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Introduction: FOLFOX and FOLFIRI chemotherapy are considered standard first-
line treatment options for colorectal cancer (CRC). However, the criteria for
selecting the appropriate treatments have not been thoroughly analyzed.

Methods: A newly developed machine learning model was applied on several
gene expression data from the public repository GEO database to identify
molecular signatures predictive of efficacy of 5-FU based combination
chemotherapy (FOLFOX and FOLFIRI) in patients with CRC. The model was
trained using 5-fold cross validation and multiple feature selection methods
including LASSO and VarSelRF methods. Random Forest and support vector
machine classifiers were applied to evaluate the performance of the models.

Results and Discussion: For the CRC GEO dataset samples from patients who
received either FOLFOX or FOLFIRI, validation and test sets were >90% correctly
classified (accuracy), with specificity and sensitivity ranging between 85%-95%. In
the datasets used from the GEO database, 28.6% of patients who failed the
treatment therapy they received are predicted to benefit from the alternative
treatment. Analysis of the gene signature suggests the mechanistic difference
between colorectal cancers that respond and those that do not respond to
FOLFOX and FOLFIRI. Application of thismachine learning approach could lead to
improvements in treatment outcomes for patients with CRC and other cancers
after additional appropriate clinical validation.
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1 Introduction

Colorectal cancer (CRC) is the most frequent malignant disease of the gastrointestinal tract,
the thirdmost frequent cancer affecting bothmen andwomen and is one of the leading causes of
cancer-related morbidity and mortality in spite of widespread, effective measures of preventive
screening, and major advances in treatment options (Fouad et al., 2018; Sung et al., 2021). In
recent decades, the overall long-term outcome of patients curatively resected has not
significantly changed. The 5-year survival rate for CRC is 63% but drops to 14% for
metastatic CRC. More than half of colorectal adenocarcinomas are still diagnosed only
when the disease involves regional or distant structures (Araghi et al., 2021). Thus, further
investigation is still needed to develop effective approaches for medical intervention.
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Chemotherapy remains one of the most used therapeutic options
for CRC patients, and is usually combined with surgery, radiotherapy,
immunotherapy, and targeted molecular therapy (Salonga et al., 2000;
Showalter et al., 2008; Zhang et al., 2020b). Advances in CRC treatment
have led to the development of two combinations of cytotoxic drugs,
FOLFIRI (FOL = Leucovorin Calcium (Folinic Acid), F = Fluorouracil
and IRI = Irinotecan Hydrochloride) and FOLFOX (FOL = Leucovorin
Calcium (Folinic Acid), F = Fluorouracil and OX = Oxaliplatin)
(Douillard et al., 2000; Pelley, 2001). These drugs have been used as
initial intensive therapy for metastatic CRC in patients with good
tolerance. Oxaliplatin and irinotecan agents have been proven to
have efficacy in the treatment of CRC. Irinotecan inactivates
topoisomerase I via its active metabolite SN38 and arrests cell
division (Bailly, 2019). Oxaliplatin, on the other hand, acts primarily
by causing inter- and intra-strand cross-links in DNA, thereby
inhibiting DNA synthesis and triggering apoptosis (Wiseman et al.,
1999; Alcindor and Beauger, 2011). The overall survival of advanced
colorectal cancer patients has been improved thanks to the availability
of these chemotherapy regimens.

In spite of advances in cytotoxic therapy, resistance to
chemotherapy remains one of the greatest challenges in long-term
management of incurable metastatic disease and eventually contributes
to death as cancer find ways to become tolerant of pharmaceutical
treatments (Dallas et al., 2009; Li et al., 2017; Mansoori et al., 2017).
Studies on predictive biomarkers useful for differentiating between
which cytotoxic agent, FOLFOX or FOLFIRI, should be used to
treat patients are currently lacking. In stage III metastatic CRC,
patients responded to FOLFOX and FOLFIRI with a 54% and 56%
response rate (Tournigand et al., 2004). In another study in patients
with advanced CRC, patients responded to FOLFOX and FOLFIRI with
a 34% and 31% response rate, respectively (Colucci et al., 2005). Given
the similar patient response rates in these studies, the criteria for
selecting an optimal drug choice for a given patient remains unclear.
Therefore, a meta-study based on predictive gene signatures for
FOLFOX and FOLFIRI is now highly desirable in a cohort of
patients treated with these regimens.

Recent advances in the ability to generate molecular data, as well as
parallel advances in the fields of artificial intelligence, specifically
machine learning (ML) (de Jong et al., 2021), have led to
remarkable opportunities to understand these resistance mechanisms
and develop personalized treatment strategies to overcome resistance
(Perez-Gracia et al., 2017; Frohlich et al., 2018). Numerous studies have
already been conducted for predicting drug-response in other cancer
types such as breast cancer (Del Rio et al., 2007). However, there is lack
of studies on the possible added value of this approach for predicting
drug response in CRC (Del Rio et al., 2007). Thus, the aim of this study
is to build machine learning models for predicting the response to
FOLFOX and FOLFIRI treatment in patients with CRC using gene
expression profiles of primary and metastatic colon cancer tissues.

2 Materials and methods

2.1 Data

In this study, the raw data (CEL-files) of the colon cancer gene
expression datasets was retrieved from the public functional
genomics data repository NCBI-GEO database (http://www.ncbi.

nlm.nih.gov/geo/last accessed on 17 September 2021), using the
getGEO function implemented in the R library GEOquery (Davis
andMeltzer, 2007). Affy package in R was used to transform the CEL
files of the tumor samples into an expression matrix (Gautier et al.,
2004). “Colon-Cancer,” “Chemotherapy,” “Expression profiling by
array,” and “Homo-sapiens” were used as keywords to query all the
experimental studies that have probed the gene expression profile
within colon tumors of patients who are responders to the drug
against those who are not responders. The chemotherapy regimens
of interest FOLFOX and FOLFIRI. This approach yielded five
different studies, from which the samples of two chemotherapy
types (FOLFOX and FOLFIRI) were separated and grouped
accordingly. Table 1 presents the summary of the expression
datasets that are included in this study.

2.2 Inclusion and exclusion criteria

The inclusion criteria in this study were set as follows: (1)
patients with colorectal cancer; (2) patients who received
FOLFOX or FOLFIRI chemotherapy regimen; (3) microarray
expression profiling datasets; (4) sample size of at least 15 for
each dataset; (5) available information about the drug response
(i.e., responder to the drug vs. non-responder to the drug). Exclusion
critieria were as follows: (1) datasets contain cell-line or xenograft
samples; (2) samples who received preoperative bevacizumab
therapy or other immunotherapy; (3) samples with missing
information about the drug type; (4) samples with missing
information about the drug response; (5) and samples who
received a drug combination of FOLFOX and FOLFIRI such
as FOLFOXIRI.

2.3 Machine learning framework

The machine learning framework used to predict the
chemotherapy response includes the followings steps: data
integration and pre-processing, data splitting using 5-fold cross
validation, and feature selection.

2.3.1 Data integration and pre-processing
The expression intensities for all genes across the samples were

background corrected and normalized using the robust multiarray
average (RMA) with the help of the probe sequence from the
package gcrma, as implemented in the BiocManager software
suite. To increase the sample size and improve the statistical
significance of the results, a minimum of two gene expression
datasets for each chemotherapy regimen were merged. Because
each platform has a different set of protocols and studies,
combining the expression datasets can result in discrepancies. As
a result, the most effective approach was to merge the datasets
produced by the same platform. Genes/probes with minor sample
variance and lowmedian expression levels were removed from RMA
data using the nsFilter function of the “genefilter” package (version
1.60.0) in R. Then, t-tests were performed in the LIMMA package to
identify differentially expressed genes (DEGs). The threshold value
for DEGs was represented by a p-value <0.05 and |log2 fold change
(FC)| ≥1. Each sample was then z-score normalized to represent the
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expression’s distribution. The feature selection was then applied to
the pre-processed differential gene expression.

2.3.2 Data splitting using 5-fold cross
validation method

The machine learning model is initially fitted on a training data
set. The model performance is then evaluated on the validation data
set. Often when the data set is small a cross-validation procedure is
used where the data is separated into a training and validation set in
several iterations to train and validate the model. A test data set is a
separate (independent) data set that has not been used at all in the
training and validation of the model.

Using the function “create folds” available in the R package
“caret”, samples were randomly split to the training and test set. The
training set is split into 5 subsets of approximately equal size.

2.3.3 Feature selection
In such large-scale machine learning applications, feature selection

is a critical step inmaximizing the benefits of big data while overcoming
the associated challenges and costs. It enhances the machine learning
application in a variety of ways, including faster computation speedwith
a smaller set of features, more accurate prediction by removing features
and avoiding overfitting, and easier interpretation because only the
most important feature set is included in the modeling process. There
are numerous feature selection methods available for condensing the
feature set. These methods can be loosely classified as filter methods,
wrapper methods, and embedded methods. In this study, filter and
embedded methods were applied to identify relevant variables
associated with FOLFOX/FOLFIRI drug response.

2.4 Variable selection using LASSO
and varSelRF

The variable selection using random forest (varSelRF) and Least
Absolute Shrinkage and Selection Operator (LASSO) methods were
employed to select the genes with the best predictive power. These
methods were chosen not only because they return a small set of
gene candidates that have high predictive power but also, they
require a minimum fine-tuning of parameters as the default
parameter values which often deliver the best performance.

The random forest variable selection (varSelRF) method uses
regression trees for classification. Bootstrap samples are used to
build the classification tree (Sharma and Dey, 2021). Every
branch of the tree has a different set of candidate variables,
and each branch’s candidate variables are chosen at random.
Bootstrap aggregation (bagging) and feature selection are
combined in this way to generate trees in RF. To obtain low-
bias trees, each tree is developed entirely, and then bagging and
random selection of variables is performed to facilitate low
correlation of the various trees. The ntree parameter was set
to its default value of 2000 and the mtry parameter was set to its
default value (Diaz-Uriarte, 2007).

LASSO is a type of regularization regression method to fit a
generalized linear model. Based on the concept of penalizing the
regression model (L1-norm), LASSO squashes the regression
coefficient for the least-contributing variable to zero (Sharma and
Dey, 2021). LASSO performance excels when the data is high-
dimensional and low-sample, and when only a few variables have
large coefficients. Numerous research has shown that LASSO is a
promising feature selection model (Hua, 2020; Ghosh Roy et al., 2021).

Using the outcomes obtained, the regression coefficients were
utilized to create a scoring system that assigns weights to the selected
signature. The formula employed for this purpose is as follows:

Prediction Score � ∑
n

i�0
βi × xi( ) (1)

In Equation 1, “n” denotes the sample size, while “β” represents
the regression coefficient associated with the selected signature (Fu
et al., 2021). The regression coefficient is obtained through LASSO
logistic regression. Additionally, “x” signifies the expression value
corresponding to the selected signature (Fu et al., 2021).

