
 
            

 

 
 
 

 
 
 
 
 
 

Associated conference: 5th International Small Sample Test Techniques Conference  
  
Conference location: Swansea University, Bay Campus 
  
Conference date: 10th - 12 July 2018 
 
 

 
 
How to cite: Holmström, S., Simonovski, I., Baraldi, D., & Bruchhausen, M., Altstadt, 

E., Delville, R., 2018. Successfully estimating tensile strength by small 
punch testing. Ubiquity Proceedings, 1(S1): 22 DOI: 
https://doi.org/10.5334/uproc.22 

  
Published on: 10 September 2018 
 

 
 
 
 
 
 
 
 

Copyright: © 2018 The Author(s). This is an open-access article distributed under the terms 
of the Creative Commons Attribution 4.0 International License (CC-BY 4.0), which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original author 
and source are credited. See http://creativecommons.org/licenses/by/4.0/. 

https://ubiquityproceedings.com 

https://doi.org/10.5334/uproc.22


SSTT2018         Swansea University 
 

Successfully estimating tensile strength by small punch testing 

S. Holmström 1*, I. Simonovski 1, D. Baraldi 1, M. Bruchhausen 1, E. Altstadt 2, R. Delville 3 

1 European Commission, Joint Research Centre, Petten, The Netherlands 
2 Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany 
3 SCK·CEN Belgian Nuclear Research Centre, Mol, Belgium 

* Correspondence: stefan.holmstrom@ec.europa.eu 

Abstract: The Small Punch (SP) test is a relatively simple test well suited for material ranking and material 

property estimation in situations where standard testing is not possible or considered too material consuming. The 

material tensile properties, e.g. the ultimate tensile strength (UTS) and the proof strength are usually linearly 

correlated to the force-deflection behaviour of a SP test. However, if the test samples and test set-up dimensions 

are not according to standardized dimensions or the material ductility does not allow the SP sample to deform to 

the pre-defined displacements used in these correlations, the standard formulations can naturally not be used. Also, 

in cases where no supporting UTS data is available the applied correlation factors cannot be verified. In this paper 

a formulation is proposed that enables the estimation of UTS without supporting uniaxial tensile strength data for 

a range of materials, both for standard type and for curved (tube section) samples. The proposed equation was 

originally developed for estimating the equivalent stress in small punch creep but is also found to robustly estimate 

the UTS of several ductile ferritic, ferritic/martensitic and austenitic steels. It is also shown that the methodology 

can be further applied on non-standard test samples and test set-ups and to estimate the properties of less ductile 

materials such as 46% cold worked 15-15Ti cladding steel tubes. In the case of curved samples the UTS estimates 

have to be corrected for curvature to match the corresponding flat specimen behaviour. The geometrical correction 

factors are dependent on tube diameters and wall thicknesses and were determined by finite element simulations. 

The outcome of the testing and simulation work shows that the UTS can be robustly estimated both for flat samples 

as well as for thin walled tube samples. The usability of the SP testing and assessment method for estimating 

tensile strength of engineering steels in general and for nuclear claddings in specific has been verified. 

Keywords: small punch testing, tensile strength, fuel claddings 

 

 

1. Introduction  

In a small punch (SP) test the local stresses and strains are biaxial in nature [1]. It has been shown to be a 

challenging task to estimate uniaxial (equivalent) stress from the force displacement curve of the SP test [2,3]. A 

new standard [4] is currently under preparation within the European Committee for Iron and Steel Standardization 

(ECISS), Technical Committee 101 (TC101), working group 1 (WG1) to replace the current CEN Workshop 

Agreement [5]. The new standard covers the classical Small Punch (SP) test for tensile property estimation and the 

Small Punch Creep (SPC) test for creep property evaluation. In this paper some new insight, gained from the SPC 

equivalent stress determination [6], is used for estimating the tensile strength. 

In the SP test a hemispherical punch or a ball is forced at a constant displacement rate through a disc specimen 

(Error! Reference source not found.) that is clamped between an upper and a lower die. The main result of a SP 

test is the measured force F as a function of displacement v (at the punch tip) or deflection u (below the sample).  

The measured displacement v has to be corrected for compliance. The difference between displacement and 

deflection is the change of the specimen thickness at the punch tip. 

Example SP force-displacement curves for the two standardized SP test set-ups and specimen sizes are shown 

in Error! Reference source not found.a and in normalized form in Error! Reference source not found.b.  
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Figure 1. Schematic of a SP test set-up [7]. 

