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In recent decades, image processing and computer vision models have played a
vital role inmoving object detection on the synthetic aperture radar (SAR) images.
Capturing of moving objects in the SAR images is a difficult task. In this study, a
new automated model for detecting moving objects is proposed using SAR
images. The proposed model has four main steps, namely, preprocessing,
segmentation, feature extraction, and classification. Initially, the input SAR
image is pre-processed using a histogram equalization technique. Then, the
weighted Otsu-based segmentation algorithm is applied for segmenting the
object regions from the pre-processed images. When using the weighted
Otsu, the segmented grayscale images are not only clear but also retain the
detailed features of grayscale images. Next, feature extraction is carried out by
gray-level co-occurrence matrix (GLCM), median binary patterns (MBPs), and
additive harmonic mean estimated local Gabor binary pattern (AHME-LGBP). The
final step is classification using deep ensemble models, where the objects are
classified by employing the ensemble deep learning technique, combining the
models like the bidirectional long short-termmemory (Bi-LSTM), recurrent neural
network (RNN), and improved deep belief network (IDBN), which is trained with
the features extracted previously. The combinedmodels increase the accuracy of
the results significantly. Furthermore, ensemble modeling reduces the variance
and modeling method bias, which decreases the chances of overfitting.
Compared to a single contributing model, ensemble models perform better
and make better predictions. Additionally, an ensemble lessens the spread or
dispersion of the model performance and prediction accuracy. Finally, the
performance of the proposed model is related to the conventional models
with respect to different measures. In the mean-case scenario, the proposed
ensemble model has a minimum error value of 0.032, which is better related to
other models. In both median- and best-case scenario studies, the ensemble
model has a lower error value of 0.029 and 0.015.
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1 Introduction

A device that is frequently utilized for a variety of remote sensing
applications is the synthetic aperture radar (SAR). The SAR research
community has significantly emphasized on the issue of automatic
target recognition (ATR) among the other issues. It is well-known
that optical and SAR pictures greatly differ [6]. Essentially, there are
two key issues. The first is the presence of speckle noise brought on
by a coherent backscattered signal collection. The second is the way
that man-made things’ reflectivity changes depending on the
viewing angle. A multi-look processing is crucial in this situation.
The issue is that actual target detection using the human visual
system (HVS) frequently fails. In the present scenario, SAR is one of
the active microwave-imaging equipment which works in all
weather conditions, especially in the application of moving object
detection and classification (Bi et al., 2021). Object detection
pinpoints the locations of several objects in a SAR image, while
image localization only pinpoints the location of a single object in an
image (Hong et al., 2021). The process of categorizing the images
into distinct types is known as SAR image classification (Meng et al.,
2020; Shahbaz and Jo, 2020; Shi et al., 2021). Based on the quality of
the image, the detection algorithms have accomplished a good feat.
Some quality factors of the image are contrast, brightness, spatial
resolution, noise, and artifacts. Remote sensing is also used in
various studies, such as oceanography, geography, agriculture,
geology, and ecology, to interpret objects or patterns and detect
those that may be more informative (Han et al., 2020; Saha et al.,
2021). In image processing, the first task is high-level analysis like
reorganization, identification, and interpretation. Then, the low-
level tasks like data manipulation, noise reduction filtering, etc., are
performed. SAR provides the best high-resolution images in all
weather conditions, day and night (Fu et al., 2021). This is one of the
unique and best advantages of comparing the sensors, like the
hyperspectral sensor, infrared sensor, and optical sensor.
Therefore, it plays an important role in monitoring in maritime
management. There is a continuous improvement of SAR data on
the quantity and quality (Eltantawy and Shehata, 2019a; Ou et al.,
2019). Many algorithms have been implemented for SAR image
detection (Javed et al., 2019; Li et al., 2019; Bai et al., 2021; Yuan
et al., 2021).

The conventional approaches for SAR target detection primarily
use template matching, in which particular templates are manually
created to classify different categories or employ traditional learning
techniques; on the other hand, modern deep learning algorithms
seek to apply deep CNNs to automatically extract discriminative
features for target recognition. Conventional techniques were
frequently dependent on artificial filters and may misidentify
sharp features during denoising. Furthermore, the ability to
extract information from both types of images has spurred the
development of simultaneous analysis of optical and SAR images.
According to Zhu et al. (2020), it is clear that compared to support
vector machine (SVM), relevance vector machine (RVM) has better
precision and requires less computing power. An anchor-free
(anchorless) object detector is a fully convolutional one-stage
(FCOS) object detector. In relation to segmentation, it uses per-
pixel prediction to address object detection issues. Recently, SAR
images have been detected with the aid of deep learning algorithms
such as convolutional neural networks (CNNs) and long short-term

memory (LSTM) (Yu et al., 2020). Advanced objective models have
been used as traditional approaches, in which the sums of Gaussians
are insufficient for optimization-based thresholding methods
applied to SAR imagery (Baiju and George, 2020). Image
classification techniques benefit from CNN because it can learn
highly abstract characteristics and operate with fewer parameters.
When training deep learning models, three main problems are
observed, namely, overfitting, exploding gradients, and class
imbalance (ElTantawy and Shehata, 2019b; Chen et al., 2019).

Deep learning (DL) has advanced at an unsettling rate in the last
few years and produced promising application outcomes across a
wide range of domains. DL builds a deep neural network to
adaptively extract data attributes and learn data distribution. DL
is able to fully extract the target feature information when processing
tasks. Through iterative training, the deep learning algorithm may
identify features in images that are deeper, more detailed, and more
complete. It then uses the gradient descent method to discover the
best solution for target detection. Because of its hierarchical nature,
DL, a popular method in the field of computer vision (CV), is able to
extract both high- and low-dimensional information from images.
Target detection, semantic segmentation, and other areas make
extensive use of it. Motivated by this, DL has drawn more and
more attention from SAR image target detection researchers. The
signal-to-noise ratio is typically rather low in SAR photographs due
to the SAR-specific imaging mechanism, which results in a
significant amount of clutter and noise. This makes it very
difficult to extract features from SAR images. The DL model has
an inherent advantage when it comes to SAR image processing jobs
because of its deep feature extraction structure and strong feature
extraction capability. Therefore, this research work proposes a new
object detection and classification model with SAR images in order
to highlight the aforementioned concerns, and the major
contributions of the proposed model are listed below:

• The model used the histogram equalization technique for
improving the visibility level of the collected raw SAR
images. Additionally, it implemented a weighted Otsu-
based segmentation algorithm for accurate moving object
segmentation.

