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This paper develops the stellar interior geometry for charged anisotropic
spherical matter distribution by developing an exact solution of the field
equations of Rastall gravity using the notion of gravitational decoupling. The
main purpose of this investigation is the extension of the well-known isotropic
model within the context of charged isotropic Rastall gravity solutions. The
second aim of this work is to apply gravitational decoupling via a minimal
geometric deformation scheme in Rastall gravity. Finally, the third one is to derive
an anisotropic version of the charged isotropic model previously obtained by
applying gravitational decoupling technology. We construct the field equations
which are divided into two sets by employing the geometric deformation in
radial metric function. The first set corresponds to the seed (charged isotropic)
source, while the other one relates the deformation function with an extra
source. We choose a known isotropic solution for spherical matter configuration
including electromagnetic effects and extend it to an anisotropic model by
finding the solution of the field equations associated with a new source. We
construct two anisotropic models by adopting some physical constraints on the
additional source. To evaluate the unknown constants, we use the matching
of interior and exterior spacetimes. We investigate the physical feasibility of
the constructed charged anisotropic solutions by the graphical analysis of the
metric functions, density, pressure, anisotropy parameter, energy conditions,
stability criterion, mass function, compactness, and redshift parameters. For the
considered choice of parameters, it is concluded that the developed solutions
are physically acceptable as all the physical aspects are well-behaved.

KEYWORDS

electromagnetic field, gravitational decoupling, modified theory, anisotropy, PACS:
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1 Introduction

Gravity is believed to be a natural phenomenon in general relativity (GR), which has
revolutionized cosmological and astronomical conceptions. One fundamental reality that
presents several obstacles for modern science is the universe’s accelerating expansion. In
order to collect data of an exotic source that is enigmatic and participating to the expansion
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of the universe, astronomers have used a variety of probes, including gamma-ray bursts, large-scale structure, cosmicmicrowave background
radiation, the integrated Sachs–Wolfe effect, and type Ia supernovas (Riess et al., 1998; Perlmutter et al., 1999; Bennett et al., 2003; Boughn
and Crittenden, 2004; Eisenstein et al., 2005; Kodama et al., 2008). The cosmic period before radiation and the current condition after the
matter-dominated phase are suggested to represent two stages of rapid expansion by these data. In recent decades, a broad agreement has
developed on the origin of this accelerated behavior: dark energy (DE), an extraordinary anti-gravitational force. In the early 1980s, physicists
researching the creation of galaxies in space initially hypothesized the existence of DE (Hinshaw et al., 2009). Due to its unusual character, DE
is not consistent with the strong energy condition (SEC), which results in a large amount of the cosmic contents unknown. In the literature,
multiple efforts have been undertaken to comprehend the enigmatic nature of DE. Extensive techniques have been taken as a substitute for
dark sources in the lack of strong evidence to support them. Two methods have been used to demonstrate the study of such exotic terms:
one is the use of changed matter sources, and the other is the modification of gravity by adding additional degrees of freedom to the action.

Modifying the matter sector of the Einstein–Hilbert Lagrangian density is one approach of describing the universe’s dynamic behavior.
This may be accomplished by the use of numerous ideas such as quintessence energy, phantom, tachyon field, k-essence, and generalized
equations of state such as Chaplygin gas (Caldwell et al., 1998; Kamenshchik et al., 2001; Bento et al., 2002; Carroll et al., 2003; Chimento,
2004; Gorini et al., 2004). These theories perfectly represent the universe’s dynamic behavior and offer an intriguing avenue for further
investigation. Another strategy is to improve the gravitational portion of general relativity by introducing a DE source while leaving the
matter component unchanged. This can help us comprehend the expansion of the cosmos and the nature of DE. However, there are major
ambiguities with this procedure, making it less promising than other methods. Another method that might be effective in cosmological
applications is modified gravity frameworks. These frameworks change gravity rules to better describe the behavior of the cosmos and can
be employed to assess different gravity theories. They provide a potential route for future study on the nature of DE and the expansion of the
cosmos.

The function of a curvature invariant is substituted or introduced in the geometric part of the Einstein–Hilbert action to develop
alternative gravity theories.The simplest extension of GR is f(R) theory, which is constructed by replacing the Ricci scalarRwith its generic
function (Capozziello, 2002). Curvature–matter interaction is an intriguing idea that has drawn the attention of numerous researchers. Such
couplings explain the different cosmic eras and rotation curves of galaxies. In modified theories, the conservation law is violated, confirming
the existence of an extra force on particles. Such modifications are seen as promising candidates for understanding the interactions of
dark components and expansion of the cosmos. Harko et al. (2011) extended the f(R) theory with the incorporation of the trace of the
stress–energy tensor (T) in generic action known as the f(R,T) theory.

Several alternative gravity theories have been presented, and recently, Rastall theory (Rastall, 1972) has been considered one of the most
prominent and attractive theories. Many researchers have explored various cosmological aspects in the context of Rastall gravity. Visser
(Abbas and Shahzad, 2020) explored that Rastall gravity is equivalent to general relativity and found that Rastall’s stress–energy tensor
corresponds to an artificially isolated portion of the physical conserved stress–energy. The study of compact stars has been conducted by
Abbas and Shahzad (2018a), Abbas and Shahzad (2018b), Salako et al. (2018), Abbas and Shahzad (2019), Hansraj et al. (2019), Mota et al.
(2019), Javed et al. (2022a), and Ashraf et al. (2023); black hole (BH) solutions by Heydarzade and Darabi (2017), Heydarzade et al. (2017),
Ma and Zhao (2017), Kumar and Ghosh (2018), Xu et al. (2018), and Liu et al. (2023); thermodynamics of BHs by Bamba et al. (2018),
Lobo et al. (2018), Soroushfar et al. (2019), Ditta et al. (2023), and Gulzoda et al. (2023); wormhole (WH) solutions by Moradpour et al.
(2017a) andHalder et al. (2019); and cosmology by Batista et al. (2012) andMoradpour (2016).Moreover, some studies on the generalization
of Rastall theory (Moradpour et al., 2017b; Lin and Qian, 2020) and a combination of this with other modified theories (Wolf, 1986;
Carames et al., 2014) have also been performed. Recently, Javed et al. (2022b) developed aWH solution in the background of Rastall gravity.
They also analyzed the stable configuration of a thin-shell around the constructed wormhole solution by using the speed of sound parameter.

Oliveira et al. (2015) used static spherically symmetric Rastall gravity solutions to represent neutron stars and realistic equations of state
for these stars to establish a conservative constraint on Rastall theory’s non-general relativity behavior. Moradpour et al. (2019) determined
the conformally flat and non-singular BH solutions in generalized Rastall theory and discussed the thermodynamics of obtained BHs. They
concluded that the pressure components in the equations for the gravitational field are not always equivalent to the thermodynamic pressure.
They also discussed the conformally flat BHs in the Rastall scenario. Övgün et al. (2020) studied the energy emission rate and shadow of
spherical non-commutative BH in Rastall gravity. They found that the non-commutative parameter affects the visibility of shadow. In the
framework of Rastall gravity, Lobo et al. (2020) created thin-shell WH solutions for static BHs supplied by an anisotropic fluid using the cut-
and-paste method. They explored the energy bounds and traversability condition at the WH throat and identified the stability zones. In the
Rastall framework, Abbas and Shahzad (2020) proposed a hybrid compact star model made up of regular baryonic matter distribution and
strange quark matter. They deduced that the resulting model satisfies the criteria for a realistic model. The same authors solved the Rastall
field equations for isotropic matter content with quintessence field by adopting Krori and Barua ansatz and investigated several physical
characteristics for the obtained model (Shahzad and Abbas, 2020). In this theory, Zubair et al. (2020) used a linear equation of state to
construct the dynamical equations for static spherical symmetry and solved them numerically by choosing a certain gravitational potential.
They showed that the obtained solutions are both stable and physically acceptable.