2.5 Machine learning algorithms for
classification

The R packages RandomForest and e1071 were used to train two
different machine learning algorithms: a random forest and a
support vector machine (SVM). To compare the efficacy of the
models, the following metrics were measured:

TABLE 1 Description of each dataset for two different Chemotherapy regimens. GPL96 = Affymetrix GeneChip Human Genome U133 Array (HG-U133A);
GPL570 = Affymetrix GeneChip Human Genome U133 Plus 2.0 Array (HG-U133Plus2).

GEO
accession

Platform No. of samples Title/Description

GSE19860 GPL570 40 (15 responders +25 non-
responders)

Prediction of response to FOLFOX

GSE72970 GPL570 124 (63 responders +61 non-
responders)

Molecular subtypes of metastatic colorectal cancer are predictive of patient response to chemo
and targeted therapies

GSE28702 GPL570 83 (42 responders +41 non-
responders)

CRC samples for FOLFOX therapy prediction

GSE62080 GPL570 21 (9 responders +12 non-
responders)

Gene expression signature in advanced colorectal cancer patients select drugs and response for
the use of leucovorin, fluorouracil, and irinotecan

GSE62321 GPL96 57 (26 responders +31 non-
responders)

Specific extracellular matrix remodeling signature of colon hepatic metastases
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Accuracy � TP + TN( )
TN + FN + FP + TP( ) (2)

Sensitivity � TP

TP + FN( ) (3)

Specificity � TN

TN + FN( ) (4)

In Equations 2–4, the TP, TN, FN, and FP represent true
positive, true negative, false negative, and false positive
predictions respectively made by classification model for each
chemotherapy regimen response (responders (R) denoted positive
and non-responders (NR) is denoted negative). For further
comparative analysis, the receiver operating characteristics (ROC)
curve was plotted and compared to the area under the curve (AUC)
obtained by the best models. Finally, the best machine learning
model, fine-tuned to predict FOLFOX and FOLFIRI drug response,
was applied to the test set. Thesemethods were implemented using R
language programming version 4.0.1. On an Intel Core-i9 CPU with
16 GB of RAM, and 64-bit Windows 10 configuration.

2.6 Functional enrichment analysis

To investigate the association between the predictors of our
model and cellular function, a functional enrichment analysis
was conducted using the web tool NetworkAnalyst (https://www.
networkanalyst.ca/last accessed on 15 January 2023) (Zhou et al.,
2019). NetworkAnalyst web-interface was used to visualize the
interactions among the gene products based on the protein-
protein interaction (PPI) data in the International Molecular
Exchange Consortium (IMEx) database using the default
parameters and first-order network (Shoily et al., 2021). IMEx
is a curated database containing non-redundant set of interaction
data from a broad taxonomic range of organism (Orchard et al.,
2012; Shoily et al., 2021). The gene ontology (GO) categories
including biological process (BP), molecular function (MF), and
cellular component (CC) with false discovery rate (FDR) ≤ 0.
05 were identified from the gene ontology database based on the
PPI networks derived through IMEx. The pathways that
incorporate these gene products (with false discovery rate
(FDR) ≤ 0.05) were retrieved from the Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway database based on the PPI
networks derived through IMEx (Kanehisa et al., 2017; Shoily
et al., 2021).

2.7 Biological pathway analysis

The canonical pathway enriched by differential genes was
performed using Ingenuity Pathway Analysis (IPA). IPA is a
web-based software application (Ingenuity Systems http://www.
ingenuity.com) that identifies biological pathways and functions
relevant to biomolecules of interest (He et al., 2021). A core analysis
was first constructed, and then a list of differential genes with their
probe identification, FDR value and logarithmic fold change were
uploaded to IPA (He et al., 2021). Enrichment pathways of
differential genes were generated based on the Ingenuity Pathway
Knowledge Data Base.

3 Results

Our goal was to use tumor gene expression profiles to predict
patients’ response to drugs. An overview of our framework is shown
in Figure 1. The details are included in the section of materials and
methods. A series of meta-analyses were performed to develop a
machine learning model and identify biomarkers to predict the
following: 1) FOLFOX responders vs. non-responders in all stages of
CRC, 2) FOLFOX responders vs. non-responders at early stages of
CRC, 3) FOLFOX responders vs. non-responders among patients
with metastatic CRC, 4) responders vs. non-responders in samples
who received FOLFIRI chemotherapy, 5) machine learning model
application to predict effectiveness of alternate chemotherapy
regimen All datasets in this study are identified by unique GEO
accession numbers which are provided in the material and methods
section. Each GEO submission file includes a brief overview of the
experimental paradigm as well as a link to the published report,
if available.

3.1 FOLFOX responders vs. non-responders
of CRC

The first analysis of colorectal cancer patients identified
significant genes separating FOLFOX responders from non-
responders. In this step, the stage of the disease was not a
significant factor. This part of analysis was conducted to
compare genes found in this study to those identified in
previous studies.

The GSE28702, GSE19860, and GSE72970 datasets which were
generated by the Affymetrix microarray GPL570 platform, were
combined to obtain a total of 67 non-responders and 65 responders
of CRC patients treated with FOLFOX chemotherapy. The
samples who received FOLFIRI drug were removed from
GSE72970 dataset before the start of the analysis. The cross-
validation method split the combined dataset into a training set
consisting of a total of 105 (53 non-responders and 52 responders)
samples and validation set consisting of a total of 27 (14 non-
responders and 13 responders) samples.

After integrated bioinformatics analysis, a total of
164 differentially expressed genes (DEGs) between pre-
chemotherapy tissue samples of non-responders and responders
of CRC patients treated with FOLFOX were identified including
142 upregulated genes and 22 downregulated genes.

Following the identification of DEGs, the feature selection
methods, LASSO and varSelRF, were applied to extract
informative genes that have maximum relevance among DEGs.
LASSO method identified 12 genes that considered to be relative
to the drug response prediction. These genes were identified by
selecting the optimal λ that was identified by performing the ten-fold
cross-validations. The value of λ was determined by the minimum
cross-validation error and was denoted as λmin. In this case, the
λmin was equal to 0.0651, resulting in 12 non-zero coefficients
including CFAP92, DCDC2B, LTA4H, AP5Z1, LRRC3, SH3GLB1,
CARM1, TRIM3, PPDPF, GPN3, GTF2A1, HELZ2 (Figures 2A,B).
The expression of these genes was then used to evaluate the
prediction score generated by the identified 12-genes that
differentiate between the group of responders and non-
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responders. The following formula was used to calculate the
prediction score of the identified genes:

Prediction Score � CFAP92 × 0.0707023790552402( )
+ LTA4H × −0.0351545549822743( )
+ SH3GLB1 × −0.0408850596289773( )
+ CARM1 × 0.383628162287505

+ PPDPF × 0.080928167572473

+ GPN3 × 0.0586206766352588

+ TRIM3 × 0.161462309025774

+HELZ2 × 0.01687976195595

+ LRRC3 × 0.438014842725689

+ LOC100652999 × 0.14063710120844

+ GTF2A1 × 0.0776912702849236

+ AP5Z1 × −0.022687801677234( ) (5)

The results showed that these identified genes were able to
differentiate between the group of responders and non-responders.
As shown in the figure, the responders have higher prediction scores
compared to the non-responders. This was also elucidated in the plot
that represents the validation set (Figures 2C,D).

In the meantime, the varSelRF method identified 11 genes
including, PIDD1, CFAP92, LTA4H, AP5Z1, SH3GLB1, CARM1,

TRIM3, PPDPF, GPN3, GTF2A1, HELZ2. Using these methods, the
genes were continuously evaluated. The gene set with best prediction
performance was used for further analysis. Ten genes were identified
as relevant genes from both methods, including Cilia And Flagella
Associated Protein 92 (CFAP92), Leukotriene A4 Hydrolase
(LTA4H), SH3 Domain Containing GRB2 Like, Endophilin B1
(SH3GLB1), Adaptor Related Protein Complex 5 Subunit Zeta 1
(AP5Z1), Coactivator Associated Arginine Methyltransferase 1
(CARM1), Tripartite Motif Containing 3 (TRIM3), Pancreatic
Progenitor Cell Differentiation And Proliferation Factor
(PPDPF), GPN-Loop GTPase 3 (GPN3), General Transcription
Factor IIA Subunit 1 (GTF2A1), and Helicase With Zinc Finger
2 (HELZ2). From the differential expressed genes analysis, the genes
CFAP92, AP5Z1, CARM1, TRIM3, PPDPF were downregulated and
the LTA4H, SH3GLB1, GPN3, GTF2A1,HELZ2 geneswere upregulated.

The assessment of model performance was performed in
training and validation sets according to accuracy, sensitivity,
specificity, and AUC. As shown in Table 2, the top machine
learning algorithm was random forest, though there was no
significant difference between random forest and
SVM algorithm.

For the training set, random forest algorithm achieved an
accuracy of 1 with 95% CI ranging between 0.95 and 1. The
sensitivity and specificity were equal to 1. Support vector
machine, on the other hand, achieved an accuracy of 0.95 with

FIGURE 1
Amulti-stage analysis methodology is applied in this study. Gene expression profiling datasets of human colorectal tissues were collected from the
NCBI-GEO database. The datasets were analyzed using the robust multi-array average method in R to identify differentially expressed genes (DEGs).
Feature selection methods were performed using LASSO and varSelRF methods to identify gene signature related to each chemotherapy drug
(i.e., FOLFOX or FOLFIRI). The performance of the machine learning models was evaluated using random forest and support vector machine
algorithms. Functional enrichment analysis of the gene signatures was performed to identify significantly enriched pathways and Gene Ontology (GO)
terms. Protein-protein interaction networks were reconstructed around the gene signatures.

Frontiers in Physiology frontiersin.org05

Amniouel and Jafri 10.3389/fphys.2023.1272206

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1272206


95% CI ranging between 0.77 and 0.95. The sensitivity and
specificity are equal to 0.92 and 0.84 respectively (Table 2).

For the validation set, random forest algorithm had an accuracy
of 1 with 95% CI ranging between 0.95 and 1. The sensitivity,
specificity, and area under curve (AUC) are equal to 1. The support
vector machine algorithm achieved an accuracy of 0.96 with 95% CI
ranging between 0.75 and 1. The sensitivity, specificity, and AUC are
equal to 0.92, 1, 0.96 respectively (Table 2).