• It integrated GLCM, MBP, and AHME-LGBP descriptors for
extracting feature patterns from the SAR images, which train
the ensemble deep learning technique for appropriate moving
object classification.

• It employed the ensemble deep learning technique, namely,
Bi-LSTM, RNN, and IDBN, for effective moving object
classification in the SAR images.

The research organization is specified as follows: a literature
review is mentioned in Section 2. Section 3 provides a detailed
description of the proposed moving object detection method.
Section 4 demonstrates the analysis of the results and discussion.
Section 5 provides the conclusion of this study.

2 Literature review

Sharifi (2020) implemented an image classification method for
detecting the surroundings, diversity of the scales, and target
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defocusing in ship using SAR images. In this study, an anchor-free
method was developed for the detection of the ship target in high-
resolution synthetic aperture radar (HR-SAR) images. This method
uses the FCOS network as a base network. The results showed that
the implemented method achieved higher performance in ship
target detection than other methods like FCOS, faster region-
based convolutional neural network (RCNN), and RetinaNet. Li
et al. (2021) introduced a new model for image classification and
detection using SAR images. The geometric shape and rich spectrum
information on ground objects, in which qualities were easily
diminished under unfavorable air circumstances, were reflected
in the optical images. SAR photographs record information about
polarization under all conditions and at all times, but they cannot
offer the spectral properties of the region of interest (RoI). In the
natural world, optical and SAR images include a wealth of
complimentary information, which was crucial for change
detection (CD) under inclement weather. However, it was
challenging to conduct CD directly using conventional difference
or ratio techniques since optical and SAR images have different
imaging mechanisms. The effectiveness and robustness of the
developed method were confirmed when compared to state-of-
the-art techniques.

Gishkori et al. (2021) developed an image classification model
using SAR images without radar motion compensation. Recently, a
novel-imaging model for automobile radars called forward scanning
SAR (FS-SAR) has been introduced that offers an improved azimuth
resolution. Moving objects can now be imaged using FS-SAR.
Therefore, only the movement of the target objects must be
taken into account during picture reconstruction and focusing.
Perfectly compensating for radar motion was difficult, especially
for complicated motions. In order to accommodate radar motion
without compensating, they alter the previous method of imaging
moving targets using FS-SAR in this study. The suggested method
offers the advantages of enhanced imaging without the requirement
for a radar motion adjustment. Real-data studies support the
suggested methodology. Verma et al. (2021) conducted research
on image classification using SAR images to estimate the river width.
The river width has been extensively utilized to calculate the river
flow and was a crucial characteristic for understanding the river’s
hydrological process. The current methods for estimating the river
width rely on remotely sensed data, such as the Moderate Resolution
Imaging Spectro-radiometer (MODIS) and Landsat, to first identify
the river. In this study, an alternative method for estimating the river
width was put forth, employing the underutilized SAR
imaging modality.

Andrea and Delrieux (2021) performed image classification
research using SAR images and multi-threshold (MT) techniques.
MT, however, stands out as a key alternative in active imaging
methods since it was unaware of the inherently non-linear noise
present in these kinds of images. It was effective in satellite SAR
images, which was a common information source in remote sensing,
since it was acquired in any weather or at any time of the day. The
results revealed that a state transition-based method yields the
quickest results with acceptable quality, while the maximum
likelihood method produces the highest quality segmentation
results at the cost of longer computation times. All methods were
evaluated using a straightforward tradeoff representation. Barbat
et al. (2021) introduced a new method for detecting water

availability using SAR images. In this research, five deep learning
methods were used for water detection, such as visual geometry
group (VGG)-Net, DenseNet, GoogleNet, AlexNet, and Zeiler and
Fergus (ZF)-Net. By comparing all the networks, DenseNet
produces the best result. The accuracy of DenseNet was 96.25%,
97.15%, and 98.20%. Balajee and Durai (2021) implemented a new
image detection model to detect the flood-affected areas using SAR
images for identifying the damage and preventing related problems
in the future. In this research, Sentinel-1 SAR images were used for
classification. It determines the threshold value; this value helps in
the detection of flooded areas. In addition, the RVM algorithm was
used to obtain the best results. The obtained result demonstrates a
delimitation of water in flood risk areas.

Sun et al. (2021) implemented CNN-based models for target
detection and classification in order to analyze earth observations.
This study developed a novel sparse SAR image-based target
detection and classification framework. According to the
experimental findings, the developed models such as faster
RCNN and YOLOv3 achieved 92.60% and 99.29% of the mean
average precision (mAP), respectively, under normal operating
conditions on the DNsp sparse SAR image dataset. The mAP
values of faster RCNN and YOLOv3 are 95.69% and 89.91%,
respectively, under extended operation conditions. A contrastive
learning and pseudo-label approach (CL-PLA) was presented by
Wang et al. (2021) to address the few-shot SAR image classification
issue. In order to learn the semantic representations of SAR target
pictures, a siamese structure was first implemented. The similarity
among the bi-temporal SAR pictures is revealed by the feature
vectors that were obtained at this step. Next, a classification head
was linked to the siamese network’s backbone network in order to
conduct instance-level categorization. The efficiency was
progressively improved using the pseudo-label approach. To
maximize training with genuine labels and pseudo-labels, a loss
function that varies with each iteration was created. In addition,
cross-training techniques and dual networks were implemented in
light of the imprecision of a single-network structure. A sparse
feature clustering network (SFCNet) for unsupervised SAR image
change detection has been demonstrated by Zhang et al. (2022). The
multi-objective sparse feature learning (MO-SFL) model, which is
based on a neural network structure for change detection, was
proposed. To improve the adaptability of varying noise levels, the
sparsity of illustration was adaptively trained. The appropriately
labeled samples chosen from the coarse findings helped the network
become more tuned in order to learn the semantic content of both
modified and unaffected pixels. The change detection performance
has a significant impact with the selection criterion. Thus, in order to
train the discriminative representations, a novel cross-entropy
clustering (CEC) loss was created by adding a clustering
regularization term.