Many astrophysical researchers are interested in studying exact isotropic and anisotropic solutions of static spherically symmetric celestial
configurations. The non-linear nature of the Einstein field equations generates difficulties in the construction of the analytical solutions. A
potential techniquewhich ismost convenient and efficient in determining the analytical and physically acceptable solutions of non-linear field
equations is gravitational decoupling (Ovalle and Linares, 2013).The addition of a new source as dust or anisotropic fluid in the stress–energy
tensor is a significant feature of this method. This approach assists in the conversion of known isotropic solutions to anisotropic solutions.
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Ovalle et al. (2018a) studied the implications of anisotropic spherically symmetric gravitational sources on isotropic interior solutions for
static self-gravitating systems by considering the minimal geometric deformation (MGD) approach. Mustafa et al. (2020a), Mustafa et al.
(2020b), Mustafa et al. (2020c), Mustafa et al. (2021a), Mustafa et al. (2021b), Mustafa et al. (2021c), and Mustafa et al. (2021d) explored the
stellar structures for the spherically static symmetric space–time in the background of Rastall gravity and different modified gravities via
the embedding approach. They also studied the modified field equations by plugging the different sources like quintessence field with an
anisotropic source of fluid. Furthermore, by imposing the junction conditions, we calculate the values of involved parameters by considering
observational data of 4U 1608-52, Cen X-3, and EXO 1785-240. They found that the physical parameters show the viability and stability of
the stellar objects in Rastall gravity and modified theories of gravities.

The effect of charge in self-gravitating systems is of great importance. Using the gravitational decoupling technique, the charged
anisotropic spherical solutions and anisotropic uncharged cylindrical solutions were investigated by Sharif and Sadiq (2018). Implementing
the same approach, Gabbanelli et al. (2018) investigated the observable influence of surface redshift for general anisotropies. For a spherical
symmetric fluid distribution, Ovalle et al. (2018b) used the same method to develop a modified Schwarzschild vacuum solution. Graterol
(2018) considered the Buchdahl perfect fluid distribution in the stellar structure and found the components of the stress–energy tensor using
Einstein’s field equations. He also deformed the Buchdahl solution to get the anisotropic solution with the help of matching conditions. The
study of WH solutions and thin-shell around the calculated WHs is conducted in different theories as in teleparallel gravity (Javed et al.,
2022c), f(R,T) gravity (Javed et al., 2022d), f(Q) gravity (Mustafa et al., 2022), and with consideration of quantum wave dark matter
(Mustafa et al., 2023). Furthermore, the dynamical evolution of thin-shell composed of scalar field was explored in the framework of GR
andmetric affine gravity in the work of Javed (2023a) and Javed (2023b). Sharif and Ama-Tul-Mughani (2020) and Sharif and Ahmed (2021)
formulated some gravitational decoupled solutions of axial string cosmology and non-static anisotropic spherical solutions. Making use of
this technique, several anisotropic solutions have been obtained (Maurya, 2019; Singh et al., 2019; Maurya et al., 2020a; Maurya and Tello-
Ortiz, 2020a; Maurya et al., 2020b; Tello-Ortiz, 2020; Maurya et al., 2021a; Maurya et al., 2021b; Maurya et al., 2021c; Maurya et al., 2021d;
Maurya et al., 2022).

In the context of modified theories of gravity, the gravitational decoupling via the MGD approach has also gained much attention.
Sharif andWaseem (2019), Maurya et al. (2020), Azmat and Zubair (2021), and Sharif and Aslam (2021) derived the charged and uncharged
anisotropic spherical solutions by employing this technique in the frameworks of f(R) and f(R,T) theories. In Rastall gravity, Maurya and
Tello-Ortiz (2020b) obtained the stellar interior solutions for anisotropic matter distribution via the gravitational decoupling approach. In
order to examine the viability of their obtained anisotropic solutions, they adopted the Tolman IV solution.

Motivated by the abovenarrated works, in this paper, we derived the charged anisotropic spherical solutions through the gravitational
decoupling approach in Rastall gravity by considering the well-known metric function. So, the paper is organized in the following pattern.
Thenext section deals with the basics of Rastall theory and constructs its field equations corresponding tomultiple factors. Section 3 discusses
the gravitational decoupled solutions through the MGD technique. The mimic constraints and their physical implications are examined in
Section 4. discusses the mass function. The last section provides the final outcomes of the problem examined in this paper.

2 Rastall gravity and the MGD approach

In a curved spacetime, the primary notion behind Rastall theory is to renounce the divergence-free stress–energy tensor, i.e., ∇ςT
ς
δ ≠ 0

which introduces non-minimal coupling between geometry and matter. For Rastall theory, the non-minimal coupling is executed by the
supposition for divergence of the stress–energy tensor given as follows (Mustafa et al., 2021a; Mustafa et al., 2021c):

∇ςT
ς
δ = χR,δ, (1)

whereR = gδςRδς is the Ricci scalar and χ represents the Rastall parameter, which describes diversion from general relativity and manifests
the connection through the coupling of geometry with matter in a non-minimal manner. From Eq. 1, the field equations are obtained as
(Mustafa et al., 2021a; Mustafa et al., 2021c)

Rδς +(κχ−
1
2
)gδςR = κTδς. (2)

For χ→ 0, the field equations of general relativity are recovered from the above equation. The above field equations can be rewritten as
follows (Mustafa et al., 2021a; Mustafa et al., 2021c):

Rδς −
1
2
gδςR = κT

(eff)
δς , (3)

where

T(eff)δς = Tδς −
ξT

4ξ− 1
gδς. (4)

Here, ξ = χκ with κ = 1 denotes the Rastall gravitational constant. Moreover, the necessary condition is 4ξ− 1 ≠ 0 to avoid singularities.
In the present study, we consider multiple sources to analyze the internal structure of stellar objects. In this case, the standard field equations
become

Rδς −
1
2
gδςR = T

(tot)
δς , (5)
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where T(tot)δς = T
(eff)
δς +T

(em)
δς + αΘδς. As an interior geometry, a static spherically symmetric spacetime is considered given by the following

equation:

ds2− = e
ζ(r)dt2 − eη(r)dr2 − r2 (dθ2 + sin2 θdϕ2) . (6)

The matter constitution is taken to be charged perfect as

Tδς = (ρ+ P)VδVς − Pgδς, (7)

T(em)δς =
1
4π
(−gαβFδαFςβ +

1
4
gδςF

αβFαβ). (8)