  

  

(a) (b) 

Figure 2. (a) Force-displacement curves for a standard 0.5 thick and a miniature 0.25 mm thick 316L steel 

sample [8] and (b) the corresponding normalized curves with force normalized with the maximum force Fmax 

and the displacement normalized by 2v/D, where D is the receiving hole diameter. 

1.1 Test rig set-ups 

The new standard (presented in [4]) includes two types of SP or SPC specimen, i.e. a specimen with a 

diameter DS = 8 mm and an initial thickness h0 = 0.5 mm and a specimen with DS=3 mm and h0=0.25 mm. The 

standard test rig specifics for these two types are given in Error! Reference source not found. together with other 

set-ups found in literature [2,5,11]. The lower die has a receiving hole with diameter D and a chamfer of length L. 

Both, D and L depend on the type of specimen used (Error! Reference source not found.). 

Table 1. Main geometric characteristics of different SP test set-ups and specimen. Note that also a radius 

(instead of a chamfer (L)) can be used. The specimen and test set-ups given in bold are used in this paper. 

Specification 

number 

SNR# 

Test piece dimensions 

(Ds / h0) [mm] 
D [mm] r [mm] L [mm] Note 

#1 8/0.5 4 1.25 0.2 Standard set-up [2] 

#2 8/0.5 4 1-1.25 0.2 CWA 15627 [2, 5] 

#3 8/0.5 4 1-1.25 (1.19)1) 0.2 Japanese SPC [9] 

#4 3/0.25 1.75 0.5 0.2 Standard set-up [2] 

#5 3/0.25 2 0.5 0.2 MATTER [10] 

#6 3/0.25 1.5 0.5 0.2 MATTER [10] 

#7 Curved samples2) 4 1.25 #N/A Tube sections [11] 

1) Kagoshima University uses 2.38 mm balls  

2) Curved tube samples: with outer diameters and wall thicknesses as in Table 1. 
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2. Materials 

The materials assessed here are from various projects and test campaigns as given under the sub-headings 

below.  The test materials and their room temperature (RT) ultimate tensile strengths are given in Tables 2-4. These 

values are estimated by SP tests later in this paper. 

2.1 ECISS/TC101 round robin materials 

The main materials used by ECISS/TC101/WG1 for the estimation of tensile properties were different heat 

treatments of P92 pipe. To study the impact of differing yield to tensile strength ratios the 316L was also tested. 

The TC101 test materials are given in Table 2. All the ECISS/TC101/WG1 materials, except 316L-miniature, are 

tested at room temperature with test specification number SNR#1 (Error! Reference source not found.) and the 

miniature test sample with SNR#4 .  

Table 2. TC101 materials and their ultimate tensile strength at room temperature. 

Material and designation Uniaxial Rm (MPa) at RT 

P92– as received  8081),  

P92– Heat treatment 1  6751) 

P92– Heat treatment 2  7071) 

P92– Heat treatment 3  7261) 

P92– Heat treatment 4  7331) 

316L – miniature 5692) 

316L  5692) 

1) As given by material supplier (MMV). 

2) As measured by JRC [8]. 

 

2.2 TASTE project materials 

In the EERA JPNM pilot project TASTE [11-13] the main material of interest was the nuclear grade titanium 

stabilized 15-15Ti (DIN 1.4970) stainless steel cladding [14]. The 15-15Ti is the primary choice for fuel cladding 

of several current fast spectrum research reactor projects. The main test material was the 24% cold worked 

(24%CW) 15-15Ti cladding tube material, manufactured by Sandvik on behalf of SCK•CEN. The material batch 

has passed tight quality control, i.e. stringent composition, grain sizes and mechanical properties (yield strength, 

tensile strength and elongation at rupture) control and tight product tolerances (diameters, straightness and ovality), 

roughness and defect controls. A smaller batch with a cold-work level of 46% (46%CW) was also produced and 

tested. For the 46%CW the deformation level is intended to simulate irradiation damaged material in the sense of 

work-hardening saturation demonstrated by the small difference between the proof stress and the ultimate tensile 

strength. The 46%CW also has markedly decreased total elongation [15,16]. 