The following are some of themain problems with standardmoving
object detection methods. From the overall analysis, various
methodologies have been employed to identify and categorize SAR
images. Due to their versatility and application in remote sensing tasks,
including planning,monitoring, and search and rescue under all weather
conditions, SAR images have grown in popularity. The efficient
interpretation of radar scatter returns becomes challenging due to
their conversion to images and subsequent analysis for composition
determination. Moreover, suppressing speckle noise while retaining
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image features like edges is one of the issues in despeckling SAR images;
hence, it is challenging to evaluate. Prior research has successfully
classified SAR images for a range of applications, and additional
expansion to include additional SAR image types might be possible.
A particular promise is shown by feature extraction and SAR image
classification using deep ensemble models. Therefore, to overcome the
existing limitations, a deep ensemble model is introduced in this present
manuscript. The features and challenges of the existing moving object
detection models are shown in Table 1.

3 Methodology

In the proposed moving object detection framework, four main
stages are involved, namely, pre-processing: histogram equalization
technique; segmentation: weighted Otsu-based segmentation
algorithm; feature extraction: GLCM, MBP, and AHME-LGBP
descriptors; and object classification: ensemble deep learning
technique (Bi-LSTM, RNN, and IDBN). Figure 1 shows the flow
diagram of the proposed moving object detection method.

3.1 Dataset description

In this research, the MSTAR dataset is utilized for simulation.
The Sandia National Laboratory SAR sensor platform collected
MSTAR records. SAR object recognition is a significant issue for
automatic target recognition and aerial reconnaissance in military

applications. In order to assist with the creation and testing of this
algorithm, MSTAR has carried out three data collections for the
next-generation SAR ATR. The collections were place in November
1996, May 1997, and September 1995. The significance of the
MSTAR data collection to the ATR community may make it
unique. There are sufficient images for statistical significance;
they are well-trusted, taken with an advanced type of radar; and
they feature a range of military vehicles in a number of well-
managed scenarios. The MSTAR data collection #1, Scene 1, and
the MSTAR data collection #2—scenes #1, #2, and #3—both
included the collection of the following dataset. An X-band
STARLOS sensor operating in the spotlight mode, with a 1-foot
resolution, was utilized by the Sandia National Laboratory to collect
data at 15-, 17-, 30-, and 45-degree depression angles. 2S1, BDRM-2,
BTR-60, D7, T62, ZIL-131, ZSU-23/4, and SLICY are among the
image’s chips and JPEG files (https://www.sdms.afrl.af.mil/index.
php?collection=mstar&page=targets). As part of the MSTAR
initiative, the Defense Advanced Research Projects Agency and
the Air Force Research Laboratory jointly financed the collection.
From this dataset, only a small portion of the images are selected to
process the moving object detection, and it is downloaded from
https://www.kaggle.com/datasets/atreyamajumdar/mstar-dataset-
8-classes. This dataset includes various target kinds, aspect angles,
depression angles, serial numbers, and articulations, which is
publicly accessible on the website. For example, the moving
object detection images are shown in Figure 2. From the third
row of Figure 2, the detected moving objects are shown with
bounding boxes.

TABLE 1 Features and challenges of existing moving object detection models.

Author
[citation]

Method Feature Challenge

Sharifi (2020) RVM algorithm Less data were used for training Flood inundation zones, lower intensity water pixels inside
the SAR image, and other land coverings at the threshold
phase could overlap

Li et al. (2021) Deep translation-based change
detection network (DTCDN)

Developed method’s robustness and effectiveness
are confirmed

Inconsistencies exist in imaging techniques, radiation
properties, and geometrical features

Gishkori et al.
(2021)

FS-SAR Improves azimuth resolution To bring the quality of radar imaging on the level with the
quality of optical imaging, spatial resolution is a significant
obstacle to overcome

Verma et al. (2021) Deep river width Developed method used for estimating river
discharge

Suppressing speckle noise while retaining image features, like
edges, is one of the issues in despeckling SAR images

Andrea and
Delrieux (2021)

Multi thresholding techniques Identify three thresholds which segment the areas It is challenging to evaluate SAR images because of the
existence of speckle noise

Barbat et al. (2021) Automated iceberg tracking
method

Effectively detect iceberg tracking It becomes even more difficult to track icebergs over time

Balajee and Durai
(2021)

AlexNet, ZFNet, VGGNet,
GoogleNet, and DenseNet

The DenseNet produces the best results when
compared to all other networks

It is vital to tackle deep learning problems without the need
for auxiliary datasets

Sun et al. (2021) FCOS approach Detects the ship target effectively Includes numerous weak scatters surrounding target areas

Wang et al. (2021b) Contrastive learning and
pseudo-label approach
(CL-PLA)

Dealing with limited training data in the SAR
classification

Once the amount of data get reduced, in which the accuracy
also began to reduce

Zhang et al. (2022) Sparse feature clustering network
(SFCNet)

This regularization term avoids the uncertainty of
sample selection and encourages the neural
network

However, with many wrongly labeled samples, the selection
criteria significantly influence the final change detection
result
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3.2 Pre-processing

In the initial phase, the histogram equalization technique is
utilized for pre-processing the input image I. A particular example
of the more generic group of histogram remapping techniques is
histogram equalization (Ulku and Camurcu, 2013). An image
processing method called histogram equalization was used on
computers to enhance the contrast. It achieves this enhancement
by essentially extending the image’s intensity range or dispersing the
most common intensity values. With this technique, the image is
modified to carry out the analysis or enhance the visual quality.
Mathematically, it is defined in Eq. 1. Here, m denotes the total
count of pixels, v denotes the total count of possible intensity levels,
Y is the original image’s histogram or cumulative histogram

properties, while X represents the histogram or cumulative
histogram properties of the histogram equalized image.
Furthermore, K � 0, 1, 2 . . . v − 1 and YK � 1. The preprocessed
image is termed as IP.