The terms ρ,P and Vς = √g00δ
0
ς indicate the density, pressure, and four-velocity, respectively. The new source Θ (coupled with matter

field by means of a dimensionless factor α) can always be considered a correction term to the theory and be combined as part of an effective
stress–energy tensor. This extra term can manifest a scalar, vector, or tensor field and present anisotropy in the self-gravitating objects. In
Eq. 8, ϕς is the four-potential, and Fδς = ϕς,δ −ϕδ,ς is the Maxwell field tensor which satisfies the following field equations

Fδς;ς = 4πJδ, F[δς;γ] = 0, (9)

where Jδ denotes the four-current. In comoving coordinates, we have the following equation:

ϕδ = ϕδ
0
δ, Jδ = γVδ, Vδ = e−ζ/2δδ0, (10)

where γ = γ(r) represents the charge density. For the considered geometry, the Maxwell field equations yield

ϕ′′ +(2
r
−
ζ′

2
−
η′

2
)ϕ′ = 4πγe

ζ
2
+η, (11)

where prime indicates the differentiation with respect to r. The integration of above equation yields

ϕ′ =
e

ζ+η
2 q (r)
r2
. (12)

Here, q(r) = 4π∫r0γe
η
2 r2dr indicates the total charge inside the spherical geometry. The corresponding field equations are obtained as

follows:

e−η(
η′

r
− 1
r2
)+ 1

r2
= ρ(eff) +

q2

8πr4
+ αΘ0

0, (13)

e−η(
ζ′

r
+ 1
r2
)− 1

r2
= P(eff) −

q2

8πr4
− αΘ1

1, (14)

e−η

4
(2ζ″ + ζ′2 + 2

ζ′ − η′

r
− η′ζ′) = P(eff) +

q2

8πr4
− αΘ2

2, (15)

where

ρ(eff) =
(3χ− 1)ρ+ 3χP

4χ− 1
, −P(eff) =

−(χ− 1)P− χρ
4χ− 1

. (16)

The conservation law ∇δT(tot)δς = 0 associated with system (13)–(15) yields

dP(eff)

dr
+ α[

ζ′

2
(Θ0

0 −Θ
1
1) −

dΘ1
1

dr
+ 2
r
(Θ2

2 −Θ
1
1)] +

ζ′

2
(ρ(eff) + P(eff)) −

qq′

4πr4
= 0. (17)

We observe that the system, consisting of non-linear differential Eqs 13–15, contains seven unknowns, i.e., thermodynamic factors
(ρ(eff),P(eff)), metric potentials (η,ζ), and the factors of an additional term (Θ0

0, Θ
1
1, Θ

2
2). To determine these unknowns, a systematic

technique (Ovalle et al., 2018a) is adopted in which the matter variables are characterized as follows:

̄ρ(tot) = ρ(eff) + αΘ0
0, P̄
(tot)
r = P(eff) − αΘ1

1, P̄
(tot)
t = P

(eff) − αΘ2
2. (18)

It is clear that the presence of Θ leads to anisotropic behavior of the system when Θ1
1 ≠ Θ

2
2. To determine this behavior, we specify the

anisotropic parameter as Δ = P̄(tot)t − P̄
(tot)
r . So, our system of Eqs 13–15 can be dealt as an anisotropic fluid consisting of five unknowns, i.e.,

ζ, η, ̄ρ(tot), P̄(tot)t , and P̄(tot)r . To find these unknowns, we follow the gravitational decoupling by the minimal geometric deformation technique
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which is a systematic tool to extend the static spherical isotropic solutions to the anisotropic realm (Ovalle et al., 2018a). At first, we turn off
the coupling parameter α and consider an isotropic solution (ν,μ,P,ρ,q) for the line-element given as follows:

ds2 = eν(r)dt2 − dr2

μ (r)
− r2 (dθ2 + sin2 θdϕ2) , (19)

where μ = 1− 2m
r
+ q2

r2
is the usual general relativistic formdescribing themass ofmatter distribution. Now,we turn on the coupling parameter

α to observe the impact of Θ on the perfect fluid configuration. The geometric deformation passed through the isotropic fluid can be used
to encode these effects described as follows:

ν→ ζ = ν+ αh, μ→ e−η = μ+ α f, (20)

where f and h are the deformations defined by the radial and temporal metric constituents, respectively. It should be noted that thementioned
deformations are entirely radial functions that assure the spherical symmetry of the solution. Here, we take h = 0, meaning that the temporal
part stays unaltered, and the anisotropy is based on the radial part.The substitution of Eq. 20 in field Eqs 13–15 yields two groups of equations.
The first group yields α = 0, i.e., charged isotropic configuration given as

ρ(eff) +
q2

8πr4
= −

μ′

r
−

μ
r2
+ 1
r2
, (21)

P(eff) −
q2

8πr4
= μ(

ζ′

r
+ 1
r2
)− 1

r2
, (22)

P(eff) +
q2

8πr4
=
μ
4
(2ζ″ + ζ′2 + 2

ζ′

r
)+

μ
4
(ζ′ + 2

r
), (23)

representing the Einstein–Maxwell–Rastall system. From the above equations, the explicit expressions of ρ, P, and q in terms of metric
functions are obtained as follows:

ρ = 1
4r2
[2(1− rμ′) − μ(2+ r+

r2ζ′

2
(1+ ζ′) − r(ζ′ − rζ″)) −

Hχ

2
], (24)

P = 1
8r2
[−4+ μ(4+ 2r+ r(6ζ′ + r) + r2μ(ζ′2 + 2ζ″)) +Hχ] , (25)

q2 = πr2(4(1− μ) + 2rμ(1− ζ′) + r2μζ′ (1+ ζ′) + 2r2μζ″)2, (26)

where

Hχ = χ{16(1− μ) − 2rμ(2(1+ 2ζ′) + rζ′ (1+ ζ′)) + 4r(μ′ + rμζ″)} . (27)

The other group leads to the source Θ given as follows:

Θ0
0 = −

f′

r
−

f
r2
, (28)

Θ1
1 = − f(

ζ′

r
+ 1
r2
), (29)

Θ2
2 = −

f
4
(2ζ″ + ζ′2 +

2ζ′

r
)−

f′

4
(ζ′ + 2

r
). (30)

The sets of Eqs 21–23 and Eqs 28–30 satisfy the following conservation equations:

dP
dr
+
ζ′

2
(ρ+ P) −

qq′

4πr4
−

χ
4χ− 1

d (ρ− 3P)
dr
= 0, (31)

dΘ1
1

dr
−
ζ′

2
(Θ0

0 −Θ
1
1) −

2
r
(Θ2

2 −Θ
1
1) = 0, (32)

whose linear combination by means of coupling parameter α corresponds the conservation equation for T̄ζ(tot)
η as

−dP
dr
− α[−

dΘ1
1

dr
+
ζ′

2
(Θ0

0 −Θ
1
1) +

2
r
(Θ2

2 −Θ
1
1)] −

ζ′

2
(ρ+ P)

qq′

4πr4
+

χ
4χ− 1

d (ρ− 3P)
dr
= 0. (33)

The last term of the above equation indicates the Rastall contribution or the so-called Rastall force which can be attractive or repulsive
depending on the sign of Rastall parameter χ. At this point, the components of the total energy–momentum tensor are defined as follows:

ρ(tot) = ρ+ αΘ0
0, P
(tot)
r = P− αΘ1

1, P
(tot)
t = P− αΘ

2
2, (34)
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where ρ and P are expressed in Eqs 24 and 25, respectively, and contains the additional geometric factors given by the Rastall participation.
In this manner, the Rastall factors occur in the decoupler function f(r) and further in the additional source Θ. The junction conditions are
an important factor to study significant characteristics and the evolution of stellar configurations. They provide a linear matching between
interior (M−) and exterior (M+) manifolds at surface (Σ) of the stellar object. The inner stellar geometry M− is represented in Eq. 6 with
e−η = 1− 2m

r
+ q2

r2
+ α f, wherem represents the Misner–Sharp mass function (Misner and Sharp, 1964) determined as follows:

m = r
2
(1− e−η +

q2

r2
). (35)

Making use of Eq. 26, the mass function becomes m(r) =mGR +mχ −
αrf
2
= 4π∫r0r

2ρ(tot)dr, describing the mass of stellar interior. The

termmGR =
r
2
(1− μ+ q2

r2
) represents the mass in case of general relativity, whilemχ indicates the Rastall contributions acquired by the mass

function. For α = χ = 0, the general relativistic expression of the mass function is regained. The binding energy is a discrepancy between the
proper mass and the total mass of matter distribution, i.e.,

E =m (R) −mp (R) , (36)

where mp = 4π∫
R
0 (r

2ρ/√1− 2m
r
+ q2

r2
)dr is the proper mass. We observe that √1− 2m

r
+ q2

r2
< 1, implying that the total mass is less than the

proper mass, which, in turn, yields E < 0. For the present case, the mass–radius relation is given by the following equation:

m
r
=
2mGR + 2mχ − α fr

2r
⇒ −1+

2(mGR +mχ)
r
−
q2

r2
< α f. (37)

The proper mass may be greater or less than that of the general relativistic case as α does not need to be purely positive and binding
energy changes accordingly.

The exterior manifold can include some factors arising from the source Θmeaning that the outer spacetime binding the stellar structure
is no more a vacuum.The most general exterior geometry is considered as follows:

ds2+ = eζ
+(r)dt2 − eη

+(r)dr2 − r2 (dθ2 + sin2 θdϕ2) . (38)

To match the interior geometry with the outer one, the famous Israel–Darmois junction conditions (Darmois, 1966) are employed. The
first fundamental form of these conditions (continuity of metric functions about Σ) yields

[ds2]Σ = 0 ⇒ eζ
+(R) = eζ

−(R), 1− 2M
R
+ Q

2

R2 + α f = e
−η+(R), (39)

whereM =m(R) and Q = q(R) display the total gravitational mass and charge surrounded by the fluid distribution, respectively. The second
fundamental form (continuity of the extrinsic curvature) gives

P (R) − Q2

8πR4 − α(Θ
1
1 (R))− = (Hχ (R))+ − α(Θ

1
1 (R))+. (40)

The above equation illustrates that the source Θ and the Rastall parameter contribute to the outer spacetime. So, while
discussing the compact objects within the context of modified gravitational theories, the exterior region is not a vacuum
due to the presence of modified terms. Such participation can provide some extensions on the standard matching constraints.
Senovilla (2013) discussed such constraints in the context of f(R) theory by adopting isotropic and anisotropic distributions and
concluded that these constraints are not fulfilled in this arena. If we talk about the factors arising from the Rastall theory,
the external spacetime is no more vacuum as it is occupied by an effective cosmological constant illustrating the (anti) de
Sitter spacetime (Heydarzade et al., 2017). Here, we drop out the Rastall contributions in the exterior region ((Hχ(R))+); i.e., we
take the external geometry with no matter part (T+ηζ = 0). This means that both (Einstein and Rastall) theories correspond to
the same vacuum solution in the presence of electromagnetic field, i.e., the exterior Reissner–Nordström solution. Consequently,
Eq. 40 becomes

P (R) − Q2

8πR4 − α(Θ
1
1 (R))− = −α(Θ

1
1 (R))+. (41)

So, the exterior geometry is considered deformed Reissner–Nordström spacetime, i.e.,

eζ
+(r) = 1− 2M

R
+ Q

2

R2 , e
−η+(r) = 1− 2M

R
+ Q

2

R2 + αg (r) ,

where g(r) manifests the geometric deformation corresponding to the external Reissner–Nordström spacetime connected with Θηζ. Using
Eq. 29 in (41), we obtain the following equation:

P (R) − Q2

8πR4 +
α f (R)
8π
( 1
R2 +

ζ′ (R)
R
) =

αg (R)
8πR2 (1+

2MR− 2Q2

R2 − 2MR+Q2). (42)
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If we take the geometric deformation function g(r) to be zero, then the original Reissner–Nordström exterior solution is recovered.
Consequently, the above equation leads to the following condition:

P (R) − Q2

8πR4 +
α f (R)
8π
( 1
R2 +

ζ′ (R)
R
) = 0. (43)

In the next section, we find the anisotropic solution by solving the field equations for the source Θ.

3 Gravitational decoupled anisotropic solution

Here, to evaluate the deformation function f(r), we determine the solutions of Eqs 28–30 by implementing some feasible conditions on
the factors of Θδς and then compute T(tot)δς components. The implementation of such extra conditions is mandatory to close the system of
Eqs 28–30. Furthermore, we need to provide a seed solution satisfying Eqs 24–26. To illustrate the application of a gravitational decoupling
scheme in the Rastall conjecture, we consider a well-known solution for charged perfect fluid specified by Estevez-Delgado et al. (2020).

eζ =
S(ar2 + 1)3/2

(5− 7ar2)3/2
, (44)

μ−1 =
(707259a2r4 − 380975a3r6 − 403485ar2 + 60025)

240(5− ar2)4 (ar2 + 1)(5− 7ar2)−2
+
(1296a (G− 1) r2(5− 7ar2)5)(B− ln( 5−7ar

2

7ar2+1
))

2401(5− ar2)4 (ar2 + 1)
, (45)

where S and a are arbitrary constants that can be determined from matching conditions, B is the integration constant, and G ≥ 0 represents
the measure of charge. This solution is singularity-free and satisfies the physical conditions inside the sphere and illustrated by the following
thermodynamic factors

ρ = 1
2304960r2(ar2 − 5)5(ar2 + 1)3 (7ar2 + 1)

(36593544960a10BḠr21 + 365935449600a10BḠr20 −588245a9r19 (BḠ559872− 533365) + 168070a9r18

×(5226595− 36391680BḠ− 1492992G) + 151263a8r17×(5598720BḠ− 18073699) − 129654a8r16 (17832960BḠ −11335680G+ 295512197)

−6174a7r15 (75375360BḠ −1052303077) − 123480a7r14 (326497705− 168811776BḠ +5349888G)−294a6r13 (2444774400BḠ+ 7785561833)

+1176a6r12 (121624390127− 8806320000BḠ −2149286400G) + 1008a5r11 (886464000BḠ −6414557219) − 3780a5r10 (2849644800BḠ −G573004800+ 6560904319)