The protein-protein interaction (PPI) networks generated
through IMEx indicate (direct and indirect) interactions among
these gene encoding proteins (Supplementary Figure S1). IMEx
consortium annotates experimental interaction evidence directly

from the source publications and provides curated non-
redundant set of physical and molecular interaction data (Shoily
et al., 2021). As shown in Supplementary Figure S1, the PPI network
comprises 208 nodes (genes with connections to other genes) and
216 edges (connections between nodes) with 5 out of 10 genes being
hub genes (genes with many connections to other genes). For
instance, CARM1, LTA4H, GTF2A1, TRIM3, and SH3GLB1 had
the highest number of interactions with other genes. Based on the
PPI network predicted using IMEx, the signature genes encoding
proteins have no known direct functional effect on each other.
CARM1 connects to LTA4H, TRIM3, SH3GLB1, and GPN3 via
ELVAL1, UBE2D4, CUL2, and CUL5 respectively. CARM1 also

FIGURE 2
Construction of LASSO model for patients will all stages of CRC who received FOLFOX therapy. (A) Ten-fold cross-validation for tuning parameter
selection in the LASSO model. (B) LASSO coefficient profiles of the training set. (C) The prediction score of the classifier (Equation 5) was higher in
responder than in non-responder samples in the training set. (D) The prediction score of the classifier was higher in responder than non-responder
samples in the validation set.

TABLE 2 Comparison of different classification methods on training and validation sets using the combination of LASSO and varSelRF method.

Model FOLFOX (LASSO & VarSelRF)

Random forest (RF) Support vector machine (SVM)

Training (n = 105) Accuracy 1 0.92

95% CI (0.95, 1) (0.77, 0.95)

Sensitivity 1 0.92

Specificity 1 0.84

Validation (n = 27) Accuracy 1 0.96

95% CI (0.95, 1) (0.75, 1)

Sensitivity 1 0.92

Specificity 1 1

AUC 1 0.96
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connects to GTF2A1 through TERF2, CREB1, and HNRNPA1. In
addition, LTA4H connects to GTF2A1 via SIRT1, whereas GPN3
connects to SH3GLB1 through UBD gene encoding protein. TRIM3
and CARM1 genes are connected via UBE2D4. GPN3, SH3GLB1,
AP5Z1, HELZ2, PPPDPF, and GTF2A1 interact directly with UBC.

3.2 FOLFOX responders vs. non-responders
at early stages of CRC

Further subgroup analysis was carried out because some of
the datasets had a combination of primary and metastatic lesions.
In this analysis, only primary tumor samples were focused on
identifying genes separating responders from non-responders in
the early stages of cancer. The GSE28702 dataset derived from
GPL570 consisted of 56 primary CRC samples from patients who
had received first-line FOLFOX-based treatment. The metastasis
samples from the dataset were excluded in this analysis. 45
(18 non-responders and 27 responders) samples from the
datasets were used as a training set, while the remaining 11
(7 non-responders and 4 responders) samples were used as a
validation set. Due to low sample size and skewness of individual
gene expression levels in the training dataset, the bootstrap t-test
was implemented to reduce the likelihood of false positives. A
gene with an FDR≤ 0.05 and |log2FC| ≥1 was identified as
differentially expressed gene (DEG).

After integrated bioinformatics analysis, 71 differentially
expressed genes (DEGs) between pre-chemotherapy tissue
samples of non-responders and responders of CRC patients
treated with FOLFOX were identified including 55 upregulated
genes and 16 downregulated genes.

Following the identification of DEGs, the feature selection
methods, LASSO and varSelRF, were applied to select gene
signatures among DEGs. The LASSO method identified 10 genes

that are relative to the drug response prediction. These genes were
identified by selecting the optimal λ that was identified by
performing the ten-fold cross-validations. The value of λ was
determined by the minimum cross-validation error and was
denoted as λmin. In this case, the λmin was equal to 0.0605,
resulting in 10 non-zero coefficients including FOXA1, KRT23,
GRM8, HOXA11, HOXA10, ABCB1, LEFTY1, CHRM3, OLMF4,
LYZ (Figures 3A,B). The expression of these genes was then used to
evaluate the prediction score generated by the identified 10-genes
that differentiate between the group of responders and non-
responders. The following formula was used to calculate the
prediction score of the identified genes:

Prediction Score � FOXA1 × 0.0252272039743314

+ KRT23 × 0.147656847485106

+ GRM8 × 0.0609620384129753

+HOXA11 × −0.0329157407927049( )
+HOXA10 × 0.0501485865470492

+ ABCB1 × 0.0545018052768938

+ LEFTY1 × 0.0802540599090828

+ CHRM3 × −0.0342169746495821( )
+OLMF4 × 0.115227059404438

+ LYZ × 0.0685852089429017 (6)

The results showed that these identified genes were able to
differentiate between the group of responders and non-
responders. As shown in the figure, the responders have
higher prediction scores compared to the non-responders.
This was also elucidated in the plot that represents the
validation set (Figures 3C,D).

The varSelRF method also identified the same 10 genes. Using
these methods, the genes were continuously evaluated and the gene

FIGURE 3
Construction of LASSOmodel. (A) Ten-fold cross-validation for tuning parameter selection in the LASSOmodel. (B) LASSO coefficient profiles of the
training set. (C) The prediction score of the classifierclassifier (Equation 6) was higher in responder than in non-responder samples in the training set. (D)
The prediction score of the classifier was higher in responder than non-responder samples in the validation set.
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set that received the best prediction performance was used for
further analysis. Ten genes were identified as relevant genes from
both methods, including Forkhead Box A1 (FOXA1), Keratin 23
(KRT23), (Glutamate Metabotropic Receptor 8 (GRM8),
(Homeobox A11 (HOXA11), (Homeobox A10 (HOXA10), ATP
Binding Cassette Subfamily B Member 1 (ABCB1), Left-Right
Determination Factor 1 (LEFTY1), Cholinergic Receptor
Muscarinic 3 (CHRM3), Olfactomedin 4 (OLMF4), and
Lysozyme (LYZ).

The assessment of model performance was performed in
training and validation sets according to accuracy, sensitivity,
specificity, and AUC. As shown in Table 3, the top machine
learning algorithm was random forest.

For the training set, random forest algorithm achieved an
accuracy of 1 with 95% CI ranging between 0.92 and 1. The
sensitivity and specificity were equal to 1. Support vector
machine, on the other hand, achieved an accuracy of 0.86 with
95% CI ranging between 0.73 and 0.95. The sensitivity and
specificity are equal to 0.77 and 0.92 respectively (Table 3).

For the validation set, random forest algorithm had an accuracy
of 0.99 with 95% CI ranging between 0.72 and 1. The sensitivity,
specificity, and area under curve (AUC) are equal to 0.99, 0.98, and
0.99 respectively. The support vector machine algorithm achieved an
accuracy of 0.90 with 95% CI ranging between 0.59 and 1. The
sensitivity, specificity, and AUC are equal to 0.86, 1,
0.93 respectively (Table 3).

The protein-protein interaction (PPI) networks generated
through IMEx indicate interactions (direct and indirect) among
the gene encoding proteins related with resistance to the FOLFOX
regimen in patients with early-stage CRC (Supplementary Figure
S2). As shown in Supplementary Figure S2, the PPI network
comprises 114 nodes and 112 edges. 6 out of 10 genes formed
hub genes. For instance, HOXA10, HOXA11, ABCB1, FOXA1, and
LYZ had the highest number of protein interactions. Based on the
PPI network predicted using IMEx, the signature genes have no
known direct functional effect on each other. HOXA10 connects to
HOXA11 via ASXL1, EZH2, and HDAC2. On the other hand,
HOXA10 connects to ABCB1 via EP300 and ESR1. Moreover,

LYZ connects to FOXA1 via the gene encoding protein Jun. In
addition, ABCB1, LEFTY1, KRT23, GRM8, LYZ, FOXA1, and
HOXA11 interact directly with UBC.

3.3 FOLFOX responders vs. non-responders
among patients with metastatic CRC

This analysis focused on selecting genes separating responders
from non-responders in metastatic CRC patients. The
GSE19860 and GSE72970 datasets were used in this step along
with the metastatic samples from the GSE28702 dataset. These three
datasets, which were generated by the GPL570 platform, were
combined to yield a total of 42 non-responders and
34 responders of metastatic CRC patients with mFOLFOX
chemotherapy. A gene with an FDR≤ 0.05 and |log2FC| ≥1 was
identified as differentially expressed gene (DEG). Following datasets
preprocessing, 39 differential expressed genes (DEGs) between pre-
chemotherapy tissue samples of non-responders and responders of
CRC patients treated with FOLFOX were identified including
18 upregulated genes and 20 downregulated genes.

Following the identification of DEGs, the feature selection
methods, LASSO and varSelRF, were applied to select gene
signatures among DEGs. The LASSO method identified 23 genes
that are relative to the drug response prediction. These genes were
identified by selecting the optimal λ that was identified by
performing the ten-fold cross-validations. The value of λ was
determined by the minimum cross-validation error and was
denoted as λmin. In this case, the λmin was equal to 0.0349,
resulting in 23 non-zero coefficients including TACSTD2, IFI44L,
REEP1, WIF1, PPAT, IGF1, LY6G6D, CDKN1C, PPFIBP1, SFRP2,
IFIT1, CMPK2, ZFTA, RETNLB, FER1L3, HUNK, GGTA1, ACSL6,
LINC02067, LRRC69, RSAD2, LOC100507477, and MX1. (Figures
4A,B). The expression of these genes was then used to evaluate the
prediction score generated by the identified 23-genes that
differentiate between the group of responders and non-
responders. The following formula was used to calculate the
prediction score of the identified genes:

TABLE 3 Comparison of different classification methods on training and validation using the combination of LASSO and varSelRF method.

Model FOLFOX (LASSO & VarSelRF)

Random forest (RF) Support vector machine (SVM)

Training (n = 45) Accuracy 1 0.86

95% CI (0.92, 1) (0.73, 0.95)

Sensitivity 1 0.77

Specificity 1 0.92

Validation (n = 11) Accuracy 0.99 0.90

95% CI (0.72, 1) (0.59, 1)

Sensitivity 0.99 0.86

Specificity 0.98 1

AUC 0.99 0.93
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Prediction Score � TACSTD2 × 0.00270945684650097

+ IQGAP2 × −0.00847808418322799( )
+ REEP1 × 0.00605656057956512

+ AKR1B10 × −0.0203366801255001( )
+ PPAT × 0.0201089896480733

+ IGF1 × −0.0284545651292782( )
+ CDKN1C × 0.00741111664384363

+ PPFIBP1 × −0.0317847003508003( )
+ EEF1D × 0.141850458165839

+ BEX4 × −0.00176740773798336( )
+ PLEC × 0.0222352477700212

+ ZFTA × 0.0102617253057372

+ USH1C × 0.0545082812981942

+ FER1L4 × 0.0359442555529826

+ ABI3BP × −0.0755005720787851( )
+ GGTA1 × −0.00944239443492612( )
+ CREB5 × 0.0351766533783486

+ LINC02067 × 0.00907100821483412

+ LRRC69 × 0.0238555594546346

+ RAB3IP × 0.000169633620952202

+HSD17B6 × −0.00214863965806719( ) (7)
The results showed that these identified genes were able to

differentiate between the group of responders and non-responders.
As shown in the figure, the responders have higher prediction scores
compared to the non-responders. This was also elucidated in the
plot that represents the validation set (Figures 4C,D).