The 15-15Ti material properties (axial) at RT performed on full tubes (no waist) and on sections cut from the 

wall (with waist) are given in 3 together with the properties of the reference material P91.  All the JRC curved 

specimens analyzed for this paper were tested with a test-set-up with D=4 mm, r=1.25 mm and no chamfer (SNR#7 

in Error! Reference source not found.). The chamfer cannot be manufactured on a curved surface. The flat 

reference P91 specimens were tested with the standard test set-up (SNR#1 in Error! Reference source not found.), 

with the standard thickness (h0=0.5 mm), and with a reduced thickness to comply with the tube specimen, i.e. 

h0=0.45 mm. The flat test set-up always has a chamfer (Table 3).  
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Table 3. TASTE project materials, sample types (inner diameter ID or flat) and their ultimate tensile 

strengths at RT. 

Material and designation 
Tube ID / h0 

D / h0 (mm) 
Uniaxial Rm (MPa) at RT 

15-15Ti CW24% CURVED 6.55 / 0.45 
8101) 

8572) 

15-15Ti CW46% CURVED 6.55 / 0.45 
9251) 

9292) 

P91 CURVED 6.55 / 0.454) 6803) 

P91 FLAT 
Flat/0.45 

Flat/0.50 
6803) 

1) As given by the material supplier [11], tested on full tube. 

2) As measured from axial tube samples [15, 16], tested on tube section. 

3) As measured from standard size uniaxial samples [17]. 

4) Inner surface as from EDM cut. 

2.3 ASTM round robin materials 

In the US the American Society for Testing and Materials (ASTM) has an ongoing work item [18] for the 

development of a SP standard. The scope of the work is to enable estimates of yield and tensile strength up to a 

temperature of 450°C for metallic materials. JRC has taken part in this effort as a member of an inter-laboratory 

round-robin testing. The tested steels are given in Table 4. The measured UTS and proof stresses were not provided 

until after the delivery of the test data and the tensile property estimates.  

Table 4. All materials tested at RT with specimen 8 mm; h0=0.500 mm and a test-set-up with D=4 

mm, r=1.25 mm and L=0.2 mm (SNR#1). 

Material and designation Uniaxial Rm (MPa) at RT 

A533B 625 

A533B (batch 2) 635 

COST F 852 

22K 498 

10Kh11N20T3R 958 

08Kh18N10T 560 

15Kh2MFA 986 

3. Classical and recently developed estimation procedures for force to stress conversion 

The simplest force to stress conversion can be found in the CEN Work Shop Agreement (CWA, Code of 

Practice) [5]. The conversion is meant for small punch creep (SPC) test giving a constant force to stress ratio =F/, 

allowing for different test set-up dimensions and specimen thicknesses. The CWA equivalent creep stress SPC can 

be calculated as: 

 

𝑆𝑃𝐶 =
𝐹𝑆𝑃𝐶

3.33∙𝑘𝑆𝑃∙𝑅
−0.2𝑟1.2ℎ0

   MPa (1) 

 

where FSPC (in N) is the SPC test force (load), h0 the initial specimen thickness, kSP a “ductility” parameter and 

r, R are the puncher radius and receiving hole radius (in mm) as given in Error! Reference source not found..  For 

the standard test set-up (SNR#1) the CWA=1.895 when kSP=1. This conversion factor works well for steels like P91, 

where the minimum deflection rate is reached at a deflection of around 1 mm. The draw-back of this method is that 

kSP is not a constant and it can be both temperature and force dependent [18]. 

The CWA model is based on the Chakrabarty [1] membrane stretch equations. The Chakrabarty (CHA) model 

gives the CHA as a function of displacement v. Full CHA curves can be defined for each test set-up using the 

equations given in [1]. The maximum CHA-max at vCHA-max can be calculated with Eq. (1). The CHA=CWA at a 

displacement vmax=1.58 mm for the standard test set-up and specimen size (sNR#1). 
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The corresponding classical equation (CLA) in [5] for estimating the (uniaxial) ultimate tensile strength Rm 

with small punch “tensile” tests (SP) is: 

 

R𝑚−𝐶𝐿𝐴 = β𝑅𝑚−𝐶𝐿𝐴
𝐹𝑚

ℎ0∙𝑢𝑚
   MPa (2) 

 

where Fm (in N) is the maximum force reached during the test and βRm-CLA is a geometry dependent correlation 

coefficient which needs to be determined. The main draw-back of this method is that the Rm-CLA has to be 

established by correlation to actual uniaxial tensile tests or by Finite Element Analysis (FEA) simulation with the 

right constitutive equations in place. It has been found that the correlation factor seems to be somewhat materia l 

dependent but mainly test-setup and specimen thickness dependent. In this paper the classical model (CLA) is used 

for estimating tensile strength as in Eq. (2), with a constant value for βRm-CLA = 0.276, optimized in the MATTER 

project [19] for P91 steel for the standard test set-up and a specimen thickness of 0.5 mm.   