∑YK

i�0M i( ) � m

v
( ) XK + 1( ). (1)

3.3 Weighted Otsu-based
segmentation algorithm

The preprocessed image IP is subjected to the segmentation
phase via a weighted Otsu-based segmentation process. The core of

FIGURE 1
Flow diagram of the moving object detection method.
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Otsu’s technique is the idea, where the threshold is chosen at the
gray value for which the variance among classes is the greatest or the
variance within classes is the smallest (Vijay and Patil, 2016).
Weighted Otsu is proposed in this work. In Eq. 2, the
normalized gray-level histogram is viewed as a probability
distribution, where dj represents the pixel count at step i, D
represents the overall pixel count, Qi represents the pixel, and E
represents the gray level.

Qi � di

D
: ∑E−1

i�0 Qi � 1. (2)

Afterward, the probabilities of class occurrences (ϑ0, ϑ1) and
class mean level (τ0, τ1) are given in Eqs 3–6, where G0, G1

represents classes and g represents the threshold level.

ϑ0 � prob G0( ) � ∑g

i�0Qi, (3)

ϑ1 � prob G1( ) � ∑E−1
i�g+1

Qi, (4)

τ0 � ∑g

i�0iprob i|G0( ), (5)
τ1 � ∑E−1

i�g+1 iprob i|G1( ). (6)

Here, ϑ0τ0 + ϑ1τ1 � τT, ϑ0 + τ0 � 1.
The class variances are given in Eqs 7, 8 (Vijay and Patil, 2016).

μ20 � ∑g

i�0 1 − τ0( )2prob i G| 0( ) � ∑g

i�0 i − τ0( )2Qi

ϑ0
, (7)

μ21 � ∑E−1
i�g+1 1 − τ1( )2prob i G| 1( ) � ∑E−1

i�g+1 i − τ1( )2Qi

ϑi
. (8)

As per the proposed logic, the class variance is calculated in Eqs
9, 10.

FIGURE 2
Moving object detection images. (A) Image 1. (B) Image 2. (C) Image 3.
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μ20 � ∑g

i�0 1 − τ0( )2prob i G| 0( ) � ∑g

i�0 i − τ0( )2Qi

ϑi
*r, (9)

μ21 � ∑E−1
i�g+1 1 − τ1( )2prob i G| 1( ) � ∑E−1

i�g+1 i − τ1( )2Qi

ϑi
*r. (10)

The Otsu method splits the image into various classes for the
best thresholds and for the best segmentation, and the variances of
these classes should be maximized. In order to find a threshold t that
maximizes the object functions, the problem is reduced to an
optimization problem. This point of view is supported by the
hypothesis that the variance between the classes measures the
difference between two components. The difference between the
two sections increases with the between-class variance. Between-
class variance will reduce if we make a mistake between the objects
and the background. A threshold that provides the best separation of
classes in gray levels would therefore be the best threshold since
increasing the between-class variance to its maximum entails
reducing the chance of error to its lowest.

Here, r represents weight and it is calculated according to Eq. 11,
where N represents the data length.

r � πN
i�0 Qi( )( ) 1 /

N. (11)

The subsequent discriminant metric is used to measure the
threshold “goodness,” as indicated in Eq. 12. As per the proposed
logic, the term ww is included and explained in Eq. 13.

μM � ϑ0 τ0 − τT( )2 × ww + ϑ1 τ1 − τT( )2 × 1 − ww( ). (12)

Here,

ww � τ0
τ0 + τ1

. (13)

The variance between classes is the variance between the mean
of the members of classes. ww is referred as weighted Otsu, which
improves the image segmentation effect clearly. The computation
for τ and ϑ is simplified because the formulas for the class variance
are modified and expressed in a recursive form. Consequently, the
threshold with the lowest within-class variance also has the greatest
variance between classes. As a result, it can also be used to determine
the best threshold, and because it is easier, it is a much better method
to employ.

3.4 Feature extraction

After segmentation, the features like AHME-LGBP-, GLCM-,
and MBP-based features are extracted.

3.4.1 AHME-LGBP
AHME-LGBP is the variant of LGBP with the estimation of

weighted harmonic mean in pattern extraction. The Gabor
features’ micro-patterns are encoded using the LBP operator.
The LGBP (Zhang et al., 2007) operator is the result of combining
the Gabor and LBP operators. First, the Gabor filter is applied to
the input segmented image. Then, LBP is applied to the Gabor
filter resultant image. In the segmented image, it is assumed that
the eight neighbors of the center pixel placed at (al, bl) be (ar, br)
with r � 0, 1, 2 . . . 7. Formally, the LGBP pattern at (al, bl) is

defined as in Eq. 14. Here, f represents the scale parameter, Ψ
represents the orientation parameter, a, b denotes the direction,
and W(ar, br) denotes the intensity of an image.

LGBPf,ψ al, bl( ) � ∑7

r�0K Wf,ψ ar, br( ) −Wf,ψ al, bl( )( ).2r. (14)

Therefore, Eq. 15 is stated as

K x( ) � 1, x≥ 0,
0, x< 0.{ (15)

According to the recommended method, modified LGBP,
named as AHME-LGBP, is given in Eq. 16. It uses the median
within the image patch instead of the central pixel as the local
threshold to enhance noise robustness, where am, bm are the mean
values and wi represents the weighted harmonic mean.

AHME − LGBPf,ψ al, bl( ) � ∑7

r�0K Wf,ψ ar, br( ) −Wf,ψ am, bm( )( ).2r, am
� ∑7

i�0wi∑7
i�0

wi
ai

.