The varSelRF method identified 14 genes including IFI44L, WIF1,
IGF1, LY6G6D, CDKN1C, SFRP2, IFIT1, CMPK2, RETNLB, HUNK,
ACSL6, RSAD2, LOC100507477, and MX1. Using these methods, the
genes were continuously evaluated. The gene set with best prediction
performance used as the optimal gene set for further analysis. Twelve
genes were identified as relevant genes from both methods, including
Interferon Induced Protein 44 Like (IFI44L), WNT Inhibitory Factor 1
(WIF1), Lymphocyte Antigen 6 Family Member G6D (LY6G6D),
Secreted Frizzled Related Protein 2 (SFRP2), Resistin Like Beta
(RETNLB), Cytidine/Uridine Monophosphate Kinase 2 (CMPK2),
Acyl-CoA Synthetase Long Chain Family Member 6 (ACSL6),
Radical S-Adenosyl Methionine Domain Containing 2 (RSAD2),
and lncRNA (LOC100507477), Interferon Induced Protein With
Tetratricopeptide Repeats 1 (IFIT1), MX Dynamin Like GTPase
1 (MX1), Hormonally Upregulated Neu-Associated Kinase (HUNK).

The assessment of model performance was performed in
training and validation sets according to accuracy, sensitivity,
specificity, and AUC. As shown in Table 4, the top machine
learning algorithm was random forest.

For the training set, random forest algorithm achieved an
accuracy of 1 with 95% CI ranging between 0.94 and 1. The
sensitivity and specificity were equal to 1. Support vector
machine, on the other hand, achieved an accuracy of 0.96 with
95% CI ranging between 0.84 and 0.99. The sensitivity and
specificity are equal to 0.86 and 0.91 respectively (Table 4).

For the validation set, random forest algorithm had an accuracy
of 0.93 with 95% CI ranging between 0.74 and 0.94. The sensitivity,
specificity, and area under curve (AUC) are equal to 0.1, 0.87, and
0.92 respectively. The support vector machine algorithm achieved an
accuracy of 0.91 with 95% CI ranging between 0.83 and 0.95. The
sensitivity, specificity, and AUC are equal to 0.9, 0.83,
0.91 respectively (Table 4).

FIGURE 4
Construction of LASSOmodel. (A) Ten-fold cross-validation for tuning parameter selection in the LASSOmodel. (B) LASSO coefficient profiles of the
training set. (C) The prediction score of the classifier (Equation 7) was higher in responder than in non-responder samples in the training set. (D) The
prediction score of the classifier was higher in responder than non-responder samples in the validation set.
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The protein-protein interaction (PPI) networks generated
through IMEx indicate (direct and indirect) interactions among
these gene encoded proteins (Supplementary Figure S3). As shown
in Supplementary Figure S3, the PPI network comprise 92 nodes and
93 edges. 4 out of 12 genes formed hub genes. For instance, IFIT1,
MX1, and HUNK had the highest number of protein interactions
(Supplementary Figure S3). Based on the PPI network predicted
using IMEx, the signature proteins have no known direct functional
effect on each other. IFIT1 connects toMX1 via ISG15 and IRF3. On
the other hand, IFIT1 connects to RSAD2 via IRF9, CDK9, POLR2F
and STAT1. In addition,HUNK, LEFTY1,CMPK2, RETNLB, SFRP2,
WIF1, and MX1 interact directly with UBC.

3.4 Responders vs. non-responders samples
who received FOLFIRI chemotherapy

The fourth analysis of colorectal cancer patients identified
significant genes separating FOLFIRI responders from non-
responders for metastatic stages of cancer. The training set, and
validation set consisted of 66 and 15 CRC patients, respectively,
from the combined dataset (GSE62080 and GSE72970) derived from
GPL570 for patients who received first-line FOLFIRI-based treatment.
These datasets included samples for a total of 45 non-responders and
36 responders of metastatic CRC samples. The independent test data
included 57 patients (31 non-responders and 26 responders) from the

TABLE 4 Comparison of different classification methods on training and validation sets after features selection using LASSO and VarSelRF method.

Model mFOLFOX (LASSO & VarSelRF)

Random forest (RF) Support vector machine (SVM)

Training (n = 60) Accuracy 1 0.96

95% CI (0.94, 1) (0.84, 0.99)

Sensitivity 1 1

Specificity 1 0.86

Validation (n = 16) Accuracy 0.93 0.91

95% CI (0.74, 0.94) (0.8303, 0.95)

Sensitivity 1 0.9

Specificity 0.87 0.83

AUC 0.92 0.91

FIGURE 5
Construction of LASSOmodel. (A) Ten-fold cross-validation for tuning parameter selection in the LASSOmodel. (B) LASSO coefficient profiles of the
training set. (C) The prediction score of the classifier (Equation 8) was higher in responder than in non-responder samples in the training set. (D) The
prediction score of the classifier was higher in responder than non-responder samples in the validation set.
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dataset GSE62321 derived from the platform Affymetrix Human
Genome U133B Array (GPL97).

Following the identification of DEGs, the feature selectionmethods,
LASSO and varSelRF, were applied to select gene signatures among
DEGs. The LASSO method identified 34 genes that are relative to the
drug response prediction. These genes were identified by selecting the
optimal λ that was identified by performing the ten-fold cross-
validations. The value of λ was determined by the minimum cross-
validation error and was denoted as λmin. In this case, the λmin was
equal to 0.0210, resulting in 34 non-zero coefficients including OGN,
NRP2, SFRP2, ABI3BP, MND1, CTHRC1, FBXO32, AMOTL1,
RNA45SN5, DDR2, BOC, MAP1B, CLMP, FNDC1, GLT8D2, SLIT2,
PAX8. AS1, AKAP12, CACNA2D1, PRKG1, PCDH7, CD36, COL1A2,
LINC01614, LEMD1, PI15, PTGR2, COL3A1, RNF183,MIX23, CDH11,
C3orf80, and SERPINB9 (Figures 5A,B). The expression of these genes
was then used to evaluate the prediction score generated by the
identified 34-genes that differentiate between the group of
responders and non-responders. The following formula was used to
calculate the prediction score of the identified genes:

Prediction Score � OGN × −0.026747485( ) + NRP2 × −0.479830846( )
+ SFRP2 × −0.008852721( )
+ ABI3BP × −0.251862481( )
+MND1 × −0.189794013( )
+ SLIT2 × −0.158823987( )
+ FBXO32 × 0.378204031

+ RNA45SN5 × −0.054747404( )
+ CAB39L × 0.249095948 + BOC × −0.077415537( )
+MAP1B × 0.301174128 + CLMP × 0.052730754

+ FNDC1 × −0.023013935( )
+ GLT8D2 × −0.21784962( )
+ AMOTL1 × 0.018417206

+ PAX8.AS1 × −0.04543003( )
+ AKAP12 × 0.876734016

+ CACNA2D1 × 0.12242411

+ COL1A2 × 0.018402322

+ PCDH7 × −0.318842155( )
+ CD36 × −0.104574686( )
+ LINC01614 × 0.039000746

+ LEMD1 × −0.228052347( ) + PI15 × 0.005342257

+ PTGR2 × −0.548660753( )
+ COL3A1 × 0.588575905 + RNF183 × 0.035670237

+ DDR2 × 0.02476893 + CDH11 × 0.232601528

+ C3orf80 × 0.285287459

+ CTHRC1 × −0.092173245( )
(8)

The results showed that these identified genes were able to
differentiate between the group of responders and non-responders.
As shown in the figure, the responders have higher prediction scores
compared to the non-responders. This was also elucidated in the
plot that represents the validation set (Figures 5C,D).

The varSelRF method identified 14 genes including SFRP2,MND1,
CTHRC1, AMOTL1, DDR2, FNDC1, GLT8D2, SLIT2, AKAP12, CD36,
COL1A2, PTGR2,COL3A1,CDH11. Using these methods, twelve genes

were identified including Angiomotin Like 1 (AMOTL1), Collagen
Triple Helix Repeat Containing 1 (CTHRC1), Fibronectin Type III
Domain Containing 1 (FNDC1), Collagen Type I Alpha 2 Chain
(COL1A2), Discoidin Domain Receptor Tyrosine Kinase 2 (DDR2),
Slit homolog 2 (SLIT2), Cadherin 11 (CDH11), Collagen Type III
Alpha 1 Chain (COL3A1), A-Kinase Anchoring Protein 12 (AKAP12),
Secreted Frizzled Related Protein 2 (SFRP2), Prostaglandin Reductase 2
(PTGR2), and cluster of differentiation 36 (CD36).

The assessment of model performance was performed in
training and validation sets according to accuracy, sensitivity,
specificity, and AUC. As shown in Table 5, the top machine
learning algorithm was random forest.

For the training set, random forest algorithm achieved an
accuracy of 1 with 95% CI ranging between 0.94 and 1. The
sensitivity and specificity were equal to 1. Support vector
machine, on the other hand, achieved an accuracy of 0.96 with
95% CI ranging between 0.84 and 0.99. The sensitivity and
specificity are equal to 0.86 and 0.93 respectively (Table 5).

For the validation set, random forest algorithm had an accuracy
of 0.93 with 95% CI ranging between 0.74 and 0.94. The sensitivity,
specificity, and area under curve (AUC) are equal to 1, 0.87, and
0.93 respectively. The support vector machine algorithm achieved an
accuracy of 0.93 with 95% CI ranging between 0.83 and 0.95. The
sensitivity, specificity, and AUC are equal to 0.95, 0.86,
0.93 respectively (Table 5).

For the validation set, random forest algorithm had an accuracy
of 0.96 with 95% CI ranging between 0.87 and 0.99. The sensitivity,
specificity, and area under curve (AUC) are equal to 0.89, 0.92, and
0.94 respectively. The support vector machine algorithm achieved an
accuracy of 0.96 with 95% CI ranging between 0.87 and 0.99. The
sensitivity, specificity, and AUC are equal to 0.89, 0.93,
0.93 respectively (Table 5).

The protein-protein interaction (PPI) networks generated
through IMEx indicate (direct and indirect) interactions among
these gene encoded proteins (Supplementary Figure S4). As shown
in Supplementary Figure S4, the PPI network comprises 114 nodes
and 112 edges with 5 out of 10 genes being hub genes. For instance,
CD36, AKAP12, AMOTL1, and COL1A2 have the highest number of
hub genes. Based on the PPI network predicted using IMEx, the
signature proteins have no known direct functional effect on each
other. CD36 connects to COL1A2 via PXN gene encoded protein.
COL3A1 also connects to COL1A2 via SP1, MYOC, FMOD, ASPN,
and MXRA5. AKAP12 connects to CDH11 via CTNNB1 and to
DDR2 via EGFR. In addition, SFRP2, SLIT2, AKAP12, and CD11
interact directly with CTNNB1. On the other hand, AMOTL1,
COL1A2, DDR2, AKAP12, and SLIT2 interact directly with UBC.