 The above method seemingly works well for ductile materials but does not give adequate results for less 

ductile materials failing at deflections well below vCHA-max. For less ductile materials other methods have to be 

applied. 

A new promising method for both ductile and less ductile materials has been proposed by Altstadt et al. [3] 

and it has been included in the new standard as an Annex. The Altstadt method (ALT), optimized on finite element 

simulated materials, correlates the force Fi to the ultimate tensile strength at a much lower displacement vi in the 

force-displacement curve. The ALT model correlation to the tensile strength is: 

 

R𝑚−𝐴𝐿𝑇 = β𝑅𝑚−𝐴𝐿𝑇
𝐹𝑖

ℎ0
2   MPa (3) 

 

The Fi (in N) of the ALT method is extracted from the test data at the displacement vi=0.645 mm or a deflection 

of ui=0.55 mm. The model parameters are to date only defined for the SNR#1 and SNR#4 test set-ups (see Error! 

Reference source not found.). The correlation coefficient βRm-ALT is 0.179 for SNR#1. This is an average value for 

a range of simulated materials with different tensile strengths and ductilities.  

In [6] the Empirical Force to Stress (EFS) model and the Modified Chakrabarty (MCH) model was shown to 

robustly estimate the equivalent creep stresses for equal creep rupture times of SPC and uniaxial creep tests. The 

MCH is a simplification of the EFS model that can be recalculated for different test set-ups since the model 

parameters can be determined analytically using the CHA as base.  

The MCH is: 

 

Ψ𝑀𝐶𝐻 = A + B𝑣 [N/MPa] (4) 

 

where v is the displacement (or deflection) and A and B are test set-up dependent constants. In the case of 

small punch creep v is replaced by umin, i.e. the deflection where a minimum deflection rate is reached in a test. The 

SPC data determined constants (from [6]) for A and B which are applied unchanged on the SP test data with the 

standard test-setup and specimen thickness, i.e. A=0.6143 and B=1.2954 for the SNR#1 set-up. For the curved 

specimen, the miniature sample and the 0.45 mm thick standard SP specimen the constants have been recalculated 

using the methodology given in [6]. For the curved specimen further correction factors have to be applied as 

described in section 3.2 in this paper.  

 In Figure3a it is shown that the calculated Fi and vi (and corresponding ui) from [3] that was the base for Eq. 

(3) are in good agreement with the MCH curve for the standard specimen and standard test-set up. In Figure3b it 

can be seen that for the miniature specimen the MCH slope is representative of the Fi/vi (and Fi/ui) but the 

analytically calculated MCH intercept is somewhat high. It is to be noted that MCH curve for this specimen size 

and test-setup (SNR#4) has not been verified up to now by creep tests and the few SP tests indicate that the model 

overpredicts the UTS (see section 4). The discrepancy is likely to be caused by the assumed fixed point for the MCH 

set by the CHA model vmax, i.e.  MCH(vmax)= CHA(vmax)(1+h/r). This factor was optimized on P91 steel [18]. If 

another more reliable fixed point can be found, such as using the ALT data or actual test data (both SP and SPC 

data) it is foreseen that the MCH model for the miniature specimen can be improved. It is to be emphasized that the 

MCH model is not restricted to the location of maximum force as the CLA model even if it has been used that way 

in this paper. It can be used as the ALT model at lower displacements. This feature will be studied in future work. 
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All the above stress conversion models for the SNR#1 test-setup are shown in Figure4 with P91 SP data from 

the MATTER project. 

Unification of reference stress estimation between SPC and SP tests would have a beneficial effect on the 

credibility of the SP and SPC determined material properties. 

  

  

(a) (b) 
 

Figure 3. Force over stress () as a function of v or u according to the classical Chakrabarty (CHA) and 

the MCH model for SP and SPC reference creep stress determination. The Fi / Rm and Fmax / Rm of the 

simulated materials from the ALT model [3] are also shown for a) set-up SNR#1 and b) SNR#4. 