(16)

3.4.2 GLCM
GLCM is an effective feature descriptor that analyzes the

spatial relationship between two pixels to determine the texture
of a picture. The simultaneous existence of pixel pairs can be
identified because the distance and orientation between pixels
are changed. In GLCM, 14 different kinds of features are
presented. Some of the textural characteristics are drawn
from this. The textural data obtained from GLCM served as
the foundation for the effective description. GLCM (Mohanaiah
et al., 2013) has proven to be a popular statistical method of
extracting the textural feature from images. Four important
features, namely, the angular second moment (energy),
correlation, entropy, and inverse difference moment
are extracted.

The instantaneous occurrence probability of two pixels is
specified as P(i, j, δ, θ). It comprises the pixel with grayscales i
and j asf(x, y) and (x + Δx, y + Δy), respectively; θ is explained as
declination; and the distance is referred as δ. The arithmetic formula
for instantaneous occurrence probability P(i, j, δ, θ) is expressed in
Eq. 17.

P i, j, δ, θ( ) � x, y( ), x + Δx, y + Δy( )[ ]∣∣∣∣ ∣∣∣∣f x, y( ) � i,
x, y( ), f x + Δx, y + Δy( ) � j;x � 0, 1, .., Nx − 1;

y � 0, 1, .., Ny − 1

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭,

(17)
where i, j � 0, 1, . . . L − 1; L is signified as a gray-level image; image
pixel coordinates are indicated as x and y; and Nx and Ny are
referred to as the numbers of columns and rows, respectively.

a) Angular secondmoment (energy): It is the total of the squares
of GLCM entries. It determines the texture of the segmented
image (Simg). The mathematical expression is given in Eq. 18,
where E(i, j) is the (i, j)th entry in GLCM and Q denotes
the gray tone.

Angular second moment � ∑Q−1
i�0 ∑Q−1

j�0 S img
i,j( )2. (18)
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b) Correlation: It computes the correction between the current
pixel and neighboring pixel in the segmented image. For a
positively correlated image, correlation = 1, and for a
negatively correlated image, correlation = −1. The
expression for correlation is shown in Eq. 19, in which
σx, σy and μx,μy are the standard deviations and mean of
Simg
x and Simg

y , respectively.

Correlation � ∑i ∑j ij( )Simg
i,j − μxμy

σxσy
. (19)

c) Entropy: It defines the required count of information for
compressing Simg, and it is shown in Eq. 20.

Entropy � −∑
i
∑

j
Simg
i,j log2 S

img
i,j . (20)

d) Inverse difference moment: It is the local homogeneity.
When the local gray level is uniform and the inverse
GLCM is high, the inverse difference moment is said to be
high. The numerical expression for the inverse difference
moment is shown in Eq. 21.

Inverse difference moment � ∑i ∑j S
img
i,j

1 + i − j( )2 (21)

3.4.3 MBP
MBP (Hafiane et al., 2015) is related to LBP, but rather than

using the central pixel as the local threshold, it utilizes the median
inside the image patch to provide improved noise robustness and
increased sensitivity to microstructures. Improved MBP is given in
Eq. 22, where φ(o, p) represents the median inside the image patch,
fs represents the gray value of pixel at position index s and J
represents the binary threshold.

MBPU,V o, p( ) � ∑
s∈Np o,p( ) 2

sJ fs − φ o, p( )( ). (22)

Every object detection system needs feature extraction, which
is a crucial part of these systems. Feature extraction is the process
of mapping the image pixels into the feature space. The extracted

AHME-LGBP, GLCM, and MBP features are collected and
subjected to a detection process for detecting the moving
objects. The final feature set is denoted as FS, and it is shown
in Eq. 23.

FS � MBPU,V GLCM AHME − LGBP[ ]. (23)

To identify and categorize an object, similar features are
combined to create a feature vector. Moving object detection
deals with detecting the instances of morphological objects of a
certain class. Therefore, the proposed method is superior in the
feature extraction method, and these three types of features have
significant impact on the final experimental results, which is
demonstrated in the upcoming Section 4. Figure 3 shows the
feature importance analysis, and the extracted 3,278 feature
values are given to the ensemble deep learning techniques Bi-
LSTM, RNN, and IDBN for moving object classification in
SAR images.

3.5 Object classification

In this phase, the object can be classified using the ensemble
deep learning method that trains with the extracted features FS.
Here, Bi-LSTM, RNN, and IDBN are involved. The working strategy
is as follows:

• The input features are processed with Bi-LSTM and RNN.
• The generating outputs obtained from the above phases are
averaged and given as the input to IDBN to attain the
final result.

3.5.1 Bi-LSTM
In contrary to the conventional unidirectional LSTM, Bi-LSTM

(Ye et al., 2019) takes into account all the information obtained from
both the prior and subsequent segments. The formulations are
shown in Eqs 24–28.

It � λ KI * h t−1, X t[ ] + fI( ), (24)
Ct � λ KC * h t−1, X t[ ] + fC( ), (25)

FIGURE 3
Feature importance analysis.
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g t � λ Kg * h t−1, X t[ ] + fg( ), (26)
B t � Ct *Bt−1 + It* tanh KB* ht−1, Xt[ ] + fB( ), (27)

h t � gt * tanh B t( ), (28)

where It, Ct, gt, and Bt denote the output of the input gate,
forget gate, output gate, and cell at time t, respectively. The sigmoid
activation function is represented by λ; X t and h t denote the input
vector and output layer vector at time t, respectively; KI and fI are
the weight matrix and bias vector corresponding to the input gate,
respectively. The weight matrix and bias vector for the forget gate are
KC and fC, that for the output gate are Kg and fg, and that for the
cell are KB and fB, respectively.

The Bi-LSTM structure consists of two parallel LSTM layers in
both forward and reverse directions. The two parallel LSTM layers
function similar to traditional LSTM neural networks. They begin

and end the sentence, allowing them to store information from both
directions. For t time step, two parallel layers in both directions
manage the input data from their opposite directions. Then, the
output of the sum of the hidden state vectors is described in Eq. 29.

h t � k 1 h t

�→+ k 2 h t

�→+ B. (29)
Here, h t

�→
and h t

�→
denote the output outcomes of the two parallel

LSTM layers in both forward and reverse directions, and k1 and k2
denote the weight parameters of two parallel LSTM layers in both
forward and reverse directions, respectively.