−360a4r9 (524232000BḠ −15965956111) − 1260a4r8 (−8123328000BḠ −590976000G+ 70733928229) − 150a3r7 (676512000BḠ

+2397948329) + 600a3r6 (81116109221− 3475872000BḠ −2068416000G) + 2250a2r5 (11664000BḠ− 313765081)

−27000a2r4 (7128000BḠ− 12096000G+ 136292527) + 311040(7ar2 − 5)3aḠr2 (7ar2 + 1)(343a4r9 − 49a5r11 −490a5r10 + 7210a4r8 − 388a3r7 + 18116a3r6 − 580a2r5

−580a2r4 + 325ar3 − 8450ar2 + 125r+ 1250) ln( 5− 7ar
2

7ar2 + 1
)+ 5625ar3 (864000BḠ+ 9217439)

−56250ar2 (25947607− 864000BḠ) + 18015003125r +32428506250) +Aχ, (46)

P = 1
2304960r2(ar2 − 5)5(ar2 + 1)3 (7ar2 + 1)

(588245a9r19 (559872BḠ− 533365) − 36593544960a10 ×BḠr21 − a10BḠ73187089920r20

−168070a9r18 × (3733603− 2799360BḠ) − 151263a8r17 (5598720BḠ −18073699) + 129654a8r16 (29728141− 6220800BḠ)

+6174a7r15 (75375360BḠ− 1052303077) + 123480a7r14(11549952BḠ− 47380753) + a6294r13 (2444774400BḠ

+7785561833) + 1176a6r12 (520214400BḠ+ 9166255315)−1008a5r11 (886464000BḠ− 6414557219) + 111132a5r10

×(72274069− 33696000BḠ) + 360a4r9 (524232000BḠ −15965956111) + (14250816000BḠ− 162438773833)

×180a4r8 + 150a3r7 (676512000BḠ+ 2397948329)−600a3r6 (303264000BḠ− 23764514557) − 2250a2r5

×(11664000BḠ− 313765081) + 27000a2r4 (37717309 −5832000BḠ) − 311040aḠr2(7ar2 − 5)3 (7ar2 + 1)

×(343a4r9 − 49a5r11 − 98a5r10 + 434a4r8 − 388a3r7−92a3r6 − 580a2r5 + 1180a2r4 + 325ar3 + 3350ar2

+125r+ 250) ln(5− 7ar
2

7ar2 + 1
)− 5625ar3 (864000BḠ +9217439) − 56250ar2 (172800BḠ+ 8185009) −32428506250− r18015003125) +Bχ,

(47)
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FIGURE 1
Plots of metric functions for a = 0.045, S = 1, B = −0.7, χ = −0.2, G = 0.05, α = 0.5 (red), α = 1 (green), and α = 1.5 (black).

q2 = −(πr2 (5227649280a8BḠr17 − 10455298560a8BḠr16 −12005a7r15 (1804032BḠ− 3733555) + 24010a7r14(5163264BḠ− 3733603)

+343a6r13 (56920320BḠ − 503938687) − 686a6r12 (196888320BḠ− 1512027097)+147a5r11 (87609600BḠ+ 820304051) − 294a5r10

×(162259200BḠ+ 2947152677) − (3740256000BḠ −19319788159)7a4r9 + 14a4r8 (7099488000BḠ −42569014159)

+25a3r7 (387244800BḠ− 7227660671)+70(9211293469−BḠ256608000)a3r6 + 525a2r5 (2592000BḠ+ 76306181)

−750a2r4 (12960000BḠ +13486417) − 311040a(7ar2 − 5)3Ḡr2 (49a4r9 − 98a4r8 − 98a3r7 + 952a3r6 − 102a2r5 + 924a2r4 + 70ar3 + 40ar2

+25r− 50) ln(5− 7ar
2

7ar2 + 1
)− a125r3 (7776000BḠ −113046283) + 250ar2 (7776000BḠ− 223151341) −3603000625r+ 6485701250))

(288120(ar2 − 5)4 (ar2 + 1)3)−1, (48)

where Ḡ = G− 1, while Aχ,Bχ are as given in Supplementary Appendix SA1.
Now, in order to close the system, we consider the mimic constraint approach (Ovalle et al., 2018a).

3.1 Pressure constraint

After applying the decoupling mechanism, the mimic constraints are implemented on the components of sources. These impositions
result in solutions that are well-behaved, i.e., without any unfavorable mathematical/physical conducts like increasing thermodynamic
factors, singularities, and the contravention of the conservation law. Some other assumptions could include a direct and appropriate
description of the geometric deformation function f(r) that satisfies the fundamental standards of physical and mathematical admissibility
or connecting the parts of Θ via barotropic, polytropic, or linear equation of state. Here, we take the situation where the radial component
Θ1

1 mimics the matter component of field Eq. 22, i.e.,

Θ1
1 = P (r) −

q2

8πr4
. (49)

This choice indicates that for the seed solution, the stress–energy tensor coincides with the anisotropy in the radial direction. Using
Eqs 47, 48, and 29 in the above equation, we use Mathematica to find the explicit expression of deformation parameter f(r) in terms of the
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FIGURE 2
Plots of physical quantities for a = 0.045, S = 1, B = −0.7, χ = −2, G = 0.05, α = 0.5 (red), α = 1 (green), and α = 1.5 (black).

metric functions (44) as

f (r) = ( −21a
5− 7ar2

− 3a
ar2 + 1
− 1
r2
)
−1
[ 1
2304960r2(ar2 − 5)4(ar2 + 1)3

5227649280a8BḠr17 −10455298560a8BḠr16 − 12005a7r15 (1804032BḠ

−3733555) + 24010a7r14 (5163264BḠ− 3733603)+343a6r13 (56920320BḠ− 503938687) − a6686r12

×(196888320BḠ− 1512027097) + 147a5r11×(87609600BḠ+ 820304051) − (2947152677

+162259200BḠ)294a5r10 − 7a4r9 (3740256000BḠ −19319788159) + 14a4r8 (7099488000BḠ

−42569014159) + (387244800BḠ− 7227660671)25a3r7−70a3r6 (256608000BḠ− 9211293469)

+525a2r5 × (2592000BḠ+ 76306181) − 750a2r4 (12960000BḠ +13486417) − 311040aḠr2(7ar2 − 5)3 (49a4r9 − 98a4r8

−98a3r7 + 952a3r6 − 102a2r5 + 70ar3 + 924a2r4 + 40ar2+25r− 50) ln(5− 7ar
2

7ar2 + 1
)− 125ar3 (7776000BḠ

−113046283) + (7776000BḠ− 223151341)250ar2+
Cχ

2304960r2(ar2 − 5)5(ar2 + 1)3 (7ar2 + 1)
3603000625r +6485701250] , (50)

whereCχ is as expressed in Supplementary Appendix SA1. To describe the inner solution, the unknown constants a,B, and S can be computed
from the matching conditions. The temporal metric function (ζ = ν) is given in Eq. 44, while the deformed radial metric function (η) can be
obtained by substituting the value of μ in Eq. 20. Using these metric functions in Eq. 39, i.e., the continuity of metric functions, the following
result is obtained:

Frontiers in Astronomy and Space Sciences 09 frontiersin.org

https://doi.org/10.3389/fspas.2023.1320081
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Sadiq et al. 10.3389/fspas.2023.1320081

FIGURE 3
Plots of energy conditions for a = 0.045, S = 1, B = −0.7, χ = −2, G = 0.05, α = 0.5 (red), α = 1 (green), and α = 1.5 (black).

