilizing morphological data as

auxiliary information for molecular markers can effective

distinction maize strains and conduct genetic relationship analysis

be achieved (Nagy et al., 2003). Therefore, identifying phenotypic

traits is regarded as an effective method for identifying plant varieties.

In future research, we will collect new wintersweet flower image data

and use the 22 core features of this study for classification to verify the

validity and generalizability of the feature set. Machine learning-based

feature selection methods have considerable potential for application in

plant variety identification. Our study provides a novel idea for future

DUS testing of wintersweet. Additionally, these findings can guide and

support plant variety classification, protection, and breeding.
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