3.5 Machine learning model application to
predict effectiveness of alternate
chemotherapy regimen

In the analysis above, the genes that successfully classified
responders and non-responders for FOLFOX differed from the
genes that successfully classified responders and non-responders
for FOLFIRI except for one gene that was present in both, namely,
secreted frizzled related protein 2 (SFRP2). This suggests that there
might be different underlying mechanisms involved (consistent with
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the two therapies differing in cellular targets) and, consequently,
patients who did not respond to FOLFOX might respond to
FOLFIRI and vice versa. When the Random Forest model for the
FOLFIRI data set was applied to the prediction of cases of colon
cancer treated with the FOLFOX regimen, the results show that 25 of
56 (44.6%) primary CRC patients who did not respond to FOLFOX
would respond to FOLFIRI and that 20 of 76 samples (26.3%) of
metastatic CRC patients who did not respond to FOLFOX are
predicted to respond to FOLFIRI (Table 6). When the FOLFOX
training model for metastatic CRC was applied to the prediction of
cases of colon cancer samples treated with the FOLFIRI regimen, the
results showed 25 of 81 (30.9%) patients who did not respond to
FOLFIRI would respond to FOLFOX. Applying the FOLFOX
training model for primary CRC to the FOLFIRI cases, 5 of 81
(6.2%) patients who did not respond to FOLFIRI are predicted to
respond to FOLFOX. Assuming 94% accuracy for the FOLFOX
model and 96% accuracy for the FOLFIRI model, a Chi-squared test
shows that these results are significant at the p > 0.00001 level. This
analysis predicts that it is likely that 28.6% of patients on average
that failed one drug treatment regimen would have responded to the
other treatment regimen. However, further clinical validation would
be needed before this could influence clinical care.

4 Discussion

FOLFOX and FOLFIRI are combination chemotherapies that
have been used as a first-line treatment for patients with late-stage
colon cancer. Previous studies have shown FOLFOX and FOLFIRI
to be ~52% and ~39% effective, respectively (Giacchetti et al., 2000;
Neugut et al., 2019). Though these regimens can significantly extend
the median overall survival up to 15 months, many individuals do
not achieve long-term clinical benefit with a given treatment
(Goldberg, 2006). Since these therapies target different cell
mechanisms, there is the possibility that the actual responders
may be different between the two drugs. Thus, improving
methods of identifying patients who would respond better to
these drugs would help oncologists determine optimum
treatment regimens for their patients. It is important to
determine whether or not the patient will respond to the
chemotherapy treatment not only to increase survival but also to
minimize the sometimes severe side effects of agents such as
FOLFOX and FOLFIRI.

Gene-expression profiles have the potential to predict cancer
patient outcome and drug response in comparison to the
conventional clinical and pathological techniques (Gordon et al.,
2003; Nutt et al., 2003; Hess et al., 2006; Del Rio et al., 2007;
Parissenti et al., 2007). In contrast to the numerous studies to
identify the estimation of responders to anticancer drugs using
expression profiling in other cancer types such breast and
ovarian cancer, only a few such studies have been conducted in
colorectal cancer (Del Rio et al., 2007; Nannini et al., 2009; Tsuji
et al., 2012; Lu et al., 2020). A direct comparison with a previously
published machine learning model on the same dataset indicates
that the performance of the models presented in this paper is
superior in predicting FOLFOX and/or FOLFIRI drug response.
Tsuji and co-workers identified a signature consisting of 14 genes
using random forest embedded selection that was able to predict

FOLFOX responders in a sample size of 83 patients (Tsuji et al.,
2012). Using these genes, RF classifier was able to correctly classify
21 of 23 responders (91.3%) and 22 of 23 non-responders (95.6%) in
the training set, with an accuracy of 69.2% in 29 independent test
samples (Tsuji et al., 2012). Also, an older study by Del Rio and co-
workers identified 14 genes for predicting response to FOLFIRI,
although it included only 21 patients (Del Rio et al., 2007).

The purpose of this study was to identify gene signatures that
could predict the response to FOLFOX and FOLFIRI in patients
with early stage and metastatic CRC. To determine the gene
signature for response prediction from gene expression profiling,
significant differentially expressed genes (DEGs) were first selected.
The DEGs were filtered using the variable selection methods
including LASSO and varSelRF. The performance of the models
was evaluated using two machine learning classifiers, RF and SVM.
Overall, the machine learning model with enhanced feature selection
achieved 94%–96% accuracy for predicting the response of patients
to FOLFOX or FOLFIRI using retrospective cancer patient data
available in public datasets. These results were held for data sets that
were not part of the training data. Furthermore, for those patients
that did not respond to FOLFOX, 35% are predicted as FOLFIRI
responders and for those patients that did not respond to FOLFIRI
18% are predicted as FOLFOX responders. This suggests that the
biomarkers identified here can help select which chemotherapy
regimen to use on patients after additional validation studies.

4.1 Random forests machine learning
models outperform SVM in these studies

In the machine learning analysis, the random forest models
performed better than the support vector machine models in almost
all models. Themachine learning literature specifies that random forests
handle noisy data and outliers better than SVMs (Cherkassky and Ma,
2004; Goldstein et al., 2011; Wang and Li, 2017; Sabzekar and
Hasheminejad, 2021). This is due to several properties of the
random forest method as described by Brieman in 2001 (Breiman,
2001). First, random forest has been identified as the best method for
low sample size and a large number of features (Breiman, 2001). Second,
Brieman demonstrated that random forests do not overfit with and
increasing number of trees. The accuracy simply stops increasing as the
number of trees increases Finally, random forests were described to be
robust with respect to noise and that randomness in large data sets can
actually increases accuracy in classification in contrast to regression
where randomness can decrease accuracy. In addition, while both
algorithms can model non-linear relationships, random forest excels
in naturally capturing these relationships compared to SVM
(Cherkassky and Ma, 2004; Goldstein et al., 2011; Wang and Li,
2017; Sabzekar and Hasheminejad, 2021). The latter achieves non-
linearity using kernel functions, a process that can sometimes pose
challenges in selecting the appropriate kernel and tuning its parameters
(Cherkassky and Ma, 2004; Sabzekar and Hasheminejad, 2021).
Furthermore, random forests tend to demonstrate robust
performance with small size datasets, while SVMs might require a
larger volume of data to achieve effective generalization, especially when
dealing with complex, high-dimensional problems (Cherkassky and
Ma, 2004; Goldstein et al., 2011; Wang and Li, 2017; Sabzekar and
Hasheminejad, 2021).
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4.2 Differences in gene signatures

The chemotherapy agent FOLFOX consists of leucovorin calcium
(folinic acid), fluorouracil, and oxaliplatin. FOLFIRI on the other hand
consists of leucovorin calcium (folinic acid), fluorouracil, and
irinotecan. Leucovorin enhances fluorouracil binding and inhibition
of thymidylate synthase (Rustum, 1990). Thymidylate synthase is
critical for the synthesis of 2′-deoxythymidine-5′-monophosphate

which is need for DNA synthesis (Rose et al., 2002). Oxaliplatin
binds DNA to disrupt DNA synthesis and transcription (Arango
et al., 2004). Histone H3 is coupled to DNA synthesis (Tagami
et al., 2004). In the FOLFOX gene expression Histone H3 is
activated and serves as a hub for interactions for many of the
proteins that are under expressed in responders vs. non-responders.
The patients that are predicted to be sensitive to FOLFOX have
enhanced DNA synthesis through active histone H3 and the

TABLE 5 Comparison of different classification methods on training, validation, and independent test set after feature selection using LASSO and VarSelRF
method.

Model mFOLFIRI (LASSO & VarSelRF)

Random forest (RF) Support vector machine (SVM)

Training (n = 66) Accuracy 1 0.96

95% CI (0.94, 1) (0.84, 0.99)

Sensitivity 1 1

Specificity 1 0.86

Validation (n = 15) Accuracy 0.93 0.93

95% CI (0.74, 0.94) (0.83, 0.95)

Sensitivity 1 0.95

Specificity 0.87 0.86

AUC 0.93 0.93

Independent
Test (n = 57)

Accuracy 0.96 0.96

95% CI (0.87, 0.99) (0.87, 0.99)

Sensitivity 0.89 0.89

Specificity 0.92 0.93

AUC 0.94 0.93

TABLE 6 Prediction of alternative therapy efficacy.

Machine Learning Model Patient Data

FOLFOX responder(Primary) FOLFOX non-responder(Primary)

Responder with FOLFIRI model 8 (14.3%) 25 (44.6%)

Non-responder with FOLFIRI model 23 (41.8%) 0 (0.0%)

FOLFOX responder(metastasis) FOLFOX non-responder(metastasis)

Responder with FOLFIRI model 15 (19.7%) 20 (26.3%)

Non-responder with FOLFIRI model 19 (25%) 22 (28.9%)

FOLFIRI responder FOLFIRI non-responder

Responder with FOLFOX(metastasis) model 12 (14.8%) 25 (30.09%)

Non-responder with FOLFOX(metastasis) model 24 (29.6%) 20 (24.7%)

FOLFIRI responder FOLFIRI non-responder

Responder with FOLFOX(primary) model 19 (23.4%) 5 (6.2%)

Non-responder with FOLFOX(primary) model 26 (32.09%) 40 (49.3%)

The numbers in bold indicate the patients that would have responded to the alternate therapy as predicted by the model.
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oxaliplatin mitigates this effect through disruption of DNA synthesis.
Irinotecan targets topoisomerase I which is essential for proper DNA
topology during replication and transcription (Kciuk et al., 2020).
Topoisomerase I interacts with c-Jun which is involved cell
proliferation observed in colorectal cancer (Kciuk et al., 2020).
Analysis of the gene signatures used for classification in the machine
learning models suggest how these individual genes relate to
chemotherapy response.

Differences were observed in the genes selected to classify
responder to non-responder for FOLFOX when comparing
patients with all stages of colorectal cancer, patients with early-
stage colorectal cancer and patients with metastatic colorectal
cancer. It has been established that the gene expression profiles
differ for early-stage and metastatic colorectal cancer (Poturnajova
et al., 2021; Peixoto et al., 2023). Figure 6 compares the log fold
change and adjusted p-values for genes selected. For some genes the
three cohorts (all stages, early-stage, metastatic) follow the same
trend of upregulation or downregulation. In other cases, early-stage
and metastatic log fold change are quite different. The machine
learning feature selection simply chooses the genes best suited to
classify responder vs. non-responder in each data set. While the
machine learning does not use the adjusted p-value specifically,
Figure 6 shows that in most cases the value is above the
0.10 threshold for significance in the cohorts other than the one
that used the gene in gene signature. There are some genes that have
very log fold change values between patients with early-stage
colorectal cancer and patients with metastatic colorectal cancer
such as TRIM3, ABCB1, FOXA1, GRM8, LEFTY1, LYZ, HUNK,
IFIT1, LY6G6D, MX1, RETNLB, RSAD2, SRFP2, and WIF1.

