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Highly productive and efficient biomass growth in bioreactors is an essential
bioprocess outcome inmany industrial applications. Large-scale biomass creation
in the cultivated meat industry will be critical given the demand size in the
conventional meat and seafood sectors. However, many challenges must be
overcome before cultivated meat and seafood become commercially viable,
including cost reductions of cell culture media, bioprocess design innovation
and optimization, and scaling up in the longer term. Computational modeling and
simulation can help to address many of these challenges and can be a far cheaper
and faster alternative to performing physical experiments. Computer modeling
can also help researchers pinpoint system interactions that matter and guide
researchers to identify those parameters that should be changed in later designs
for eventual optimization. This work developed a computational model that
combines agent-based modeling and computational fluid dynamics to study
biomass growth as a function of the operative conditions of stirred-tank
bioreactors. The focus was to analyze how the mechanical stress induced by
rotor speed can influence the growth of cells attached to spherical microcarriers.
The computer simulation results reproduced observations from physical
experiments that high rotor speeds reduce cell growth rates and induce cell
death under the high mechanical stresses induced at these stir speeds. Moreover,
the results suggest that modeling cell death and cell quiescence is required to
recapitulate these observations from physical experiments. These simulation
outcomes are the first step towards more comprehensive models that,
combined with experimental observations, will improve our knowledge of
biomass production in bioreactors for cultivated meat and other industries.
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1 Introduction

Increasing worldwide demand for meat drives the growth of environmentally detrimental
factory farming, aquaculture, and mass capture of fish and other marine life (FAO, 2017).
Cultivated meat and seafood is a potentially more sustainable alternative to factory farming and
fisheries practices that could mitigate land use, disease spread, greenhouse gas emissions, and
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water contamination (Rubio et al., 2019; Post et al., 2020). However,
several challenges must be overcome as a largely pre-commercial
technology before cultivated meat is available worldwide. One of the
most fundamental challenges in commercializing cell-based meat is
producing biomass at a cost lower than that of animal husbandry and
slaughter (Post et al., 2020). Currently, the cost of cell culturemedia and
industrial-scale perfusion bioreactor production make cultivated meat
orders of magnitude more expensive than the conventional alternatives
(Vergeer et al., 2021). Cheaper media formulations of non-animal
origin (serum-free) will be necessary to be cost-competitive.
Similarly, more economical bioreactor designs and configurations
must be developed to overcome the cost hurdle (Vergeer et al.,
2021). Unfortunately, there are no operational commercial-scale
cultivated meat bioreactors or bioprocesses (>3500 L) in existence
(Potter et al., 2020). Cultivated meat bioreactor designs do have
parallels in cell therapy and vaccine production bioprocesses, but the
cultivated meat use cases are distinctive because of the far greater
number of cells that must be produced to create even one serving of
meat compared to a therapeutic dose (Allan et al., 2019).

The starter cells are a primary area of focus for cultivated meat
bioreactor design and prototyping. These cells can be sensitive to
turbulent flow, and the resulting mechanical forces can induce
detachment, damage, apoptosis, and untimely differentiation
(Stephenson and Grayson, 2018). Therefore, bioreactor design
considerations must accommodate starter cell mechanical force
sensitivities while achieving sufficient mass transfer, oxygen
transfer, and adequate CO2 removal (Allan et al., 2019;
Macdonald, 2019). Maintaining a favorable micro and macro-
environment for cells without subjecting them to excessive
mechanical stress from stirring will require innovation in and
optimization of bioreactor designs and processes.

Virtual prototyping and experimentation through computer
simulation promises to accelerate and lower the cost of progress
(Kahan et al., 2020). Virtual experiments that replicate actual
bioreactors and biological behaviors are not currently possible. First,
it is necessary to develop predictive models of the bioreactor
environment (Kahan et al., 2020). The main challenge in developing
a predictive model of cells growing in a bioreactor arises from the
complexity of the bioreactor environment and cell behavior.Media flow
dynamics, forces, and mixing of media components must be
incorporated into the model. Simultaneously, including cells that
consume nutrients, excrete waste, proliferate, and die, introduces an
additional layer of complexity to the model (Kahan et al., 2020). The
high density of cells needed for efficient meat production creates more
interactions between cells in the bioreactor and potential aggregation of
cells in suspension and microcarrier cultures. Despite prior work using
computer modeling and simulation to predict bioreactor behavior for
numerous designs and configurations (Kahan et al., 2020), an altogether
new multiscale methodology accounting for phenomena at diverse
spatial and temporal scales seems necessary to include these cell-cell
interactions.

Two well-established computational modeling approaches show
considerable promise to encapsulate the complexity of the
bioreactor environment and cell behavior - computational fluid
dynamics (CFD) and agent-based modeling (ABM). In cultivated
meat production, CFD can simulate and help understand the fluid
flows in the bioreactors governed by the Navier-Stokes equations
(Wilcox, 2006). In biological applications, ABM can be used to track

the fate of each cell using rules that determine the conditions under
which the cell, for example, grows, moves, adheres, divides,
differentiates, and dies as a function of the biochemical and
physical environment (Kang et al., 2014).

In this study, we present the first co-application of CFD and ABM
as a multiscale modeling methodology for cultivated meat bioreactor
and bioprocess design by focusing on a simple configuration of a
stirred-tank bioreactor system. Stirred-tank reactors are well-studied
and are being pursued in cultivated meat production (Allan et al.,
2019). A more recent study developed a scalable process for the
expansion of bovine adipose stem cells as precursors for fat and
muscle cells (Hanga et al., 2021). Adherent cells specifically can be
grown in stirred-tank systems with microcarriers, but microcarrier-
bound cells become sensitive to agitation damage by mechanical forces
and small intense eddies (Croughan et al., 1987). The research paper of
Croughan et al. (1987) provides empirical and theoretical analyses of
the influence of stir speed on biomass accumulation and, thus, growth
and death rates of FS-4 cells on microcarrier cultures in a stir-rod
bioreactor. Our novel modeling methodology represents a simple
framework for the concurrent application of CFD and ABM to
simulate the biophysical phenomenon of cell response to increasing
bioreactor stir speeds. The framework is constructed in a way that
enables expansion to include additional knowledge and should be
applicable to other bioreactor and bioprocess designs in cultivated
meat and allied industries.