3.5.2 RNN
Due to the fact that RNNs are the only neural networks (NNs)

with an internal memory, they are a strong and reliable type of NN
and one of the most promising networks that is currently being used.

FIGURE 4
Deep ensemble model for detecting the objects from SAR images.
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The information on RNN loops back on itself. It takes into account
both the current input and the learning it has learned from the
inputs it has already received when making decisions.

RNN (Park et al., 2020) is defined in Eq. 30, where st represents
the predicted result, t represents time, l1 represents the real value,
and ft represents the hidden layer, which is calculated in Eq. 31,
where l2, l3 represents the real values, ut represents the input layer,
and ft−1 represents the preceding hidden layer.

st � l1ft +ms, (30)
ft � tanh l2ut + l3ft−1 +mf( ). (31)

The method of discovering actual values can reduce the error
value Er using machine learning (ML) depending on RNN.

3.5.3 Improved DBN
DBN (Wang et al., 2021) is referred as a probabilistic

generation technique, which was stacked with restricted
Boltzmann machines (RBMs). There are two layers in RBMs:
one that is visible and the other that is hidden. There are no links
within any of the levels; rather, the links among hidden and
visible layers are only present. Data are fed into the first RBM’s
visible layer, and the result of the preceding RBM becomes the
input for the subsequent RBM.

There are two phases to the learning process. Each RBM is
initially trained layer by layer using the unsupervised greedy
approach. It is possible to retrieve each RBM’s parameter at this
step. Supervised back-propagation is employed for fine-tuning

overall networks. If RBM includes neurons e in the visible layer
and neurons f in the hidden layer, the state’s energy function is
provided in Eq. 32.

A c, d
∣∣∣∣ϕ( ) � −∑e

i�1gici −∑f

j�1hidj −∑e

i�1∑f

j�1cikijdj. (32)

The joint probability of c, d is attained in Eq. 33, where c, d
represents the visible and hidden layer and g, h represents the visible
layer offset.

prob c, d
∣∣∣∣ϕ( ) � e−A c,d|ϕ( )/Q ϕ( ), Q ϕ( ) � ∑

c,d
e−A c,d|ϕ( ). (33)

The probability of hidden layer’s activation function is specified
in Eq. 34, and the probability of visible layer’s activation function is
specified in Eq. 35.

prob dj � 1
∣∣∣∣c, ρ( ) � λ hi +∑

i
cikij( ), (34)

prob ci � 1|d,X( ) � λ gi +∑
j
kijdj( ). (35)

According to the improved version, the leaky rectified linear unit
(ReLU) activation function is used. Leaky ReLU acts as a default
activation function for several kinds of NN since using it makes a
model simpler to train and frequently results in greater performance.
Moreover, a new loss evaluation is given with the IDBN version, and
cross-entropy is calculated, which is specified in Eq. 36.

E � − 1
W

∑W

i�1 rn log S zn( ) − 1 − rn( )log 1 − S zn( )( )( )[ ]. (36)

FIGURE 5
Analysis on positive measures: ensemble method over other traditional schemes. (A) Accuracy. (B) Precision. (C) Sensitivity. (D) Specificity.
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The parameters considered in the ensemble deep learning
techniques Bi-LSTM, RNN, and IDBN are as follows: the batch
size is 150, the loss function is cross-entropy, the learning rate is
0.0025, the number of hidden layers is 32, the number of epochs is
100, the Lambda loss amount is 0.0015, and activation functions are
sigmoid and tangent. Figure 4 depicts the overall classification
process. The numerical analysis of the proposed method is
discussed in Section 4.

4 Results and discussions

4.1 Simulation procedure

The developed moving object detection and classification using
SAR images with an ensemble model is implemented inMATLAB, and
the results are verified. Moreover, the ensemble method is computed
over the conventional classifiers, like CNN, SVM, random forest (RF),
bidirectional gated recurrent unit (Bi-GRU), FCOS (Sharifi, 2020),
RCNN (Sun et al., 2021), DTCDN (Li et al., 2021), and deep
maxout. Furthermore, evaluation is done based on positive
measures, negative measures, and other measures for diverse
learning percentage, ranging from 60, 70, 80, and 90, respectively.
The evaluation measures are as follows: false discovery rate (FDR), false
positive rate (FPR), Matthews correlation coefficient (MCC), negative
predictive values (NPVs), false negative rate (FNR), sensitivity,
specificity, precision, accuracy, and F-measure are utilized for

evaluating the proposed models’ effectiveness, which are
mathematically mentioned in Eqs 37–47. Here, true positives are
referred as TP, true negatives are referred as TN, false positives are
referred as FP, and false negatives are denoted as FN.

FDR � FP

FP + TP
, (37)

FPR � FP

FP + TN
, (38)

MCC � TP*TN − FP*FN���������������������������������������
TP + FP( )* TP + FN( )* TN + FP( )* TN + FN( )√ , (39)

NPV � TN

TN + FN
, (40)

FNR � FN

FN + TP
, (41)

Sensitivity � TP

FN + TP
, (42)

Specificity � TN

TN + FP
, (43)

Pr ecision � TP

TP + FP
, (44)

Accuracy � TP + TN

TP + TN + FP + FN
, (45)

F −measure � 2TP
2TP + FP + FN

, (46)
Error Rate � 100 − Accuracy. (47)

FIGURE 6
Analysis on negative measures: ensemble method over other traditional schemes. (A) FDR; (B) FNR; and (C) FPR.
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4.2 Analysis on positive measures

The performance of the ensemble method is evaluated over the
established methods regarding various metrics. The results of
positive measures on the ensemble method over traditional
methods are shown in Figure 5. By reviewing the entire graphs,
the ensemble model has obtained better outcomes than extant
approaches. Figure 5A shows that the ensemble method has

achieved a better detection accuracy of approximately 0.98, which
is improved than the conventional methodologies, such as FCOS is
0.78, faster RCNN is 63.56%, CNN is 0.87, SVM is 0.90, RF is 0.48,
Bi-GRU is 0.89, DTCDN is 0.83, and deep maxout is 0.39,
respectively, at the 90% of learning percentage. Additionally,
Figure 5B shows that the precision measure has yielded a higher
value of 0.97 for the ensemble scheme when the learning rate is 70%,
which is much superior to the values attained by traditional

FIGURE 7
Analysis on negative measures: ensemble method over other traditional schemes: (A) F-measure; (B) MCC; and (C) NPV.