4.3 Biological significance of FOLFOX gene
signatures

To obtain a better understanding of the biological significance of
the 32 DEGs in colorectal cancer, the gene signatures were subjected to
IPA software library was used to generate a schematic network of gene
signatures in different signaling pathways, elucidating their effect on the
response of colorectal cancer patients to FOLFOX drug (Figure 7).
HOXA10, HOXA11, FOXA1, CARM1, RSAD2, andMX1 are activated
via the promotion of Histone H3. Both Histone H3 and HOXA10 are
linked to the activation of JAK2. HOXA10 can also be activated via the
signal LYZ and mir-185. FOXA1 is associated with TRIP6 which seems
to be linked to LYZ. In addition, FOXA1 appears to be involved in the
inhibition of GIPR, a factor crucial for cell migration inhibition. Both
OLFM4, LT4AH, and LYZ are linked to tertiary granule lumen
proteins. OLFM4, Histone H3, HTT activate HSPA5, an important
molecule that tends to lead to cancer metastasis. HSPA5 is associated
with RETNLB, LY6G6D, AP5Z1 via LYPD4, and TRIM3. Both
TRIM3 and Histone H3 are associated with TP53. In addition, both
CARM1 and TP53 seem to be involved in the decrease of
LEFTY1 expression. TP53 along with RAD54B are linked to the
decrease of SFRP2 expression. HTT is associated with various gene
signatures including HUNK, ACSL6, SH3GLB1 via both MAGEB18 or
Tubulin, and CHRM3 via MAGEB18. CHRM3 is also linked to the
expression of GPN3 and CSNK1A1. CSNK1A1, in turn, is associated
with PPDPF. SH3BL1 is linked to WIF1, activating IL27 and
influencing NFATC2 and CMPK2. NFATC2 is involved in many

mechanisms including inflammation, apoptosis, and colorectal
cancer. STAT3 is involved in the expression of many molecules
including ABCB1, LYZ, ENPP2, mir-185, P-glycoprotein, and
PLSCR1. STAT3 is involved in many cellular functions including
cell proliferation, survival, and angiogenesis. Finally, Both
HELZ2 and KRT23 are expressed via PRAPA.

Further analysis of the changes in the expression levels of gene
signatures shed some insights into the mechanisms involved and
differences in response to FOLFOX between early stage and
metastatic colorectal cancer.

CARM1—also known as PRMT4, acts as a transcriptional
coactivator for several different types of DNA-binding
transcriptional activator proteins, and thus deregulated CARM1
expression likely to affect many transcriptional programs which
target genes that control proliferation rate or other oncogenic
properties (Hong et al., 2004; Frietze et al., 2008; Chen et al.,
2009; Kim et al., 2010; Ou et al., 2011). Activation of the Wnt/β-
catenin and inflammatory signaling pathways disrupts intestinal
epithelial homeostasis, resulting in increased proliferation,
decreased differentiation, and decreased apoptosis (Grivennikov,
2013). The reduced expression of CARM1 seen in responders at all
stages of colorectal cancer compared with non-responders might
reflex reduction in Wnt signaling reducing chemoresistance making
the cells more susceptible to FOLFOX.

GPN3—GPN-Loop GTPase 3 (GPN3) has been shown to be
essential for proliferation in breast cancer (Lara-Chacón et al., 2019).
It is upregulated in the all stages responders to FOLFOX compared
to non-resonders. These cancer cells might display stronger
proliferation and therefore be more susceptible to FOFOZX
chemotherapy.

GTF2A1—General transcription factor IIA subunit 1 (GTF2A1)
plays a role in DNA transcription and is part of RNA polymerase II
initiation complex. It is upregulated in the all stages FOLFOX
responders vs. non-responders. This might indicate that these
colorectal cancer cells might be more transcriptionally active
suggesting the cells are proliferating making them more
susceptible to FOLFOX.

LTA4H–LTA4H (leukotriene A4 hydrolase) is an epoxide
hydrolase that catalyzes conversion of the unstable allelic epoxide
LTA4 to leukotriene B4 (LTB4) (Zhao et al., 2019). LTA4H is
overexpressed in several cancers including CRC, and several studies
have shown that its hydrolase function is implicated in cancer
development (Ihara et al., 2007; Jeong et al., 2009; Teixeira and
Sousa, 2022). LTA4H is a key modulator of the cell cycle through its
negative effect on the expression of the tumor suppressor p27 protein
(Oi et al., 2017; Teixeira and Sousa, 2022). Inhibtion of Leucotriene
A4 hydrolase (LTA4H) reduces cellular proliferation in colorectal
cancer (Zhao et al., 2019). The responders LTA4H expression is
upregulated compared to non-responders suggesting increased
cellular proliferation making them more susceptible to FOLFOX.

PPDPF–Pancreatic Progenitor Cell Differentiation And
Proliferation Factor (PPDPF) overexpression has been observed
to suppress mTOR signaling (Ma et al., 2021). In the all stage
responders to FOLFOX compared to the non-responders PPDPF is
downregulated relieving suppression of the mTOR pathway making
the way for growth and proliferation.

SH3GLB1—SH3GLB1 (SH3 domain GRB2-like endophilin B1),
also known as Bif-1 and endophilin B1, is a tumor suppressor gene
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of the endophilin protein family (Pierrat et al., 2001; Snoek et al.,
2008; Mokarram et al., 2017). SH3GLB1 interacts with BAX to
regulate apoptosis (Cuddeback et al., 2001). Inhibition of
SH3GLB1 suppresses apoptotic cell death by inhibiting BAX-
BAK1 conformational change and caspase activation (Takahashi
et al., 2005; Mokarram et al., 2017). Reduced expression of Bax was
correlated with poor differentiation, metastatic progression, and is a
negative prognostic factor in patients with CRC (Sturm et al., 1999;
Jansson and Sun, 2002; Ko et al., 2013)It is upregulated in all stage
FOLFOX responders compared non-responders. If apoptosis is
favorable in these cells they will be more susceptible to FOLFOX.

TRIM3—TRIM3 is a tumor suppressor gene in colorectal cancer
progression by stabilizing p53 another tumor suppressor and growth
repressor (Piao et al., 2016). The TRIM3 expression log fold change
(responders vs. non-responders to FOLFOX) −1.36 in all stages of
cancer samples suggesting that the smaller amount of TRIM3 leads

to more growth and proliferation which can make the cancer more
susceptible to FOLFOX (Zhao, 2016). A recent study has been
shown that TRIM3 inactivates the p38 MAPK pathway, which
has negative effects on cell proliferation (Song et al., 2018).
However, the results of the inactivation of p38 signaling pathway
depend significantly on the cellular environment, and more
specifically on the presence of a mutated or wildtype p53
(Gonzalez et al., 2022). In the former, TRIM3 action contributes
to chemoresistance to DNA-damaging drugs by suppressing
apoptosis, whereas in the latter, it can suppress cell proliferation
increasing the response to the chemotherapeutic agent (Sanchez-
Prieto et al., 2000; Stramucci et al., 2018; Gonzalez et al., 2022).

ABCB1—ABCB1 is a transporter gene that has been implicated
in cancer drug resistance. In the early stage samples where it serves
as a biomarker the log fold change is 1.03 indicating that the cancer
cells with less transporter are more susceptible to FOLFOX.

FIGURE 6
Protein expression for the gene signatures for FOLFOX treatment for all stages (red), early-stage (gray), and metastatic (blue) colorectal cancer.
Shown are log fold change and adjusted p-value (p < 0.10 is significant).
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ABCB1 gene was found to be highly expressed in CRC (Gottesman
and Pastan, 2015). The expression of ABCB1 causes chemotherapy
failure owing to the efflux of drug molecules out of the cancer cell
(Linn and Giaccone, 1995; Beklen et al., 2020). It decreases the
intracellular concentration of wide spectrum of hydrophobic,
neutral, or positively charged drugs such as oxaplatin, taxanes
and anthracyclines (O’Brien et al., 2007; Ricci-Vitiani et al., 2007;
Nguyen et al., 2012). Further research is required to validate the link
between ABCB1 and drug resistance in CRC.

FOXA1—FOXA1 inhibits anoikis (cell death upon detachment
from the extracellular matrix) in colorectal cancer (Lazar et al.,
2020). In the early stage cancer the log fold change of the responders
vs. non-responders is −2.09. Resistance to anoikis has been
associated with resistance to FOLFOX (Escalante et al., 2021).
This lower amount of FOXAI in responders likely makes these
cancers more susceptible to FOLFOX.

GRM8—GRM8 is a metabotropic glutamate receptor that is
involved with the inhibition of cyclic AMP cascade and activating
MAPK (Zhang et al., 2019). Activation of cAMP-PKA signaling
mechanism promotes cancer growth, migration, metabolism and drug
resistance, and invasion (Zhang et al., 2020a). Hence, the gene expression

reduction in FOLFOX responders vs. non-responders (logFC = −1.17)
might reduce drug resistance in early stage colorectal cancer.

KRT23—Keratin23 (KRT23) is a cytoskeletal protein.
KRT23 knockdown decreased DNA damage repair in colorectal
cancer cells (Birkenkamp-Demtröder et al., 2013). In the FOLFOX
early-stage responders the KRT23 expression is downregulated
compared to non-responders. The deficiency in DNA damage
repair might make the cells easier to kill with FOLFOX.

LEFTY1—LEFTY1 has been observed to promote growth as it
codes for a ligand of TGF-β. The positive log fold change of
2.04 suggests that the early-stage cancers susceptible to FOLFOX
have increased cell growth.

LYZ–LYZ encodes for lysozme that has been demonstration to
be an anticancer agent by blocking proliferation (Khan et al., 2019).
The reduction in lysozyme in early stage responders would lead to
increased proliferation which as stated previously would likely
increase susceptibility to chemotherapy. Further studies is needed
to confirm the mechanism of LYZ in drug resistance.