2 Materials and methods

2.1 Bioreactor setup

In the simulations, the microcarrier cultures were grown in a
simple agitated bioreactor setup that was not aerated and had no
pH control technology (Figure 1). A cylindrical rod immersed to two-
thirds the depth of the liquid and rotated at a constant speed agitated

FIGURE 1
3D drawing of the bioreactor used as boundary conditions in
ABM and CFD simulations.
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the fluid. Rotational speed was the only parameter that varied in the
simulations following the experiments reported by Croughan et al.
(1987). All attributes of the bioreactor system described by Croughan
et al. (1987) are specified in Supplementary Table S1, including
microcarrier type, microcarrier concentration, surface area per
volume and media change frequency. In some instances, we
needed additional quantities (e.g., microcarrier and cell
dimensions) not provided by Croughan et al. (1987), and these
were obtained from other sources (Hu, 2020; Cytiva, 2021). The
parameters used in the computational simulations are detailed in
Supplementary Table S2. An initial inoculation density of 5 cells per
microcarrier was chosen as an industry standard value, while the cell
doubling time was set at 0.1 s to reduce computational expense and
simplify CFD and ABM coupling (see section 2.3.3). The microcarrier
concentration was 1 per 100 mL in an effort to further reduce
computational time, except for subsequent Lagrangian particle
tracking trials (see section 3.3).

Croughan et al. (1987) studied how growth rate changes as a
function of excessive agitation speed. Prior experimental results had
established 60 rpm to be roughly a sufficient speed to provide the
needed nutrients and oxygen, while higher rates reduced productivity.
Croughan et al. (1987) focused on 60 rpm and above. They proposed an
analytical model in which growth and death rates are exponential over
time, resulting in population graphs that are piecewise linear when on a
log scale, as shown in Figure 2. In their model, the cells’ growth
(proliferation) rate exponent is assumed to be constant throughout
all experiments and the death rate is assumed to change with agitation
speed. The rates are calculated based on these assumptions to best fit
data sampled from experiments.

2.2 Computational fluid dynamics (CFD)

2.2.1 Geometry
The geometry of the CFD model included a 100 mL

cylindrical bioreactor and a cylindrical stirring bar (Croughan
et al., 1987), as shown in Figure 3. The cylindrical bioreactor had
an internal diameter of 5.5 cm, and the rod impeller had a length
of 3.8 cm and a diameter of 0.8 cm. The rod impeller was
suspended at one-third of the liquid height. The moving mesh
technique was used to simulate the rod impeller’s rotation,
creating an imaginary domain within the bioreactor. This
imaginary domain is only used to assign the corresponding
rotational speed in the model.

2.2.2 Governing equations and boundary
conditions

The fluid flow in the bioreactor was assumed to be transitional to
turbulent flow due to the calculated impeller Reynolds number of
1,444 at 60 rpm and 5,294.7 at 220 rpm. The impeller Reynolds
number can be calculated as:

Re � NL2

v
(1)

where N is the impeller rotations per second, L is the length of the
impeller, and v is the kinematic viscosity (Raju et al., 2005). Unlike
fluid flow in a pipe where the transition from laminar to turbulent
has been clearly defined from 2,100 < Re < 4,000, the transition in
stirred vessels depends greatly on impeller type, bioreactor baffles,
and any other protrusions that interact with the flow; therefore, a
fully turbulent flow can only be guaranteed when Re >
10,000 while a fully laminar flow can only be guaranteed when
Re < 10 (Doran, 2013). A Reynolds-averaged Navier-Stokes
(RANS) simulation approach with the standard k-ε turbulence
model was used to simulate the fluid movement, where k
represents the turbulent kinetic energy, and ε represents the
dissipation of turbulent kinetic energy. The κ-ε turbulence
model introduces two additional transport equations, one for k,
the turbulent kinetic energy, and one for ε, the turbulent
dissipation rate expressed as:

FIGURE 2
Growth of FS-4 cells on microcarriers at various stirring speeds.
All cultures contained 3 g/L Cytodex 1 microcarriers in identical
250 mL vessels with 100 mL of media. This figure is a reproduction of
Figure 1 from Croughan et al. (1987) and illustrates the set of
experiments the simulations in this research are based on. Reprinted
from “Hydrodynamic effects on animal cells grown in microcarrier
cultures” by Croughan et al., licensed under MIT Libraries’ permissions
policy.

FIGURE 3
Geometry of the bioreactor with a rod impeller.
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ρ
∂k
∂t

+ρu·∇k � ∇· μ + μT
σk

( )∇k( ) + Pk − ρε (2)

ρ
∂ε
∂t

+ ρu·∇ε � ∇· μ + μT
σε

( )∇ε( ) + Cε1
ε

k
Pk − Cε2 ρ

ε2

k
(3)

where Pk is the production term expressed as:

Pk � μT ∇u: ∇u + ∇u( )T( ) − 2
3
∇ · u( )2( ) − 2

3
ρk∇ · u (4)

where μT is the turbulent viscosity modeled as:

μT � ρCμ
k2

ε
(5)

This model uses five turbulence constants Cμ = 0.09, Cε1 = 1.44,
Cε2 = 1.92, σk = 1, and σε = 1.3. These were determined from
experimental data in simple flows (Wilcox, 2006). In a batch system,
the mixing process is mainly continuous during the cell growth
period (~days), except during media exchanges. The fluid flow
eventually reaches a steady-state condition. Therefore, the
equations for mass conservation, Newton’s second law, and
energy conservation, along with the constitutive laws relating the
stress tensor in the fluid to the rate of the deformation tensor, were
used to describe the fluid flow process (Wilcox, 2006). Assuming
incompressible Newtonian fluid, the Navier-Stokes equations take
the following form:

ρ ∂u/∂t( ) + ρ u · ∇( )u � ∇ · −pI + μ ∇u + ∇u( )T( )[ ] + F (6)

where u is the velocity vector, p is pressure, I is the identity matrix,
and F is the volume force vector.