 

Figure 4. Force over stress () for the SPC and SP models, Eqs. (1,2, 4) as a function of v. The shown 

Fmax/Rm data are from the MATTER project. 

3.1 Correction for curvature for thin walled tube samples 

When SP testing curved samples [11,21] it is evident that the force-displacement curves are different from 

those of flat specimens. To find the right way of correcting the deflections (and marginally the force) a number of 

3D FEA simulations using ABAQUS [22] have been performed on ¼ of the geometry for simulated flat and curved 

specimens. The curved sample studied in this paper is a section of the aforementioned SCK-CEN tube. The 

geometrical configuration consisting of the top die (red), specimen (blue), bottom die (grey) and the spherical punch 

(green) is shown in Figure 5. Example of computed force-displacement curves for the studied materials is shown in 

Figure 6. A more detailed description of the methodology and resulting correction factors are given in [23]. 
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Figure 5. Quarter symmetry FEA model of the SP test on curved (cladding tube) specimen [23]. 

 

Figure 6. FEA computed force-displacement responses for P91, 24%CW and 46%CW 15-15Ti curved 

samples from cladding tubes. The friction coefficient, µ= 0.2 and the specimen thickness 0.45 mm. 

To obtain the equivalent force and displacement of a flat specimen, the measured force and displacement of a 

SCKCEN tube specimen should be divided by a factor of 1.07 and 0.71, respectively. The given factors are averages 

on the results acquired from the two 15-15Ti materials and the reference material P91.  

4. Results 

The ultimate tensile strengths estimated by SP tests are given in Tables 5-7 as relative errors of the uniaxial 

UTS values given in Tables 2-4.   

 

The relative error Erel is calculated as: 

 

E𝑟𝑒𝑙 =
𝑅𝑚−𝑆𝑃

𝑅𝑚−𝑈𝐴
− 1   (4) 

 

Where Rm-UA is the uniaxial tensile strength, Rm-SP the estimated UTS calculated by the CLA, ALT and MCH 

models.  

 Note that for the curved samples there are currently no calculated vi values at which one could extract the Fi 

values for the ALT model. Potentially the same correction factors could be used as for correcting the vmax and Fmax 

but this has not been attempted in this work. 
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Table 5. The UTS estimate relative errors, Eq. (4), for the ASTM round robin materials at RT. 

Material and designation CLA1) ALT (v) MCH (v) 

 A533B -9% -1% -9% 

A533B (batch 2)  -10% -1% -9% 

COST F  -7% 2% -7% 

22K  -4% -7% -2% 

10Kh11N20T3R  -5% -3% -5% 

08Kh18N10T  6% -24% 13% 

15Kh2MFA  -17% -9% -17% 

1) Correlation constant for CLA model (Rm-CLA=0.297, Eq. (2)) from MATTER, optimized on P91 by JRC.  

 

Note that the Rm estimates from CLA and the MCH are more or less the same. This is to be expected if the 

displacement at maximum is around 1.6 mm. The ALT estimates are for some materials more accurate but the model 

seems to be prone to larger deviations, especially for ductile material.  

 

Figure 7. Estimated vs measured uniaxial axial strength at RT for all ASTM materials in Table  at RT using 

the MCH model. 

Table 6. Calculated relative errors, Eq. (4), for JRC tests at RT for the ECISS/TC101/WG1 materials. 

Material and designation CLA1) ALT (v) MCH (v) 

P92– as received  7% 3% 3% 

P92– Heat treatment 1  9% -2% 6% 

P92– Heat treatment 2  13% -7% 8% 

P92– Heat treatment 3  12% -5% 6% 

P92– Heat treatment 4  6% 0.3% 2% 

316L – miniature -3% 2) 23% 14%3) 

316L  10% -26% 18% 

 

1) Correlation constant for CLA model (Rm-CLA=0.297, Eq. (2)) from MATTER, optimized on P91 by JRC 

2) Correlation constant from miniature specimen CLA model by HZDR (Rm-CLA=0.26, Eq. (2)) 

3) MCH model parameters as in Figure 7. 

The ALT and MCH models are for these sets of data better than the CLA model, except for the miniature 

specimen estimate. It is to be noted that the MCH is generally over-predicting the stress though less so than the CLA 

model.  
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Table 7. Calculated relative errors, Eq. (4), for JRC tests at RT for the TASTE materials. 