OLFM4—Olfactomedin 4 (OLFM4) is a glycoprotein that is a
marker for intestinal stem cells. Increase expression has been
correlated with cancer progression, metastases, and gastrointestinal

FIGURE 7
Protein signaling pathways of the identified gene signatures in the colorectal cancer on the response of colorectal cancer patients to FOLFOX drugs.
Green color represents gene signatures under expression; red color represents gene signatures over expression; orange color represents prediction of
molecule activation; dashed lines represent indirect relationship; solid lines represent direct relationship. Abbreviations: RETNLB, Resistin Like Beta;
LY6G6D, Lymphocyte antigen 6 complex locus G6D;OLFM4, Olfactomedin-4; IFIT1, Interferon-induced Protein with Tetratricopeptide Repeats 1;
MX1, MX Dynamin Like GTPase 1; RSAD2, Radical S-adenosyl methionine domain containing 2. HOXA11, Homeobox A11; HOXA10, Homeobox A10;
FOXA1, Forkhead box protein A1; CARM1, Coactivator-associated arginine methyltransferase 1; AP5Z1, AP-5 complex subunit zeta; IFI44, Interferon
induced protein 44; LYZ, lysozyme; LT4AH, Leukotriene A4 Hydrolase; SFRP2, secreted frizzled related protein 2; LEFTY1, left-right determination factor
1; PPDPF, pancreatic progenitor cell differentiation and proliferation factor; WIF1, WNT Inhibitory Factor 1; CHRM3, cholinergic receptor muscarinic 3;
GRM8, glutamate metabotropic receptor 8; HUNK, hormonally upregulated Neu-associated kinase; ACSL6, acyl-coenzyme A synthetase long-chain
family member 6; CMPK2, cytidine/uridine monophosphate kinase 2; HELZ2, helicase with zinc finger 2; GPN3, GPN-Loop GTPase 3; SH3GLB1,
SH3 Domain Containing GRB2 Like, Endophilin B1; KRT23, keratin 23; TRIM3, Tripartite Motif Containing 3.

Frontiers in Physiology frontiersin.org16

Amniouel and Jafri 10.3389/fphys.2023.1272206

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1272206


inflammation (Liu and Rodgers, 2016). OLFM4 is upregulated in
FOLFOX early-stage responders compared to non-responders. It is
not clear how OLFM4 relates to FOLFOX treatment.

ACSL6—ASL6 encodes a long-chain acyl-coenzyme A synthase
that is involved in fatty acid anabolism (Quan et al., 2021). In cancers
the fatty acid are involved in mediating between anabolic and
catabolic pathways (Rossi Sebastiano and Konstantinidou, 2019).
The decreased expression of ASCL6 in FOLFOX responders with
metastatic colorectal cancer suggests that cancer will have less
anabolic (and maybe more catabolic) metabolism than the non-
responders which might indicate more energy metabolism
suggesting rapid proliferation and more sensitivity to FOLFOX.

CMPK2—CMPK2 is a long non-coding RNA that is typically
upregulated in colorectal cancer and is positively correlated with
metastases to lymph nodes and advanced stages through stimulation
of FUBP3–c-Myc signaling (Gao et al., 2020). Furthermore, it
increases cell proliferation. FUBP3 promotes immune infiltration
and inflammation (Li et al., 2022). The reduced expression of
CMPK2 seen in the responders would result in less inflammation
which results in better response to chemotherapy.

HUNK–HUNK suppresses cell proliferation in the intestine
(Reed et al., 2015). In the metastatic cancer samples the log fold
change is −2.18 indicating that there is removal of cell proliferation
suppression in the responders. Once again the fast growing cells are
more susceptible to FOLFOX. Furthermore, a previous study
demonstrated that HUNK expression becomes significantly
upregulated from the earliest stages of tumor initiation following
Apc loss, indicating this gene is probably aWnt signaling target gene
(Reed et al., 2015).

IFIT1—The IFIT family protein has been observed to inhibit
proliferation (Pidugu et al., 2019). The negative log fold change score
of −2.73 indicates that IFIT1 is downregulated in responders
suggesting that the suppression of proliferation is removed. IFITs
play a crucial role in host antiviral defense as an innate immune
response (Ohsugi et al., 2017). Expression of IFITs is induced by
viral and bacterial infection, type I IFN including IFN-α/β, and a
variety of cellular stresses such as DNA damage (Levy et al., 1986;
Weaver et al., 1998; Andersen et al., 2008; Ohsugi et al., 2017).

IFI44L - Interferon Induced Protein 44 Like (IFI44L) is a tumor
suppressor. Knock-down of IFI44L results in increased cell
proliferation (Zeng et al., 2023). In the metastatic responders to
FOLFOX, the expression is lower than the non-responders
suggesting increase cell proliferation which would make
chemotherapy more effective.

LY6G6D–LY6G6D expression has been linked with immune
evasiveness of a cancer (Corrales et al., 2022). The responders
to FOLFOX have reduced expression (logFC = −3.26) suggesting
that they are more susceptible to the immune response. A
recent study evaluated LY6G6D and CD15 as predictive
biomarkers for the response to JAK- and MAPK-directed
therapies and found that these two biomarkers promote chemo-
immune-resistance in immunologically compromised colon
cancers and can be used as biomarkers to decide patients
treatments (Giordano et al., 2019).

MX1—The MX1 gene encodes a GTPase called MxA that
inhibits motility and invasiveness of cancer. In the responders,
colorectal cancers with high MX-1 tend to be more invasive with
more metastases (Croner et al., 2014). The responders in the

metastatic samples have reduced expression (logFC = −2.66)
suggesting that these cancers are less aggressive and might have
better outcomes to chemotherapy. The results are consistent with
previous studies. Shimizu et al. (2010) identified MX1 as one of the
pro-apoptotic genes. The altered expression of genes that encode
apoptotic proteins contribute to cell accumulation in the colon,
promoting malignancy and subsequent metastasis, allow tumor cells
to survive in a suspended state, and provide cells with inherent
resistance to anticancer drugs (Shimizu et al., 2010).

RETNLB–RETNLB has been found to be overexpressed in ~80%
of colorectal cancer patients positively correlating with patient
survival (Di Rosa et al., 2023). RETNLB has been found to
associate with HSPA5 whose activation leads to metastasis.
Several studies demonstrated that HSPA5, beyond its
chaperoning function, it is a multifunctional protein that exerts
critical roles in cell proliferation, apoptosis, and resistance to
chemotherapy agents (Luo et al., 2016). The metastatic cancers
that responded to FOLFOX had reduced expression of RETNLB
compared to non-responders (logFC = −2.07). Reduced RETNLB
has been linked to increased sugar uptake (Abaandou et al., 2021).
This suggests that the cells have rapid metabolism making them
more susceptible to chemotherapy.

RSAD2—RSAD2 is involved the cellular signal for the immune
response and inflammation (Sun et al., 2022). A reduction in
RSAD2 expression in metastatic responders compared to non-
responders to FOLFOX (logFC = −2.30) is observed. Studies have
shown that the use of anti-inflammatories in colorectal cancer
reduces mortality (Sada et al., 2020). It is possible that the
reduction in RSAD2 also leads to better outcomes.

SRFP2 - SRFP2 works with the Wnt/β-catenin signaling
pathway to promote cell homeostasis and contribute to
chemoresistance (Sun et al., 2016). Wnt/β-catenin signaling
promotes drug resistance through sensitization of the
ABCB1 transporter (Zhu et al., 2021). It has been reported that
overexpression of SFRP2 promotes the expression of YAP1 and the
overexpression of YAP1 and SFRP2 promote the expression of β-
catenin in CRC cells (Bai et al., 2021). The metastatic responders
showed reduced expression compared to non-responders to
FOLFOX (logFC = −2.72). The lower SFRP2 likely abrogates
chemoresistance signaling.

WIF1—WIF1 suppression theWnt/β-catenin signaling pathway
will reduce chemoresistance (Zhu et al., 2021). Therefore, The
reduced expression in the responders (logFC = −2.79) suggests
reduced chemoresistance.

LOC10050 - Long Intergenic Non-Protein Coding RNA 10050
(LOC10050) is a DNA repair gene. The reduced expression seen in
FOLFOX metastatic responders compared to non-responders
suggest that these cancers will have less effective DNA repair
making them less viable under chemotherapy.

4.4 Biological significance of FOLFIRI gene
signatures

To enhance our comprehension of the biological relevance of the
12 DEGs in the context of colorectal cancer, the gene signatures were
subjected to IPA software library was used to generate a schematic
network of gene signatures in different signaling pathways,
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elucidating their effect on the response of colorectal cancer patients
to FOLFIRI drug (Figure 8). CD36 mediates signaling via either APP
or JNK, thereby contributing to the activation of the inflammation
and/or induction of apoptosis. SLIT2 mediates various signaling
cascades including ROBO1/Beta-catenin or ROBO1/srGAPs/
CDC43/P21-CIP, HGF/HGF/MET/GRB2/Ras/MAPK, SDF1/
PI3K/CDC42/P21-CIP or SDF1/CXCR4/MMP9, and Netrin-1/
DCC/Caspase3/YAP/TAZ/TEAD/AR contributing to cell
adhesion, cell cycle arrest, cell invasion, and/or apoptosis.
Activated by FAT4, AMOTL1 is linked to YAP/TAZ/TEAD,
triggering apoptosis. FNDC1 and CDH11 activate AR, leading to
the promotion of cell proliferation. AKAP12, activated by integrins,
is linked to either RAF/MEK/CyclinD or JNK/AP-1, leading to the
activation of HIF-1/VEGF which, in turn, trigger angiogenesis and
cell proliferation. SFRP2 is associated with the complex Wnt/LRP5/
6. This complex mediates signaling via DVL/RAC1/JNK/AP-1/HIF-
1/VEGF leading to angiogenesis. Both DDR2 and CTHRC1 are
activated by TRIM67. Finally, PTGR2 is indirectly activated by
either of these signals LPS/IL-1β/IL-6/TNF-α/IL-18. These signals
mediates signaling cascade PLA2/Arachidonic Acid/COX/15k-
PGE2/Keap1/Nrf2. The activation of PTGR2 transforms 15k-
PGE2 to 13,14 dihydro 15k-PGE2 leading to the degradation of
Nrf2 nd the activation of pro-inflammatory cytokines.

Additional analysis of the changes in the expression levels of
shed some insights into the mechanisms involved in the response to
FOLFIRI in colorectal cancer.

CD36—Cluster of differentiation 36 (CD36) activates MAPK
which activates JNK that can lead to apoptosis (Silverstein and
Febbraio, 2009; Feng et al., 2023). It is though to be important in
many types of cancer and is high expression of CD36 is correlated
with cancer drug resistance, including irinotecan (Jiang et al., 2019;
Drury et al., 2020; Gyamfi et al., 2021; Feng et al., 2023). The
responders to FOLFIRI show reduced expression of CD36 compared
to the non-responders in the study data.

SLIT2 - Slit guidance ligand 2 (SLIT2) has been observed to have
tumor suppressing activity (Zhao et al., 2018). SLIT2 is the ligand of
roundabout guidance receptor 1 (ROBO1). Together they play a role
in cancer cell proliferation, apoptosis, migration and invasion, and
angiogenesis (Zhao et al., 2018). Additionally, in colon cancer,
SLIT2/ROBO1 has been shown to encourage tumor growth. On
the other hand, SLIT2 has been shown to suppress β-catenin levels
which are positively correlated with chemotherapy resistance
(Ahirwar et al., 2021; Ahirwar et al., 2023). The responders show
a reduced SLIT2 expression which should reduce the contributions
of SLIT2 signaling. It is not clear how this contributes to FOLFIRI
sensitivity.