A no-slip boundary condition was applied to the bioreactor
walls. This wall condition must be included to compensate for the
limitations of the k-ε turbulence model close to the walls.

2.2.3 Material properties
The material properties of the growth media were assumed to

be that of liquid water (ρ = 1,000 kg m−3, µ = 1.003 mPa·s) and did
not change during the whole growing process. These properties
were taken from the material library built into the CFD modeling
software (COMSOL Multiphysics, RRID: SCR_014767).

2.3 Agent-based modeling (ABM) of cells
growing on microcarriers

In order to study how the mechanical stress, determined by
the stirred-tank operative conditions, affects cell biomass, a
three-dimensional agent-based model of cells growing on
microcarriers moving in the fluid media of the stirred-tank
was developed. The model was implemented using the
Biocellion agent-based modeling framework (Kang et al.,
2014). In the ABM formulation, each cell and microcarrier
was represented as a spherical agent propelled by forces
calculated from the computed velocity field of the fluid media.
By explicitly including the cells and microcarriers, the model
allows us to study the relationships between mechanical
interactions and essential biological processes such as cell
proliferation and death.

2.3.1 Equations of motion
Newton’s equations were used to model the dynamics of both

cells and microcarriers (Jayathilake et al., 2017):

mi

d v

dt
� Fi�Fc,i +Fb,i+Ff,i+Fg,i (7)

where.

• mi is the mass of an agent i representing a microcarrier or
a cell,

• v
i
is the velocity of the agent i,

• Fi is the total force exerted on agent i,
• Fc,i is the total force exerted on agent i due to contact with
other agents,

• Fb,i is the force on agent i due to contact with the bioreactor
boundary,

• Ff,i is the total force exerted on agent i due to fluid flow; this is
the so-called drag force, and

• Fg,i is the force due to gravity and buoyancy.

The mass mi is constant for microcarriers and changes during
the proliferation cycle for cells, as described in Eq. (14). The mass
values and ranges can be found in Supplementary Table S2. The
contact force on agent i is the sum of all mechanical forces that act
on agent i due to interactions with other agents and with the
bioreactor boundary:

Fc,i � ∑N
j�1
Fij (8)

where Fij is the force exerted by other agents (cells and
microcarriers) that form a bond with agent i. A bond is created
between two agents when the distance between their centers
becomes smaller than a threshold value δc. Similarly, a bond
between two agents is broken when the distance between their
centers becomes larger than δd. The force between bonded agents is
treated as a spring-bound system and is described by the following
equations:

δij � Ri + Rj − dij (9)
Fij � KIJδijtanh sIJ δij

∣∣∣∣ ∣∣∣∣( ) (10)

Where dij is the distance between the centers of agents i and j. I
and J represent the type of agent i and j, cell or microcarrier,
respectively. The parameter KIJ is the spring constant of the bonds.
The bond between two agents is an attractive force when the
distance is greater than (Ri + Rj) and a repulsive force when the
distance is less than (Ri + Rj). The attractive force between a pair of
agents grows with distance until the bond breaks for distances
greater than fIJ (Ri + Rj), after which the agents become
unassociated. The bond stiffness between two agents is controlled
by the parameter sIJ. See Aguilar et al. (2018) for a more detailed
description of the bond model.

As an approximation for cell deformation when adhering to the
microcarrier while using rigid spherical agents, the cell division
radius Rdiv was subtracted from the microcarrier radius as given in
Supplementary Table S1, resulting in the simulated microcarrier
radius Rm as given in Supplementary Table S2. This correction
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places the cell centers approximately at the original microcarrier
surface, making the number of cells that fit on the microcarrier
surface more realistic.

The forces on agents due to contact with the bioreactor
boundary are modeled with a repulsive interaction force that is
proportional to the overlap, δb,i, between the spherical agent i and
the bioreactor boundary:

Fb,i� − ϵ
σ

( )eδb,i (11)

where ϵ captures the magnitude of the interactions between agents
and boundary, and σ is a scale factor of the order of the agents’ sizes
(Hartmann et al., 2019).

In this work, the fluid drag force is based on Stokes flow past a
sphere, and it is given by:

Ff,i� 6πμriv r,i
(12)

where μ is the dynamic viscosity of the fluid, ri is the radius of agent i,
and v

r,i
is the relative velocity of the agent i with respect to the fluid

velocity (Kriebitzsch et al., 2013). The fluid velocity of the flow is
interpolated from the CFD velocity field as a weighted average of the
velocities at the four vertices in the CFD grid that form the smallest
tetrahedron containing the center of the agent. The relative weight
for each vertex is the volume of the sub-tetrahedron formed by
replacing just that vertex with the agent’s center.

Finally, the effects of gravity and buoyancy on agents are
represented by the following equation:

Fg,i � mig 1 − ρm
ρi

( ) (13)

Where g is the standard acceleration of gravity, ρm is the density
of the medium, and ρi is the density of the agent.

Simulations were performed with only microcarrier agents and
no cell agents to investigate the particle motion through the

bioreactor. The position of all agents at the next timestep was
calculated from the force every time step using a Verlet leapfrog
integration algorithm.

2.3.2 Cellular phenotypes
Previous studies suggested that mechanical stress induces cell

death, thus limiting biomass growth on a microcarrier (Croughan
et al., 1987). However, other possible factors limit cell growth, such
as stress-induced reduction of proliferation capacity. We define
quiescence as a cellular state of limited proliferation due to
mechanical stress. To study the different causes of reduced cell
growth on microcarriers, we consider cell proliferation, cell
quiescence, and cell death (Figure 4). Moreover, we model cell
state transition due to external mechanical stress only,
determined by mechanical stress thresholds σD and σp (Figure 4).
The following subsections describe in more detail the three cellular
processes included in the model.