FIGURE 4
Plots of radial and tangential squared speed of sound for a = 0.045, S = 1, B = −0.7, χ = −2, G = 0.05, α = 0.5 (red), α = 1 (green), and α = 1.5 (black).
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FIGURE 5
Plot of the adiabatic index for a = 0.045, S = 1, B = −0.7, χ = −2, G = 0.05, α = 0.5 (red), α = 1 (green), and α = 1.5 (black).

S(ar2 + 1)3/2

(5− 7ar2)3/2
= 1− 2𝕄

R
+ ℚ

2

R2 =
(5− 7ar2)2

240(5− ar2)4 (ar2 + 1)
(60025− 380975a3r6 + 707259a2r4 − 403485ar2)

+
B− log( 5−7ar

2

7ar2+1
)

2401(5− ar2)4
(1296a (G− 1) r2(5− 7ar2)5)

(ar2 + 1)
+ α f, (51)

yielding the value of S and B, which are not mentioned here due to lengthy expression. In this case, the expressions of the components of Θ
(Θ0

0, Θ
1
1, and Θ2

2) are obtained as follows:

Θ0
0 =

−(ar2 − 5)−5

576240(7a2r5 + 8ar3 + r)2
(768464444160a10BḠr20 −588245a9r18 (22954752BḠ+ 746496G− 4480099)

+a850421r16 (328458240BḠ+ 58475520G− 1732398691)+576240a7r14 (24727680BḠ− 6485184G+ 132215525)

−8232a6r12 (4046241600BḠ+ 7 (14774400G −2413618793)) + (57270240000BḠ+ 13639104000G

−6895187337) − 294a5r10 − 26250a4r8 (33592320BḠ +82487808G− 2534148565)

−(15552000BḠ− 2851200G −110933219)63000a3r6 + 30000a2r4 (1458000BḠ

+7 (388800G− 17379991)) − 933120a(5− 7ar2)4(7a3r6 − 105a2r4 + 25− 135ar2)(7ar3 + r)2 ln

×(5− 7ar
2

7ar2 + 1
) Ḡ+ 1875ar2 (7776000BḠ− 129766847) +16214253125) +Dχ, (52)

Θ1
1 =
−(ar2 − 5)−3

576240(ar3 + r)2
[5227649280a6BḠr12 − 12005a5 r10 (1181952BḠ− 3733603) + (40435200BḠ − 317282777)343a4r8

− 686a3r6 (7776000BḠ − 131880637) + 70a2r4 (3888000BḠ− 367013773) + (7776000BḠ− 36372749)25ar2

−311040aḠr2 (5 −7ar2)4 (7ar2 + 1)] ln(5− 7ar
2

7ar2 + 1
)+ 648570125]+Eχ, (53)

Θ2
2 =
−(ar2 − 5)−5(ar2 + 1)−3

48020(7ar2 − 5)(7ar2 + 1)2
(3a(8640BḠ(7ar2 + 1)2 (49a5r10 − 847a4r8 − 80a3r6 + 2560a2r4 − 325ar2 − 125)

×(5− 7ar2)4 − 8640Ḡ(7ar2 + 1)2 (49a5r10 − 847a4r8 −80a3r6 + 2560a2r4 − 325ar2 − 125)(5− 7ar2)4

ln(5− 7ar
2

7ar2 + 1
)− 7(6098924160a10Ḡr20 − 117649a9 (466560G− 5948729) r18 + 24010 (5878656G− 47571805)

×a8r16 − 343a7 (226126080G+ 6795147701) r14−245a6 (488954880G− 26455714069) r12

+7 (21275136000G− 700251605507)a5r10+5a4 (190608645637− 6290784000G) r8

−25a3 (676512000G− 13440014311) r6+125a2 (34992000G− 695774297) r4 + 40000a (20250G −528233) r2 − 901446875))) + Fχ,
(54)

where Dχ, Eχ, and Fχ are as presented in Supplementary Appendix SA1.
The graphical analysis of metric functions is shown in Figure 1, while the behavior of main matter variables that specifies the system

such as density, radial and tangential pressures, and anisotropic factor is presented in Figure 2 for different values ofG to inspect the effect of
the charge parameter. In order to determine a physically viable stellar model, we consider the values of parameters which lead to the viable
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FIGURE 6
Plots of mass function, compactness, and redshift parameters for a = 0.045, S = 1, B = −0.7, χ = −2, G = 0.05, α = 0.5 (red), α = 1 (green), and α = 1.5 (black).

FIGURE 7
Plot of metric function eη for a = 0.045, S = 1, B = −0.7, χ = −2, G = 0.05, α = 0.5 (red), α = 1 (green), and α = 1.5 (black).

behavior of all physical parameters, energy conditions, and stability criterion. For this reason, we take the negative values of χ. Moreover, in
the literature, the positive and negative values of the Rastall parameter have been used. So, there is no limitation on the Rastall parameter
except that χ ≠ 1

4
. The potential functions exhibit positive values in the interior; i.e., they exhibit the desirable behavior. It is emphasized

that at the compact stellar system’s core, Δ(0) = 0 due to P(tot)t (0) = P
(tot)
r (0). Furthermore, the anisotropy parameter remains negative all over

the internal system for a smaller value of decoupling parameter α, while it possesses positive values when α increases. It is noteworthy that
anisotropy will appear if both pressure components reduce inside the system. In fact, the energy density is changed due to the incompatibility
with the isotropic pressure.The system’s balance under the influence of hydrostatic repulsion and gravitational gravity is altered. As the radial
pressure should vanish at the boundary of star, the radial pressure obtained in case of pressure constraint takes the zero value at r = 1; i.e.,
the radius for the obtained stellar model is 1(km). It is found from Figure 2 that the density has its maximum value in the interior and falls
monotonically when r is increased. The radial and tangential pressures are positive inside a star, while there is a monotonic decline with
the increase in the radial coordinate. The charged anisotropic systems must meet the null energy constraint, weak energy constraint, strong
energy constraint, and dominant energy constraint at each point in the interior of the system for the physical acceptability of the stellar
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FIGURE 8
Plots of physical quantities for a = 0.045, S = 1, B = −0.7, χ = −2, G = 0.05, α = 0.5 (red), α = 1 (green), and α = 1.5 (black).

constitutions. These constraints for the constructed model appear to be

ρ+
q2

8πr4
≥ 0,

ρ+ Pr ≥ 0,

ρ− Pr +
q2

4πr4
≥ 0,

ρ± Pt ≥ 0,

ρ+ Pr + 2Pt +
q2

4πr4
≥ 0.