AMOTL1—AMOTL1 encodes angiomotin1 which bind the
protein YAP1 in the cytoplasm and protects it from degradation
(Zhou et al., 2020). YAP1 has been observed to increase cancer drug
resistance. Inhibition of the expression and activation of YAP1 is a
major way utilized to overcome drug resistance (Liu et al., 2020).
The reduced expression of AMOTL1 in FOLFIRI responders vs.

FIGURE 8
Protein signaling pathways of the identified gene signatures in the colorectal cancer on the response of colorectal cancer patients to FOLFIRI drugs.
Green color represents under expression; red color represents over expression; orange color represents prediction of molecule activation; dashed lines
represent indirect relationship; solid lines represent direct relationship. Abbreviations: CD36, Cluster of differentiation 36; COL1A2, Collagen type I alpha
2 chain; COL3A1, Collagen type III alpha 1 chain; SLIT2, Slit guidance ligand 2; AMOTL1, Angiomotin Like 1; FNDC1, Fibronectin type III domain
containing 1; CDH11, Cadherin 11; DDR2, Discoidin domain receptor tyrosine kinase 2; CTHRC1, Collagen triple helix repeat containing 1; AKAP12,
A-kinase anchoring protein 12; SFRP2, Secreted frizzled related protein 2; PTGR2, Prostaglandin reductase 2.
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non-responders suggests that there is less drug resistance conferred
because YAP1 can be degraded more easily without AMOTL1.

FNDC1 - Fibronectin type III domain containing 1 (FNDC1)
activates a G-protein signaling cascade that leads to the activation of
PI3K/Akt/mToR signaling which leads to cancer growth and
proliferation (Chen et al., 2022). Furthermore, FNDC1 overexpression
improved cell survival during chemotherapy (5-FU). In addition, CRC
tissues fromnon-responders were found to exhibit higher level activation
of the signaling PI3K/Akt compared to responders (Chen et al., 2022).
The reduction in FNDC1 expression seen in responders compared to
non-responders suggests that there will be reduced chemotherapy
resistance.

CDH11 - Cadherin-11 (CDH11) has been associated with
aggressive cancer (Yang et al., 2021). CDH11 mediates cell-to-cell
and cell-to-matrix adhesion. Upregulated CDH11 has been linked to
increased metastases through the activation of NF-κB (Wang et al.,
2020). Reduced CDH11 expression observed in the responders to
FOLFIRI compared to the non-responders might be correlated with
reduced metastases and better response.

DDR2 - Discoidin Domain Receptor 2 (DDR2) is a tyrosine
kinase receptor that binds to collagen (Lafitte et al., 2020). Activation
of DDR2 by collagen activates growth and proliferation through the
Ras/Rac/MEK/ERK and PI3K/Akt/mTOR pathways (Lafitte et al.,
2020). Reduction in DDR2 through knock-out in mice showed
decreased cell proliferation. Decreased DDR2 in colorectal cancer
showed reduced metastasis (Lafitte et al., 2020). The reduced
DDR2 expression seen in FOLFIRI responders might lead to
treatment success due to reduced metastases.

CTHRC1 - Collagen triple helix repeat containing 1 (CTHRC1) is
involved in tissue repair and is highly expressed in various malignant
tumors including colorectal cancer (Liu et al., 2023). CTHRC1 activates
Wnt signaling as well as the PI3K/ERK pathway (Liu et al., 2023).
Activation ofWnt is associatedwith chemotherapy resistance. Activation
of PI3K and ERK is associated with cell growth and proliferation (Liu
et al., 2023). In vivo analysis showed that knocking down of
CTHRC1 from CRC cell line inhibits the formation of tumor (Liu
et al., 2023). The reduced expression of CTHRC1 in FOLFIRI responders
would make these patients’ cancer more sensitive to chemotherapy.

AKAP12 - A-kinase (PRKA) anchor protein 12 (AKAP12)
anchors protein kinase A and protein kinase C to the plasma
membrane (He et al., 2018; Liang et al., 2022). AKAP12 was
found to be downregulated in almost 50% of CRC tissues as
compared with their matched non-tumor tissues (He et al., 2018).
AKAP12 has been observed to suppress Src-induced oncogenic
proliferation, invasiveness, and cell death through its interactions
with SRC (He et al., 2018). The reduced AKAP12 expression seen
in FOLFIRI responders vs. non-responders might be because
these cancers do not have cell death inhibited.

SRFP2 - SRFP2 works with theWnt/β-catenin signaling pathway to
promote cell homeostasis and contribute to chemoresistance (Sun et al.,
2016). Wnt/β-catenin signaling promotes drug resistance through
sensitization of the ABCB1 transporter (Zhu et al., 2021). It has
been reported that overexpression of SFRP2 promotes the
expression of YAP1 and the overexpression of YAP1 and
SFRP2 promote the expression of β-catenin in CRC cells (Bai et al.,
2021). The FOLFIRI responders showed reduced expression compared
to non-responders to FOLFOX (logFC=−3.12). The lower SFRP2 likely
abrogates chemoresistance signaling.

PTGR2 - Prostaglandin reductase 2 (PTGR2) catalyzes the
NADPH-dependent reduction of 15-keto-PGE2 as a part of lipid
metabolism (Chang et al., 2016). Gene silencing of
PTGR2 suppressed pancreatic cancer cell growth and induced
cancer cell death through increased 15-keto-PGE2 and ROS
levels (Chang et al., 2016). PTGR2-knockdown gastric cancer
cells rendered them more sensitive to cisplatin and 5-FU
compared with the PTGR2-overexpressing cells (Gan et al.,
2019). Lipid uptake, storage, and metabolism is upregulated in
cancer to meet the increased energy demands (Cheng et al.,
2022), The higher PTGR2 expression in FOLFIRI responders
might align with the increase metabolism in the colorectal cancer
cells making them more susceptible to FOLFIRI.

COL1A2—COL1A2 encodes for type I collagen. Type I collagen
binds receptors on the surface of tumor cells that result in tumor cell
proliferation and metastasis (Shi et al., 2022). This occurs by the
activation of the Ras/Raf/MEK/ERK and PI3K/Akt/mTOR pathways.
Type I collagen also regulates the efficacy of chemotherapy (Shi et al.,
2022). This concurs with the observation that reduced
COL1A2 expression in cells responding to FOLFIRI.
COL3A1—COL3A1 encodes for type III collagen (Wang et al.,
2022). High levels of COL3A1 is associated with poor prognosis of
the cancer patient because it promotes cell viability and inhibits
apoptosis (Wang et al., 2022). This occurs by the activation of the
Ras/Raf/MEK/ERK and PI3K/Akt/mTOR pathways. The reduction of
COL3A1 expression in responders is consistent with these observations.

4.5 Study limitations

This study has some limitations. For instance, FOLFOX and
FOLFIRI treatment response prediction were performed in small
datasets because the datasets were divided into subgroups to
separate primary from metastatic CRC samples. Despite these
limitations, it appears that machine learning models can predict
the drug response of colorectal cancer patients on this specific data
set. Further optimization and validation on larger datasets is
required to determine if this approach is clinically applicable.

The use of feature selection in this study has improved the
accuracy, sensitivity, and specificity of the random forest model for
predicting drug efficacy. Other studies have also seen and improved
model performance after feature selection (Sharma and Dey, 2021).
In some of the studies the accuracy, sensitivity, and specificity during
training and validation was 1. This does not mean that the model
will be 100% accurate on a separate test data set. This can be seen
clearly in Table 5 where the model performance is lower on the
independent test set compared to the training data. Unfortunately,
in some of the cases, an independent test data set was not available,
and the existing data set was small so creating a test data set was
not practical.

5 Conclusion

In conclusion, the current study identified gene signatures that
could predict for the response to 5-FU based chemotherapy in
patients with colorectal cancer with high accuracy. The application
of the machine learning models to the data sets obtained from GEO
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suggested that 28.6% of patients who failed the treatment therapy
they received would benefit from the alternative treatment.
Application of this machine learning approach predicts strategies
that might improve drug treatment outcomes for patients with CRC
and other cancers. After additional clinical validation, this approach
has significant potential for integration into clinical practice.

Analysis of the gene signatures gives the following insights into the
important mechanism for FOLFOX sensitivity in both early-stage and
metastatic colorectal cancer. The responders seem to have genes that
encourage fast growth and proliferation through theMAPK/ERK/MEK
and cAMP/PKA signaling pathways and have increased metabolism
making them more sensitive to chemotherapy. Cell death through
apoptosis or anoikis is not inhibited responders compered to non-
responders through pathways such as MAPK/JNK/Jun and cell-death
due extracellular matrix cell contact disruption. Furthermore,
chemoresistance brought about by Wnt/β-catenin signaling and its
role in chemoresistance throughABCB1 transporter expression. Finally,
the tumor mechanisms for immune system evasion or causing
inflammation seem to be inhibited by the gene expression changes.

Analysis of the gene signatures gives the following insights into
the important mechanism for FOLFIRI sensitivity in both
colorectal cancers. The gene expression changes result fast
growth and proliferation (Ras/Raf/MEK/ERK and PI3K/Akt/
mTOR) that is accompanies by increased metabolism. This
makes the cancers more susceptible to chemotherapy agents
such as FOLFIRI. Cell death through apoptosis or anoikis is
less inhibited in the responders than non-responders making
them more sensitive to death resulting from chemotherapy. Also,
the suppression of the Wnt/β-catenin signaling in responders
results in less chemoresistance by reducing ABCB1 transporter
expression which exports chemotherapy agents.
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SUPPLEMENTARY FIGURE S1
Protein-protein interaction networks. The network derived from IMEx
interactome database (using NetworkAnalyst web-based visual analytics
platform) shows interactions among the gene signatures that are
associated to CRC patients who received FOLFOX drug. Genes in red
represent the identified genes from the feature selection methods.

SUPPLEMENTARY FIGURE S2
Protein-protein interaction networks. The network derived from IMEx
interactome database (using NetworkAnalyst web-based visual analytics
platform) shows interactions among the gene signatures that are
associated to early-stage CRC patients who received FOLFOX drug. Genes in
red represent the identified genes from the feature selection methods.

SUPPLEMENTARY FIGURE S3
Protein-protein interaction networks. The network derived from IMEx
interactome database (using NetworkAnalyst web-based visual analytics
platform) shows interactions among the gene signatures that are
associated to metastatic CRC patients who received FOLFOX drug. Genes in
red represent the identified genes from the feature selection methods.

SUPPLEMENTARY FIGURE S4
Protein-protein interaction networks. The network derived from IMEx
interactome database (using NetworkAnalyst web-based visual analytics
platform) shows interactions among the gene signatures that are
associated to CRC patients who received FOLFIRI drug. Genes in red
represent the identified genes from the feature selection methods.
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