Under our current assumption of abundant nutrients, Hill-type
stress-based modulation of the growth rate of cell i was used to
model cell growth:

dmi

dt
� mi * rmax * σPn(σPn + σ in) (14)

where rmax is the maximum proliferation rate obtained directly from
the doubling time, the time it takes for a population of cells to double
in size; σi is the mechanical stress on cell i, σp is a parameter that
modulates the effect of mechanical stress on the growth rate, and n is
an integer that modulates the steepness of the Hill-type equation. Eq.
14 dictates the transition between the normal proliferative cell state
and the quiescent state where no proliferation occurs. Cells will stay
in quiescence until the experienced stress decreases again below the
threshold.

To compute the mechanical stress, we first need to compute the
tensor stress (Si) of agent i due to interactions with other agents
(Fenley et al., 2014):

Si � 1
Vi

( ) 1
2
∑
j

Fij ⊗ rij⎡⎢⎢⎣ ⎤⎥⎥⎦ (15)

where ⊗ is the tensor product of the two vectors, Fij is the force, and
rij is the distance vector between agent centers. The volume of the
cellVi) is computed assuming the cells are of constant density ρ,Vi =
mi/ρ. From the volume, we compute the new radius of cells. The
mechanical stress used to modulate cell growth is the average of the
principal stresses computed as the trace of the stress tensor:

σ i � Trace Si( )
3

(16)

A cell division event is performed when the cell radius is greater
than a user-defined threshold Rdiv. In cell division, a cell i is replaced
by two daughter cells; one has a mass ofm/2 ± 0.1m (a random value
is drawn from a uniform distribution between the two limits), and
the other takes the remaining mass to ensure that the total mass is
conserved. The two daughter cells are placed in the plane tangential
to the microcarrier (sphere) that passes through the center of the
mother cell. Only cells that are attached to a microcarrier divide. The
direction within the plane in which the two daughter cells are placed
is randomly selected. Both daughter cells are placed at a distance

FIGURE 4
Phenotypes and their transitions due to external mechanical
stress.

Frontiers in Food Science and Technology frontiersin.org05

Cantarero-Rivera et al. 10.3389/frfst.2023.1295245

https://www.frontiersin.org/journals/food-science-and-technology
https://www.frontiersin.org
https://doi.org/10.3389/frfst.2023.1295245


(R1 + R2)/4 from the center of the mother cell, where R1 and R2 are
the radii of the two daughter cells.

The model of cell death was adapted from Bull et al. (2020).
Cells subjected to high mechanical stress die if they remain under
high mechanical stress for longer than a threshold time TD. To
determine the non-viable cell population induced by high
mechanical stress, we test if σi > σD, where σD is a mechanical
stress threshold. Each cell is assigned a stress time counter τi,
which evaluates when a cell is under mechanical stress and
evolves as follows:

τi
dt

� H σ i − σD( ), τi 0( )� 0 (17)

where H(x) is the Heaviside step function equal to 1 if x ≥ 0 and
0 otherwise. Cells transition to a cell death state when i > TD. After a
transition to the cell death state, it enters a disintegration process in
which the cell biomass decays according to:

dmi

dt
� −rD (18)

The cell is removed from the overall population when the cell
radius is smaller than 10 μm.Moreover, rDwas set to 50%maximum
proliferation cell death (rmax).

2.3.3 Simulation time relations
While biological cell proliferation and cell motion events

typically happen on the order of minutes, hours or even days, the
timesteps in the fluid dynamics simulation need to be on the
order of milliseconds to capture the effect of impeller rotation
and small-scale variations. Due to the big discrepancy between
biological and physical relevant times, running a tightly coupled
simulation with equal real-time timesteps for the biological and
physical models is not feasible. A multi-timescale coupling
approach is required for the coupled multiscale model to have
reasonable simulation times. Due to the random nature of
turbulent flow and the statistical relevance of the stress
experienced by the cells, the approach of equating a physical
model time step to a biological time step was used, even though
they do not match up in real-time. In all simulations in this
research, a simulation time step constitutes 0.00002 s in the
physical coupling of fluid dynamics to cell and microcarrier
motion. The doubling time of the biological cells, which for
the types of cells of interest is between 12–24 h (Tamm et al.,
2013; Shanini et al., 2018), was set to 5,000 simulation steps, equal
to ten doublings per second. This scaling, although unrealistic,
enables a direct coupling of the dynamical movement of
microcarriers and cell experience of fluid forces to the
proliferation of the cells. Our preliminary results suggest that
increasing the doubling time (from 0.1 to 0.4 s) does not affect the
conclusions of this work. The discussion section offers an
explanation of this approximation.

2.3.4 Sensitivity analysis
To investigate the model sensitivity with respect to its input

parameters, we performed a sensitivity analysis according to the
method of Morris (1991) with additional improvements by
Campolongo et al. (2007). This method, also known as the
Elementary Effects Method, is widely used to get an impression

of a model’s sensitivity with many parameters and long
simulation times (Saltelli, 2008). This method is well suited
when the high number of input parameters makes the more
thorough variance-based techniques infeasible. It ranks
parameters according to their influence on the model output.
The method implemented in the SALib library was used to
perform the analysis (Herman and Usher, 2017).

The sensitivity analysis was performed for the indicated
biomechanical parameters in Supplementary Table S3 since these
are the relevant ABM parameters. Sensitivity analysis of the CFD
parameters and the physical system was not done in this project but
will be explored in future work.

Sampling the parameter space using Morris’ sampling method
was done for the indicated parameters from the ranges shown in
Supplementary Table S3 using the Elementary Effects sampling
method. These ranges were inspired by conversations with
industry and literature results and were specified to cover a
physically realistic extent. The sampling was conducted with r =
10 trajectories and p = 4 sampling levels. Some parameters were
sampled from an exponential distribution, also indicated in
Supplementary Table S3.

3 Results

3.1 Fluid characteristics for different impeller
rotation speeds (CFD)

The steady-state flow behaviors (velocity magnitude, fluid
shear stress, and Kolmogorov length) at impeller rotation speeds
of 60 and 220 rpm are illustrated in Figure 5. These modest and
vigorous rotational speeds induce similar fluid flow patterns but
quantitatively different flow metrics. The Reynolds number has
been calculated as 1,444 for 60 rpm and 5,294.7 for 220 rpm
using Eq. (1).