TABLE 2 Ablation study on the ensemble method, with conventional LGBP, without segmentation, and with conventional DBN.

Metric Proposed with
conventional LGBP

Proposed without
segmentation

Proposed with
conventional DBN

Proposed without
feature extraction

Ensemble

Sensitivity 0.718 0.722 0.716 0.765 0.879

Specificity 0.759 0.761 0.858 0.732 0.889

Accuracy 0.845 0.864 0.874 0.841 0.946

Precision 0.810 0.779 0.836 0.806 0.879

F-measure 0.7405 0.738 0.741 0.742 0.857

MCC 0.810 0.779 0.836 0.798 0.868

NPV 0.725 0.761 0.816 0.772 0.849

FDR 0.189 0.122 0.151 0.161 0.020

FPR 0.189 0.220 0.163 0.143 0.010

FNR 0.216 0.169 0.255 0.243 0.020

Error rate 0.155 0.136 0.126 0.159 0.054
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methods, such as FCOS, faster RCNN, CNN, SVM, RF, Bi-GRU,
DTCDN, and deep maxout.

Figure 5C shows that the ensemble approach has offered a
higher value over other schemes, i.e., the ensemble approach has
attained a high sensitivity of 0.94 (in the 70% of learning rate), while
models like FCOS, faster RCNN, SVM, RF, DTCDN, and Bi-GRU
have maintained a relatively minimal sensitivity of 0.65, 0.79, 0.82,

0.80, 0.83, and 0.81, respectively. Finally, the specificity of the
ensemble strategy is approximately 0.94, in the 90% of learning
percentage. Therefore, it confirms the feasibility of the ensemble
model for the identification and categorization of moving objects.

4.3 Analysis on negative measures

The performance of the ensemble scheme over the extant
methods regarding FDR, FNR, and FPR is described in this
section. Figure 6 shows the negative measure analysis of the
ensemble work is contrasted over other methods. Furthermore,
Figures 6A–C show that the measures, like FDR, FNR, and FPR of
the adopted method, obtained better outcomes than other
conventional classifiers. The FDR of 0.02 is obtained by the
ensemble model at 90% of the learning percentage. On the
other hand, the compared models, like FCOS, faster RCNN,

TABLE 3 Statistical analysis with respect to the error between actual and predicted images.

Best Worst Mean Median Standard deviation

FCOS (Sharifi, 2020) 0.134 0.193 0.170 0.177 0.022

DTCDN (Li et al., 2021) 0.123 0.153 0.132 0.125 0.013

Faster RCNN (Sun et al., 2021) 0.089 0.329 0.181 0.152 0.092

CL-PLA (Wang et al., 2021a) 0.262 0.402 0.35 0.324 0.023

SFCNet (Zhang et al., 2022) 0.286 0.426 0.36 0.332 0.026

CNN 0.125 0.139 0.132 0.133 0.005

SVM 0.109 0.117 0.113 0.113 0.003

RF 0.127 0.53 0.427 0.525 0.173

Bi-GRU 0.115 0.127 0.121 0.119 0.005

Deep maxout 0.524 0.559 0.541 0.540 0.015

Ensemble 0.015 0.054 0.032 0.029 0.014

TABLE 4 Segmentation accuracy analysis of the proposed and conventional segmentation methods.

Metric Conventional
Otsu

FCM k-means CL-PLA (Wang et al.,
2021b)

SFCNet (Zhang et al.,
2022)

Improved
Otsu

Sensitivity 0.732 0.719 0.793 0.816 0.824 0.961

Specificity 0.765 0.871 0.877 0.883 0.895 0.944

Accuracy 0.854 0.775 0.865 0.872 0.881 0.968

Precision 0.712 0.765 0.711 0.823 0.847 0.875

F-measure 0.733 0.811 0.723 0.783 0.792 0.863

MCC 0.869 0.847 0.757 0.816 0.839 0.935

NPV 0.735 0.734 0.771 0.769 0.772 0.835

FDR 0.157 0.1751 0.134 0.119 0.126 0.012

FPR 0.123 0.153 0.122 0.114 0.111 0.023

FNR 0.146 0.133 0.111 0.106 0.108 0.0167

Error rate 0.146 0.225 0.135 0.128 0.119 0.032

TABLE 5 Target detection rate analysis of the proposed method.

Metric Improved Otsu

Recall 0.854

F1-measure 0.871

MAP 0.846

DICE 0.905
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CNN, SVM, RF, DTCDN, and Bi-GRU, have obtained relatively
higher FDR values of 0.28, 0.45, 0.16, 0.14, 0.73, 0.09, and 0.12,
respectively. Likewise, for an FNR metric, a lesser error of 0.03 is
achieved by the ensemble model at 70% of the learning

percentage. The FPR of the Ensemble method is 0.01, which is
superior to FCOS (0.13), faster RCNN (0.076), CNN (0.11), SVM
(0.09), RF (0.38), DTCDN (0.078), and Bi-GRU (0.08), at the
learning percentage of 70. Thus, the ensemble model’s

FIGURE 8
Visualization of moving object detection.

FIGURE 9
Sample images of moving object detection.
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superiority over other conventional classifiers in terms of
negative metrics is demonstrated.