(55)

We show the energy constraints for the case under consideration in Figure 3, which shows that our charged anisotropic solution for the
chosen parameters satisfies all the above inequalities. Using the sound speed criterion, we examine the stability of the system.The following
formula is used to evaluate the radial (v2r ) and tangential (v2r ) squared speed of sound:

v2r = dPr/dρ, v2t = dPt/dρ. (56)

As shown by the causality condition, the sound speed ought to be smaller than the speed of light whenever it passes through the
anisotropic fluid configuration in stellar objects. According to this condition, 0 ≤ v2r and v2t < 1 must be attained. The plots of Figure 4 show
that our solutions fulfil this condition. The adiabatic index illustrates the stiffness of the EoS for a specific density. Through the adiabatic
index, we investigate the dynamical stability of celestial structures against radial adiabatic perturbation. The spherically symmetric system
is only modified in the radial direction for an anisotropic matter composition in order to prevent gravitational collapse, demonstrating the
importance of the radial direction. When the adiabatic index exceeds 4/3, the Newtonian spheres are stable, and if this index is equal to 4/3,
the neutral equilibrium is shown. The adiabatic index is defined as (Bombaci, 1996)

Γ = (
ρ+ Pr
Pr
)dPr/dρ. (57)

We plot the radial adiabatic index in Figure 5, showing that Γ > 4/3. Now, we examine the outcomes produced by the gravitational
decoupling throughminimal geometric deformation on themass function and compactness parameter.Themass function for the considered
system is found to be
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FIGURE 9
Energy conditions for a = 0.045, S = 1, B = −0.7, χ = −2, G = 0.05, α = 0.5 (red), α = 1 (green), and α = 1.5 (black).

FIGURE 10
Plots of squared speed of sound for a = 0.045, S = 1, B = −0.7, χ = −2, G = 0.05, α = 0.5 (red), α = 1 (green), and α = 1.5 (black).
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FIGURE 11
Plot of the adiabatic index for a = 0.045, S = 1, B = −0.7, χ = −2, G = 0.05, α = 0.5 (red), α = 1 (green), and α = 1.5 (black).

FIGURE 12
Plots of mass function, compactness, and redshift parameters for a = 0.045, S = 1, B = −0.7, χ = −2, G = 0.05, α = 0.5 (red), α = 1 (green), and α = 1.5 (black).

m = 4π∫
r

0
r2ρ(tot)dr =mGR +mχ −

αr f
2

= r
2
(1− μ+

q2

r2
)−∫

r

0
r2
Hχ

8r2
dr−

αr f
2
. (58)

For the considered mimic constraint, the behavior of the gravitational decoupled mass function, compactness parameter, and redshift
parameter is presented in Figure 6. All these factors vanish at the center of stellar structures andmanifest the required viable physical behavior.

It is worth mentioning here that the obtained anisotropic solution is not unique because different choices and possibilities on the
decoupler function f(r) and Θ constituents can be chosen. A different constraint is taken into account in the following section providing
a distinct anisotropic solution.
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3.2 Density constraint

Here, we consider a mimic constraint on density to close system (28)–(30) and determine an admissible solution, i.e.,

Θ0
0 = ρ. (59)

Equating Eqs 28 and 46, we get a general form of deformation factor f(r) presented as follows:

f =
−(ar2 + 1)−3

2304960(ar2 − 5)4
(5227649280a8BḠr17 − 10455298560a8 ×BḠr16 − 12005a7r15 (1804032BḠ− 3733555) + 24010a7

× r14 (5163264BḠ− 3733603) + 343a6r13 (56920320BḠ −503938687) − a6 (196888320BḠ− 1512027097)686r12

+ 147a5r11 (87609600BḠ+ 820304051) − 294a5r10 (162259200BḠ+ 2947152677) − 7a4r9 (3740256000BḠ

−19319788159) + 14(7099488000BḠ− 42569014159)a4r8 + 25a3r7 (387244800BḠ− 7227660671) − 70a3r6

× (256608000BḠ− 9211293469) + 525a2r5 (2592000BḠ +76306181) − 750a2r4 (12960000BḠ+ 13486417)

− aḠ311040r2(7ar2 − 5)3 (49a4r9 − 98a4r8 − 98a3r7 +952a3r6 − 102a2r5 + 924a2r4 + 70ar3 + 40ar2 + 25r− 50)

× ln(5− 7ar
2

7ar2 + 1
)− 125ar3 (7776BḠ− 113046283) + 250ar2 (7776BḠ− 223151341) − 3603000625r+ 648570125) − r2Gχ, (60)

where Gχ is as displayed in Supplementary Appendix SA1, and the temporal and radial metric functions can be obtained from Eq. 20. The
anisotropic solutions in this case become

Θ0
0 =

(7ar3 + r)−2

576240(ar2 − 5)6(ar2 + 1)4
(256154814720a13BḠ ×(4 (r+ 3)χ− 3) r26 − 588245a12 (−8213606rχ

−11199686χ+ 746496G((r+ 5)χ− 1) + 2239488BḠ ((15r+ 53)χ− 13) + 448099) r24 + 605052a11

×(−1955942rχ− 2824858χ+ 207360G(43rχ+ 372χ− 52) +51840BḠ(4 (721r+ 4143)χ− 3315) + 142497978) r22

−14406a10 (−38112301rχ− 2228751870χ+ 1866240G (741rχ+ 4457χ− 1161) + 207360BḠ((9845r− 373359)χ

−38211) + 39530537) r20a9 (−41095990252rχ−5536915000555χ− 11197440G(797rχ− 22824χ− 2264χ

−1384) + 343760187618)) r10 + 225a4 (3456BḠ ((41101r +55263)χ− 54471) + 7(−2 (72324621r+ 10863514)χ

+31104G((51r+ 1363)χ+ 81)G(19rχ+ 44χ− 28) +5365)) r6 − 1125a2 (5184BḠ((19r+ 39)χ− 21)

+7(−2594rχ− 6249χ+ 5184G((r+ 9)χ− 1) + 2412)) r4 − 375a(648BḠ(4 (r+ 3)χ− 3) + 240((9116r− 216)χ −7558)) r2

− (−49a2r4 + 28ar2 + 5)2311aḠ(343a8 (4 (r+ 3)χ− 3) r16 − 196a7 ((127r+ 453)χ −111) r14 + 224a6 ((413r+ 2652)χ− 510) r12

+4a5 ((17309r+ 545685)χ+ 4935) r10 + 10a4 (69099 −4 (9881r− 38649)χ) r8 − 100a3 ((997r+ 6267)χ− 381) r6

+a2 (16 (16r+ 3)χ− 453) r4 − 25a((r− 51)χ− 21) r2 −312(4 (r+ 3)χ− 3)) ln(5− 7ar
2

7ar2 + 1
) r2 − 4802rχ), (61)

Θ1
1 =
(ar2 − 5)−4(ar2 + 1)−4

576240r2 (7ar2 − 5)
(36593544a10BḠr20 ((r+ 4)χ− 1) − 84035a9r18 (559872BḠ((7r+ 40)χ− 9) + χ (746496G

− 3733555r− 8213702) + 3733603) + 21609a8r16 (622080BḠ((63r+ 2)χ− 110) + χ (1700352G− 161

(785813r+ 3584130)) + 163855523)6174a7r14 (103680BḠ((727r− 6470)χ− 1978) + χ (26749440G

−r1052303077r+ 921777230) + 1892375954) − 294a6r12 (4665600BḠ((524r+ 2222)χ− 657) + χ (21492864G