One can see from the vertical slice cut parallel to the x-z plane
that at both rotor speeds, the velocity magnitude is largest near the
tips of the impeller and lowest in a vertical cylindrical region at the
center (Figure 5). However, as is evident by the relative ranges on the
color-coded legends, the velocity magnitude at 220 rpm is about four
to five times that at 60 rpm.

The shear stress is a parameter, also displayed in Figure 5, that
influences biological processes in bioreactors. Similar to the
velocity magnitude profiles, the shear stress shows comparable
patterns at 60 and 220 rpm. Generally, higher shear stress exerts
more influence on the cells and is observed around the tips of the
impellers, similar to the results reported by Ghasemian et al.
(2020). The hydrodynamic characteristics within a spinner flask
at rotational speeds of 40, 60, 80, and 100 rpm were simulated in
that study. Their results show that the shear stress ranged from
0 to about 80 mPa, similar to the shear stress produced in this
study at 60 rpm.

Kolmogorov length is another parameter that helps
understand the influence of turbulent eddies on cells
(Katopodes, 2018). The Kolmogorov length scale states that
small-scale motion is a function of the dissipation rate per
unit mass and the kinematic viscosity (Ting, 2016). The
Kolmogorov scale is typically represented as:
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λ � v3

ε
( )

1
4

(19)

where λ is the characteristic size of the eddies, v is the kinematic
viscosity, and ε is the rate of dissipation of turbulent energy (Doran,
2013).

Although the two rotational speeds in this study show similar
Kolmogorov length distribution patterns within bioreactors, their
Kolmogorov length values are considerably different. Both
rotational speeds have lower Kolmogorov length values around
the tips of impellers, indicating higher turbulence in this region.
The Kolmogorov length scale values at 60 rpm in the whole
bioreactor are larger than the microcarrier size of 180 μm, while
those of the 220 rpm scenario are either much smaller than or
similar in size to the microcarriers. These simulated Kolmogorov
length values are similar to those reported by Ghasemian et al.
(2020). Croughan et al. (1987) reported that the relative cell growth
rate significantly decreased when the Kolmogorov length was
smaller than 125 μm and detrimental effects appeared to come
into play when the Kolmogorov length dropped below about
100 μm, which was about half of the average microcarrier
diameter of 180 μm. In this study, the minimum Kolmogorov

length is about 60 μm, which is much smaller than the critical
length, indicating potential significant damage to the cells when
microcarriers flow into these regions.

3.2 Multiple growth behaviors induced by
mechanical stress (ABM)

Results from simulations of cell growth on a single microcarrier
in the absence of fluid movement are presented in this section. These
simulations will help to study how cell state transition and growth
are affected by interactions between cells, interactions with other
cells and those with the microcarrier. In this modeling framework,
changes to cell shape and cell deformation are disregarded. The
parameters of the simulations are shown in Supplementary Table S2.

For each cell i, stress σi is computed as described in subsection
2.3.2, “Cellular phenotypes.” Compressive forces contribute
positively, and tensile forces contribute negatively to the overall
mechanical stress sensed by cells. Figure 6A shows a simulation
snapshot of cells growing on a microcarrier, and Figure 6B shows a
histogram of mechanical stress experienced by cells. The color of
each cell represents the magnitude of mechanical stress. Most of the

FIGURE 5
Computational fluid dynamic simulations at 60 rpm and 220 rpm. (A) Fluid velocity profile (top), (B) fluid shear stress (middle) and (C) Kolmogorov
eddy length scale (bottom).
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cells in this example experience compressive forces exerted by their
neighbors, as indicated by their reddish color (Figure 6A) and the
predominantly positive values for net stress on a cell reported in the
histogram (Figure 6B). Literature reports describe the prevalence of
compressive forces in cell monolayers bound to flat substrates
(Chen et al., 2018) and those within circular confinements
(Serrano et al., 2019; Blanch-Mercader et al., 2021). This figure
suggests that the mechanical stress sensed by the cells on the
microcarrier may be rather variable, even in the absence of shear
forces. Notably, the distribution of stress profiles experienced by the
cell population on the microcarrier is semi-normal (Figure 6B).

First, a scenario in which mechanical stress does not induce cell
death but reduces cell proliferation capacity was tested, see Eq. (14).
Within our modeling approach, this scenario is simulated by setting
σD = 1, a very high value according to Figure 6B. Figure 7A shows the
number of cells growing on the microcarrier as a function of time for
different values of σp and n = 5, while similar results for other values of

n are shown in Supplementary Figure S1. The results in Figure 7A
show different growth trends for different values of σp. For high values
(σp = 10−6), the cell count grows exponentially at first and then deviates
from exponential growth; however, it does not reach a constant value.
For smaller values of σp, the number of cells reaches a constant value.
A second scenario was simulated, in whichmechanical stress does not
change the proliferation rate but induces cell death, thus limiting the
population size. This scenario is simulated by suppressing the
transition of cells to the quiescent state, making σD = σp. Figure 7B
shows the cell count as a function of time for different values of σD and
TD = 0.1τd, while the results of other values of TD are shown in
Supplementary Figure S2. Similar to Figures 7A, B shows different
growth trends for different values of σD. For σD = 10−5 μN/μm2, the
population growth is exponential at the same rate as the
unconstrained exponential growth σD = 1 μN/μm2. For smaller
values of σD, the population reaches a constant value similar to
Figure 6B. It is worth noting that initially, the number of cells

FIGURE 6
Agent-basedmodel of cells on amicrocarrier. (A)Cells growing on top of amicrocarrier. Red indicates compressive stress and blue indicates tensile
stress. (B) Histogram of mechanical stress sensed by the cells growing on the microcarrier.

FIGURE 7
Cell population on a single microcarrier as a function of time. The number of cells per microcarrier over time for (A) various values for the
proliferation threshold and (B) various values for the cell death threshold.
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grows at the same rate as in the unconstrained growth for the scenario
in Figure 7B, whereas the cells can grow at much slower rates for the
scenario of Figure 7A and Supplementary Figure S1.