4.4 Analysis on other measures

The analysis is done by varying the learning percentage that ranges
from 60 to 90 with respect to metrics like F-measure, MCC, and NPV,
which is shown in Figure 7. By analyzing Figure 7A, in the 70% of
learning rate, the worst performance is given by the RF and deep
maxout algorithms, whereas the ensemble method gained the highest
F-measure of approximately 0.97. Similarly, the ensemble strategy
attained the highest MCC of 0.94, which is preferable than the other
classifiers, like FCOS, faster RCNN, CNN, SVM, RF, Bi-GRU, DTCDN,
and deep maxout, respectively. In accordance with the NPV measure
analysis, the ensemble model has recorded the highest NPV value,

which is 0.83, 0.98, 0.94, and 0.95, when the learning rate is 60, 70, 80,
and 90, respectively. Therefore, the ensemble method provides
enhanced object detection performance due to the significant
improvement of the other measures.

Here, the proposed method is superior in the feature extraction
method, and the three types of features have the same impact on the
final experimental results.

4.5 Ablation study

Table 2 shows the ablation study of the ensemble work, the
model with conventional LGBP, model without segmentation,
model with conventional DBN, and model without feature
extraction. The precision of the ensemble method is 0.87, the
model with conventional LGBP is 0.81, model without

FIGURE 10
Object detection with a bounding box.
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segmentation is 0.77, model with conventional DBN is 0.83, and
model without feature extraction is 0.80. Similarly, the accuracy
obtained by the proposed model is 0.10, 0.8, 0.7, and 0.11 superior to
the model with conventional LGBP, model without segmentation,
model with conventional DBN, and model without feature
extraction, respectively. Additionally, the FDR of the ensemble
model is 0.89, 0.83, 0.86, and 0.87 better than the model with
conventional LGBP, model without segmentation, model with
conventional DBN, and model without feature extraction,
respectively. Moreover, in terms of the error rate, the proposed
ensemble method achieved 0.054, which is better than the
conventional methods shown in Table 2. Thus, the robustness of
the ensemble model is verified successfully.

4.6 Statistical analysis with respect to errors

Due to the stochastic character of the optimization process, it is
repeatedly run to determine the final outcomes in terms of statistical
analysis. Moreover, it was evaluated by using the different (five) types of
case scenarios, such as mean, best, standard deviation, median, and
worst, and the outcomes are summarized in Table 3. Here, the ensemble

method recorded the lowest error rate than the other existing schemes.
In the mean-case scenario analysis, the ensemble method acquired the
error value of 0.032, whereas the compared method FCOS, faster
RCNN, CL-PLA, SFCNet, CNN, SVM, RF, Bi-GRU, DTCDN, and
deep maxout scored a very high error rate of 0.170, 0.181, 0.35, 0.36,
0.132, 0.113, 0.427, 0.126, 0.132, and 0.541, respectively. Simultaneously,
in the median- and best-case scenario analysis, the ensemble method
yielded the lowest error value of 0.029 and 0.015, respectively. Thus, it
may be concluded that the ensemble strategy is suitable for detecting
and classifying the moving object.

4.7 Segmentation analysis

Table 4 shows the segmentation analysis outcomes. The
improved Otsu-based segmentation process is compared with
the conventional Otsu, Fuzzy C-Means algorithm (FCM),
k-means methods, CL-PLA (Wang et al., 2021), and SFCNet
(Zhang et al., 2022). On analyzing the results, the accuracy of
the proposed work is 0.968, which is better than the existing
conventional Otsu (0.854), FCM (0.775), k-means methods
(0.865), CL-PLA (0.872), and SFCNet (0.881). The F-measure

FIGURE 11
Visualization with heatmaps.
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of the improved Otsu work is 0.863, and it is 15.06%, 6.03%,
and 16.22% better than the extant Otsu, FCM, and
k-means methods. Similarly, other measures also achieve
superior results compared to the existing ones. Thus, the
effectiveness of the improved Otsu-based segmentation
process is validated.

Table 5 shows the target detection rate analysis of the proposed
method. Table 5 shows that the proposed (improved Otsu) method
has achieved better results in terms of recall (0.854), F1-measure
(0.871), mean average precision (0.846), and DICE (0.905). Figure 8
shows the visualization of the moving object detection.

4.8 Analysis of moving target detection

In this research, the images are taken from the MSTAR dataset,
where the images are moved according to the time frame manner.
Therefore, the following sample images are moving in a time frame,
which is shown in Figure 9.

Moving objects are identified by moving object detection
systems as groups of bounding boxes based on the variations in
the images (or motions) between frames. This paper mainly focuses
on moving target detection; therefore, the data on large scenes and
other moving target data have been added to verify the feasibility of
the algorithm. Figure 10 displays the detected moving portion
(bounding boxes) from the given input data. Figure 10 shows
that moving portions are detected with the indication of a
bounding box.

The detection and tracking of moving objects can be viewed
as a lower-level vision task to achieve higher levels of image
understanding. Furthermore, to demonstrate the effectiveness
of the proposed method, the visualization of heatmaps is
included in the middle layer of the network, which is shown
in Figure 11.

5 Conclusion

In this manuscript, an effective moving object detection and
classification model is developed that includes four stages, namely
pre-processing, segmentation, feature extraction, and classification.
In the first step, the input SAR image is pre-processed using a
histogram equalization technique. Then, the weighted Otsu-based
segmentation algorithm is performed for segmenting the RoI from
the pre-processed input images. Then, features like GLCM, MBP,
and AHME-LGBP are extracted. Classification is the last step; here,
the objects are classified by employing an effective ensemble deep
learning technique. In the classification stage, Bi-LSTM and RNN
classifiers are averaged, which considers extracted features as an

input. Both classifiers’ averaged output is then fed to IDBN to obtain
the final predicted output. Compared to the conventional deep
maxout approach, the ensemble deep learning technique obtained
an error value of 0.032 in the mean-case scenario. Simultaneously,
the ensemble deep learning technique achieved the lowest error
value of 0.029 and 0.015 in the median- and best-case scenario
analyses. In future, this research will be further extended by
analyzing various methodologies to enhance the error value.
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