+7785561833r− 94125624182) − 26259556190) + 126a5r10 (7776000BḠ(2 (456r+ 59)χ− 1789) + χ (4297536G

−51316457752r− 97016079036) + 73691787323) − 90a4r8 (25920BḠ((809r− 2722)χ− 2798) − 7(4χ (G73872000

+2280850873r− 139663859) − 19147948589)) − 150a3r6 (23328000BḠ((29r+ 110)χ− 18) + 7(χ (51840G

−44823583r− 106904766) + 47795678)) − 311040aḠr2(7ar2 − 5)3 (7ar2 + 1)(49a5r10 ((r+ 4)χ− 1) − 7a4r8

× ((49r+ 304)χ− 67) + 2a3r6 (2 (97r− 115)χ− 491)+10a2r4 ((58r− 74)χ− 85) − 25((13r+ 16)χ− 31)ar2

−125((r+ 4)χ− 1)) ln(5− 7ar
2

7ar2 + 1
)+ 5625ar2 (864BḠ((r+ 4)χ− 1) + ((3839r− 1450)χ− 7441)) , (62)
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Θ2
2 =
−(ar2 + 1)−5(7ar2 + 1)−2

1152480r(5− 7ar2)2(ar2 − 5)6
(−1255158592128a16BḠ ((3r+ 8)χ− 2) r31 + 28824005a15 (−4480051rχ− χ

× 2985984+ 746496G((r+ 4)χ− 1) + 186624BḠ ((147r+ 440)χ− 110) + 746496) r29 − 2470629a14

× (15083482 rχ− 407943960χ+ 1244160G(107rχ+ 688χ −125) + 311040BḠ((5997r+ 29416)χ− 5338)

× +6284920) r27 + 3752) − 194822) + 31653959256) r25

+ 16807a12 (6865189721rχ− 1082964336048χ− 746496 G(29971rχ− χ × 210559004573− 58402986943056χ

− 1244160G(35155rχ− 5347324χ− 407377) + 311040BḠ

× (χ (22403037r+ 13538872) − 3445671) + 32019480946) r21 + 1029a10 (−2988678971rχ+ 1674871092χ+ 1119744G

× (75211rχ+ 1874040χ− 1157819) + 103680BḠ((263332401r− 1927678760)χ− 526356970)

+46889168518) r19 + 49a9 × (1578202567205965rχ −25839197731264χ− 2239488G(637283rχ− 4589980χ

−1477154) + 139968BḠ× ((51006585r+ 271529336)χ −66232598) − 3592795304271600) r17 − 63a8

× (−4410864255rχ− 1252068166χ+ 124416G(583759rχ +466313χ− 551134) + 77760BḠ((93533361r− 683668)χ

−162924518) + 649339) r15 + 45a7 (8640BḠ ((258302847r −1216349128)χ− 719035382) + 7(−776207297684095rχ

+ 517991487819552χ+ 93312G(204349rχ− 329484χ −400561) + 13945821)) r13 + 25a6 (23328BḠ ((1157864r

+1719528)χ− 1116) × r+ 311040aḠ(7ar2 − 5)3(7ar2 + 1)2 (2401a10 ((3r+ 8)χ− 2) r20

−686a9 ((201r+ 608)χ− 152) r18 − 295) r8r− 30a3 ((15r− 212)χ− 1864) r6 − 565a2 ((61r+ 56)χ+ 34)

× r4 + 62a((57r+ 4)χ− 80) r2 + 156((3r+ 8)χ− 2)) log(5− 7ar
2

7ar2 + 1
) r+ 2251875χ). (63)

Using the matching conditions (39), we find the expressions of constants which are not written here due to lengthy expressions.
The graphical analysis in this case is displayed in Figures 7–12. The behavior of the metric function and matter variables is positive,
regular, finite, and viable within the interior geometry of the stellar object (Figures 7, 8). The stellar model in this case exhibits the
same radius as for the model obtained by pressure constraint. The energy conditions are also satisfied for this constraint (Figure 9). Our
second solution also presents the stable structure of the stellar system (Figure 10). The graphical behavior of adiabatic index is shown
in Figure 11. For density constraint, the graphical structure of the gravitational decoupled mass function, redshift, and compactness
parameters is shown in Figure 12. These factors exhibit the same behavior as determined in case of pressure constraint, i.e., the physically
acceptable behavior.

4 Final remarks

In order to analyze the structural features and stability criterion of the stellar models, the notion of gravitational decoupling
by means of a minimal geometric deformation and the complete geometric deformation possesses great significance. This approach
provides us a new window to obtain new anisotropic solutions to the Einstein field equations. Despite its simplicity, this
powerful technique yields a better understanding about self-gravitating anisotropic configurations. One of the most important
advantages of this approach lies in the fact that it splits a complicated system of equations into two simple separated sets
of equations, one corresponds to the usual Einstein field equations associated with an isotropic matter distribution and the
second one governed by an extra gravitational source which encodes the anisotropic sector (this system of equations is also
known as quasi-Einstein equations). In the present study, we have employed this technique to formulate a new anisotropic
stellar model with the inclusion of electromagnetic field by taking into account a known isotropic solution in the light of
Rastall theory.

According to the MGD approach, an additional source is adjoined with the charged perfect fluid stress–energy tensor, which
provides the effective field equations. Here, the first set corresponds to the field equations for perfect fluid along with the charge,
whereas the second set is associated with the new source and the deformed metric function. We compared our interior spacetime
with the deformed RN metric and evaluated the junction conditions. To solve the equations, we took the known charged perfect
fluid model and then integrated the impact of the new source. As Rastall gravity includes an additional factor which displays the
deviation from the behavior of general relativity, therefore, in this paper, we also observed the impact of that additional factor and the
influence of electromagnetic field and the chances to attain the compact celestial configurations, which could lead to narrate quark or
neutron stars.

In order to analyze the physical consistency of the obtained solutions, we examined the nature of some physical parameters, energy
conditions, and stability criteria corresponding to the two mimic constraints for the particular choice of parametric values. It is found that
the energy density and the radial/tangential pressures are well-behaved throughout the matter distribution. The radial/tangential pressures
monotonically decrease and disappear at the surface of the stars. At the center of stellar structures, fluid distribution shows isotropic
structure, whereas the increment in the anisotropic factor occurs as one travels toward the surface of a star. In addition, for the first
constraint, the anisotropy parameter is negative just for smaller values of α, while for other cases, Δ > 0, intending the existence of the
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repulsive nature of gravitational force which may help in the development of more compact celestial objects. From the graphical description,
it is observed that the proposed formalism (considered metric functions) exhibits suitable behavior in the presence of decoupling and
Rastall parameters.

The graphical analysis of all energy conditions manifests that these are satisfied assuring the physical viability and
acceptability of the obtained solutions. The stability criterion is inspected through the adiabatic index criterion and the cracking
method. It is seen that these conditions are fulfilled, and henceforth, the developed solutions are stable corresponding to
both mimic constraints. The mass function, compactness parameter, and redshift parameter also exhibit the required consistent
behavior for both constraints. Finally, it is concluded that the adopted charged perfect fluid metric potentials (Estevez-
Delgado et al., 2020) show viable and consistent configuration of stellar structures for the specific choices of decoupling and
Rastall parameters.
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