3.3 Impact of impeller rotation speed on
microcarrier distribution (CFD and
Lagrangian Particle Tracking)

Simulations with 1,000 microcarrier agents without cells
growing on them were performed to assess the distribution of
microcarriers throughout the bioreactor at various times with
various rotation speeds. The velocity fields from the CFD
simulations were used to perform Lagrangian Particle Tracking
(LPT) using only the mechanical interactions of the Agent-Based
Model as described in Eq. (7). All microcarrier agents started at a
random position. Their locations were accumulated over
200,000 simulation time steps to give a relative distribution of
microcarriers, as shown in Figure 8. The initial random
distribution is still prevalent at early simulation times (e.g.,
120,000 simulation steps). However, from 500,000 simulation
steps onward, high-density zones become apparent, growing in
intensity for longer simulation times as the randomness of the
initial conditions disappears. A clear high-density spot appears

just above the impeller tip for impeller rotation of 60 rpm, as
seen in Figure 5; this corresponds to a high-stress region.
Another high-density zone can be seen in the top right corner
for the 220 rpm simulations; this zone grows in intensity beyond the
scale depicted in the figure colormap.

3.4 Impact of impeller rotation speed on cell
growth (CFD and ABM integration)

The ABM and CFD methods were combined to simulate how
the mechanical stresses inside the stirred-tank bioreactor influence
the biomass accumulation of cells attached to spherical
microcarriers. In our model, fluid flow influences how individual
cells move, grow, and proliferate. Because in CFD simulations, the
modeled bioreactor reaches its steady-state flow in just a few
seconds, transient flows in the whole-system simulation were
ignored. As described in the Methods section, the distribution of
fluid velocities at steady state to compute the drag forces Ff,i [Eq.
(12)] was used. We explored several values of σD and σp for these
simulations, while other parameters are specified in Supplementary
Table S2. Moreover, we observed that the fluid could produce cell
detachment, especially at 220 rpm; thus, we report only live cells
attached to the microcarrier.

FIGURE 8
Microcarrier density heat maps. Color represents the number of microcarriers accumulated over the whole bioreactor’s radial symmetry and
200,000 simulation time steps in a bin size of 275 μm2. The top row shows heat maps obtained at a rotational speed of 60 rpm, and the bottom row at
220 rpm.

Frontiers in Food Science and Technology frontiersin.org09

Cantarero-Rivera et al. 10.3389/frfst.2023.1295245

https://www.frontiersin.org/journals/food-science-and-technology
https://www.frontiersin.org
https://doi.org/10.3389/frfst.2023.1295245


Biomass levels for simulations at 60, 180, and 220 rpms were
compared. These simulations test whether the model can qualitatively
recapitulate the trends observed experimentally by Croughan et al.
(1987), described in Methods. They observed that the biomass level in
the bioreactor decreases with increasing impeller rotation rate and
that high rotor speeds (180 and 220 rpms) induce cell death (Figure 2).

Figure 9 shows how the number of attached cells (solid lines)
changes in time at 60 rpm and 220 rpm. Figures 9A,B show
simulations for σD = 10−6, σP = 10−7 and σD = 10−7, σP = 10−7,
respectively. Other values of σD and σp were also tested; the
simulation results can be found in Supplementary Figure S3. As
expected, in all the simulations, the number of cells at 220 rpm
grows slower than that at 60 rpm. This trend is observed even when
the number of dead cells is zero (Left side of Figure 9A). Moreover,
when σD = σp = 10−7 the cells at 180 and 220 rpm grow very slowly,
but due to regions of high mechanical stress, the number of cells in
many simulations went to zero. These simulation results are in good
qualitative agreement with those reported by Croughan et al. (1987);
increasing rotor speed reduces biomass growth rates, and cell death
is induced at very high rotational speeds.

3.5 Sensitivity analysis results

Ten replicates of the simulation were run for every parameter
sample, and the average output was taken for analysis. The output of
the model considered in the sensitivity analysis was set to the value of
the number of cells attached to a microcarrier at the 20000th and at
the 50000th time step. The latter time step was chosen since many
configurations, as shown in Supplementary Figure S3, yielded a steady
state at or around that time step. This choice of output potentially
influences the measured sensitivity of the model. However, no
significant changes in the parameter ranking were found by using
the output at later time steps. The results of the sensitivity analysis
change significantly when choosing an earlier time step.

The sensitivity analysis results are shown in Figure 10 and indicate
that after 50,000 time steps, the highest variation in the output is due

to a difference in the parameter that determines the cell-cell bond
strength (A_AGENT_BOND_S_CC). However, the uncertainty σ in
the elementary effect is large compared to the elementary effect itself.

After 20,000 steps, the results show a stronger dependence on
the cell-microcarrier bond stiffness (A_AGENT_STIFFNESS_CM)
and the stress threshold (STRESS_THRESHOLD). The uncertainty
in elementary effects is also considerably smaller.

4 Discussion

Combining multiple modeling approaches in a more
comprehensive model can generate novel insights and identify
emergent properties in the system under study. Indeed, CFD and
ABM have been used together in several diverse multiscale models
that simulate disaster responses (Epstein et al., 2011), cell and
particle migration through blood vessels (Fullstone et al., 2015;
Bhui and Hayenga, 2017; Bhui, 2018; Corti et al., 2020), and
movement of zooplankton in complex flow environments (Ozalp
et al., 2020). Notably, CFD and ABM per se have never been used
together to understand the process dynamics within a bioreactor
relevant to cultivated meat. However, combined models for
biological and physicochemical dynamics have been used to
examine different parallel-plate bioreactor configurations for the
growth of tissue (Peng and Palsson, 1996). Here, a unilineage model
was employed to describe the replication and differentiation of stem
cells, and the physicochemical processes were modeled by the
Navier-Stokes and convective-diffusion equations.

Despite the advancements made in prior studies, it is worth
reiterating that the present work aims to prototype a new computer
modeling methodology for adhesive cell cultures in bioreactors. The
new framework was used to qualitatively recapitulate the empirical
and theoretical results from Figure 2. Several assumptions and
simplifications were made in the novel model.

I. Assumption. The only impact of mechanical stress on cell
biology is to slow cell proliferation rate and induce cell death.

FIGURE 9
Cell population on a single microcarrier as a function of time for 60, 180, and 220 rpm. With cell death thresholds of (A) σD = 10−6, σP = 10−7 and (B)
σD = 10−7, σP = 10−7. Solid lines represent live cells attached to the microcarrier. The cell counts are the average over 20 simulations. One time step
represents the theoretical doubling time of cells.
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II. Assumption. Capturing the relevant fluid dynamics behaviors
is accomplished at a much shorter simulation time step than is
needed to capture the biological response behaviors of cells.

III. Simplification. Biomass accumulation and microcarrier count
do not significantly affect the fluid properties.

IV. Simplification. Cell growth is independent of the
concentration of molecules (such as nutrients, oxygen, or
H+ ions) in the media.

V. Simplification. Microcarrier and cell densities are smaller than
those used and observed in laboratory experiments.

VI. Simplification. By using a RANS approach for CFD, we do not
explicitly model small, turbulent eddies and are therefore not
taken into account when calculating the mechanical stress.

VII. Simplification. The effect of the fluid on microcarriers and
cells was modeled using the Stokes law for drag force.

VIII. Simplification. The Stokes drag force was calculated for every
agent (cells and microcarriers), and in this calculation, no
shielding by other agents was taken into account.

IX. Assumption. The time-dependent effect of the fluid on the
cells will average out in steady-state flow for multiple
microcarriers and simulations.

Previous theoretical studies (Croughan et al., 1987) assert that cell
death is the main driver of biomass reduction at higher rotor speeds
but without providing experimental validation. Our understanding
from experimentalists and the literature is that dead cells are difficult
to count accurately because they may disintegrate into the
surrounding media during the experimental period, evading
measurement post-experiment (Sanford et al., 1951). Assumption I
introduces the alternative mechanism that mechanical stresses
suppress cells’ proliferation rates while disregarding any changes in

cell shape. Results in this study (Figure 9) support the hypothesis that
this mechanism is also responsible for the overall reduced biomass
level observed at higher rotor speeds. The ABM approach, facilitating
representation of individual cells and the induced mechanical stresses
they experience, thus provides a direct means to answer the question:
“Instead of cell death, could a reduction in proliferation rate caused by
mechanical stresses due to fluid flow on some cells explain the reduced
biomass at higher stir speeds?”Answered in the affirmative for virtual
experiments, there is now a stronger case for asking the same question
of laboratory experimentalists.

Notably, using the virial stress formulation (Eq. (16)) for spherical
cells can give rise to large fluctuations in this measure (Liedekerke
et al., 2019). However, this work has continuously accounted for
volume change in determining the tensor stress on each agent (Eq.
(15)), which is more accurate than a constant volume assumption in
the application of virial stress determinations for atomistic stress
(Fenley et al., 2014). Despite the apparent variability (Figure 6A), the
mechanical stress distribution for cells on the microcarrier is semi-
normal (Figure 6B), which mirrors the influence of compressive stress
in tumor spheroid environments (Liedekerke et al., 2019).
Furthermore, cells growing on the surface of microcarriers
typically grow in a single layer, which results in lower virial stress
fluctuations per cell overall than in a spheroid system.

Assumption II and Simplifications III and IV simplify
integration of ABM and CFD in this early modeling approach.
Simplification III implies that fluid properties are independent of the
cell and microcarrier population, and therefore, a CFD simulation
performed on a bioreactor with only media suffices to predict fluid
velocities. Simplification IV means that cell ingestion and secretion
rates, as well as mixing, are irrelevant so that simulations can be
performed on a homogeneous fluid. Because steady-state is reached

FIGURE 10
Results of sensitivity analysis. Parameters ranked by their elementary effect μ* on themodel outcome (left) and the elementary effect plotted against
the deviation s of that elementary effect (right). The sensitivity was analyzed for the number of attached cells at simulation step 20,000 (top) and 50,000
(bottom) steps. See Supplementary Table S3 for the description of parameter names.
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in under 10 s of bioreactor operation, Assumption II permits a
steady-state fluid flow to be used at all biological time steps.

Assumption VI, although discrepant with the to-be-tested eddy
length hypothesis mentioned by Croughan et al. (1987), allowed for
simulating the whole bioreactor domain. Doing this with Direct
Numerical Simulation or Large Eddy Simulation with a mesh on the
scale of the individual cells would have made the simulation
unachievable due to the large domain. Simplification VII was chosen
as an approximation for calculating the drag force on both cells and
microcarriers. This approach was taken since a similar method has been
used and validated in other microcarrier modeling efforts (Berry et al.,
2016). This simplification also implies that hydrodynamical lift forces
(e.g., Magnus effect) were not taken into account. We consider this a
reasonable assumption since the agents are spherical bodies that move
freely with the fluid with small velocity relative to the fluid and no
significant spin. Simplification VIII allows the use of a single force to
calculate both microcarrier movement and agent stress. Rather than
calculating the total drag force of a packed microcarrier, which would
have been more accurate for the microcarrier movement, we chose this
approach to be able to simulate the effect of fluid velocity gradients on
the cells attached to microcarriers.

Regarding the sensitivity analysis, overall, it seems that the
uncertainties of the elementary effects are large. This issue can
probably be solved by running more or larger (more microcarriers)
simulations per parameter set, so the output will statistically be
steadier. However, as a first parameter space exploration, the
sensitivity analysis gives essential information for further
research. Notably, the strength and uncertainty of the elementary
effect of the cell-cell bond strength parameter becomes very high
while the other effects remain ranked in a similar order with
comparable variance. Therefore, a variance-based exploration of
the top three or four parameters with more simulations per
parameter set will be a logical next step.

It is important to describe some of the current limitations of the
model. In the model, fluid dynamics and cell behavior are modeled
independently. However, it is possible that changes in biomass could
affect fluid dynamics, whichwould require recomputing the CFDmodel.
Moreover, despite the simplifications and assumptions listed above, the
model cannot bridge the discrepancy in biomechanics and biological
time scales. Namely, a cell can move from one end of the bioreactor to
the other in seconds, whereas its division into 2 cells takes about a day.
Furthermore, simulating the millions of microcarriers and billions of
cells in even small bioreactors, while possible using supercomputers, is
beyond the computational capability of the desktop computers and small
cloud clusters we have readily available. The workarounds are
Assumption IX, to perform simulation using unrealistic proliferation
rates in the time scale of seconds, and Simplification V, to use
considerably fewer microcarriers than typically used in experiments.
Our preliminary results (Supplementary Figure S4) suggest that
qualitative trends observed in Figures 7, 9 are not expected to change
due to these simplifications. Further refinements will be needed tomodel
the bioreactor system at realistic temporal and spatial time scales.
Another important limitation is that the two considered processes,
cell proliferation and cell death, can be impacted by factors other
than mechanical stress. Nutrients, oxygen availability, and rupture of
bubbles are some factors that would need to be incorporated into amore
comprehensive computational model. Another important process not
considered in the model is cell deformation that, according to previous

studies, can impact the cell density on microcarriers and the strength of
cell microcarrier attachment.

Despite the assumptions, limitations, and simplifications, this
unified CFD and ABM model recapitulated the experimental
observation that increasing rotational speeds in stirred-tank
bioreactors reduces biomass growth rates. Thus, this model
promises to offer an enhanced understanding of microcarrier-
based stirred-tank bioreactors, which was impossible with the
analysis conducted by Croughan et al. (1987). The damaging
effects due to the formation of turbulence are of special interest
for further investigation. Researchers investigating turbulence have
noticed that eddy size determines its effect on solid particles (Kuboi
et al., 1974; Glasgow and Luecke, 1980; Petenate and Glatz, 1983).
These studies indicate that larger eddies tend to carry microcarriers
along without causing damage, while smaller, sharper eddies can
apply distorting forces. The eddy-length model proposes that damage
occurs to cells when the Kolmogorov eddy length is below a critical
value (Croughan et al., 1987). Given the single-cell size spatial
resolution that is possible with ABM and the turbulence modeling
capability of CFD, this novel computer modelingmethodology should
make it possible to assess the validity of the eddy-length model theory.

Croughan et al. (1987) also observed that fluctuating fluid
velocity components around a microcarrier change rapidly with
time and position as it moves throughout a stirred-tank bioreactor.
They propose a “time-average” analysis model, where the position-
dependent time-average flow profile around a microcarrier is tracked
as it circulates through various time-averaged velocity fields in a
stirred-tank bioreactor. Realistically, this oversimplifies the dynamics
within the bioreactor environment and neglects to capture how this
fluid flow variability will manifest across a cell population. Here, the
combined CFD-ABM model could offer more detailed information.
Whereas previous modeling efforts for microcarrier cultures in
stirred-tank bioreactors used Euler-Euler or Euler-Lagrange
approaches (Chu et al., 2005; Berry et al., 2016), and achieved
results that are in agreement with experiments, these approaches
are limited by the simplicity and continuous representation of the
microcarriers and cells. When cell-cell interactions become more
prevalent due to increased density, these approaches will not
suffice. Combining CFD with ABM enables cell-scale resolution
results and the explicit addition of mechanical and biological
interaction between cells and their environment. In this way, the
CFD-ABM approach can reveal detailed information regarding cell
population heterogeneity, where this “cell-state spread” should be a
proxy for bioreactor/bioprocess efficacy.

5 Conclusion and future work

The combined modeling approach described in this paper
effectively investigates the effect of various mechanisms in the
bioprocess on several relevant scales, from full bioreactor fluid
flow profiles and microcarrier distributions to single-cell
experience of mechanical forces. Future research will focus on
refining the coupling between CFD and ABM and the different
spatial and temporal scales to make the overall framework better
suited for simulating larger bioreactors. The next steps in developing
whole-system models include adding additional physical and
biological mechanisms. Some mechanisms that could be added
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include aeration and heat and mass transfer for CFD; and nutrient
consumption, oxygen utilization, cell deformation, gene regulation
and cell signaling for ABM.

Beyond adding other physical and biological mechanisms, further
work must also refine existing models, such as the adhesion model for
agents. In this case, the current tanh-based adhesion model, as described
in the Methods, has proven useful (Aguilar et al., 2018), but it is a non-
realistic representation of the actual biomechanics. Ongoing
investigations around this topic take into account several adhesion
modeling approaches (JKR, Lennard-Jones, integrin-based model)
(Chu et al., 2005; Van Liedekerke et al., 2015; Liedekerke et al., 2019).

Another aim of ongoing work is to verify the implemented
mechanisms and parameters of the modeling framework in a simple
experimental configuration that can be controlled precisely. Such a
configuration, the IBIDI computerized pump system (Ibidi GmbH,
Martinsried/Munich, Germany), has been identified and is being used
in several labs by collaborators to refine the effect of various shear stress
time profiles on proliferation rate, migration, detachment and induced
cell death. A further intent of this work is to translate as many relevant
model parameters as possible to measurable experimental parameters
so that experimental setups can be directly or nearly translated to the
computer model. Additional verification studies should also refine the
cell agent response to compressive and tensile profiles, potentially using
experimental results from monolayer stress microscopy (Serrano et al.,
2019), and help incorporate cell shape changes and deformation
dynamics.

Experiments to validate the whole-system stirred-tank
bioreactor model are also being set up in collaboration with
cultivated meat companies and research groups that use these
bioreactors. The ultimate intention is that each partner can
examine specific parameters of the whole-system models using
controlled experiments, after which the framework can be used to
analyze and optimize their production setup. In this way, the
modeling framework is intended to replace many expensive lab
experiments that these companies would have to run to test and
optimize their large-scale meat production facilities.

Finally, future work will incorporate simulations based on
experimental data acquired from cell lines relevant to cultured
meat production. The current model based on data from the FS-
4 cell line is meant to be a framework only, and the CMMC is
actively pursuing collaborations with cultivated meat companies to
obtain data for lamb and fish cells, to name a few.
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