Material and designation CLA MCH 

15-15Ti CW24% CURVED 3% -2% 

15-15Ti CW46% CURVED 10% -1% 

P91–CURVED  

 (0.45 mm thick) 
-8% -6% 

P91 standard specimen 

 (0.45 mm thick) 
-5% -2% 

P91 standard specimen 

(0.5 mm thick) 
-2% -2% 

 

In addition to the RT tests the MCH method was also applied to the full range of test temperatures, i.e. RT-

800C. The results are very encouraging as can be seen in Figure 8. In the previous assessments on the TASTE data 

[11] the SP estimates were based on a displacement corrected CLA model, with inherently more scatter in the 

estimated UTS. The CLA model also predicts somewhat lower strengths for P91 and clearly over-predicts the RT 

strength for the 46%CW 15-15Ti steel.  

  
(a) (b) 

Figure 8. Estimated vs measured uniaxial axial strength for a) 24%CW and b) 46%CW 15-15Ti using the 

MCH model in the temperature range RT-800C. 

In Figure 9 the reference P91 SP estimates are plotted against the measured uniaxial strength for the 

temperature range RT-650C. It can be seen that the P91 flat specimens give robust predictions and the spark erosion 

manufactured curved samples show more scatter. The MCH seems to under-predict the tensile strength for the 

curved P91 samples.  This could be an artefact caused by the manufacturing route, i.e. the inner surface was not 

polished.   

 

  
a b 

Figure 9. Estimated vs measured uniaxial axial strength for P91 steel a) standard flat specimen and b) EDM 

cut curved samples in the temperature range RT-650°C. 
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In Figure 10 and Figure 11 the SP estimated strengths are plotted as a function of temperature together with 

both uniaxial UTS results and hoop direction ring tension results for 24%CW and 46%CW samples correspondingly.  

 
Figure 10. Comparison of RT-800C tensile strength estimates for 24%CW 15-15Ti from sub-sized axial 

specimen, Ring-Tension and the new estimates based on the SP data [24] assessed with the MCH model. 

 
Figure 11. Comparison of RT-800C tensile strength estimates for 46%CW 15-15Ti from sub-sized axial 

specimen, Ring-Tension and the new estimates based on the SP data [25] assessed with the MCH model. 

5. Discussion 

The models compared in this paper for SP estimation of the UTS include a model originally optimized for SPC 

creep data assessment. It is encouraging to find that the same formulation gives good estimates also when applied 

on SP data for estimating the tensile strength. In Figure 12 the SPC data from the ECISS/TC101/WG1 round robin 

[6] show the =FSPC/c-UA ratio as a function of the measured deflection at minimum deflection rate (umin) for 3 

different materials, i.e. a P92 pipe, a F92 forging and a 316L plate. The MCH line is calculated on the standard test-

setup and a 0.5 mm specimen thickness. In Figure13 the SP data from the TASTE project (assessed in this paper) is 

presented as =Fm/Rm-UA as a function of displacement vm (v at Fm). In this case the MCH was modified to fit the 

standard test-setup with a 0.45 mm specimen.  
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Figure 12. The SPC creep data from the ECISS/TC101/WG1 round robin [6] plotted as  at umin together with the 

CHA and the MCH models. Note that the P92 SPC samples were suffering from early cracking and failure. The 

predicted uniaxial creep stress at equal rupture time will therefore be increased and  decreased. The specimen 

thickness h0=0.5 mm. 

 

Figure 13. The SP test data from the TASTE project plotted as Fmax/Rm-UA at the test specific vmax. Note that 

h0=0.45 mm. 

It could be concluded from the above figures that the MCH could be given a slightly steeper slope, perhaps 

pivoting around a displacement of 1 to 1.25 mm.  However, the slope should not be as steep as CLA model, having 

a slope of h0/Rm-CLA going through the origin. The CLA model is not giving an optimal solution if applied on SPC 

data replacing vmax for umin.  

As stated earlier, the optimization of the MCH model parameters using both SPC and SP data would most 

likely improve the understanding and accuracy of predictions for both small punch test types.   

Studying the Fi/Rm for the ALT model, as seen in Figure 14, for the ASTM steels it is evident that some of the 

materials with low proof strength did not give the expected  as was indicated by the FEA simulated SP tests on 

“synthetic” materials. It could be concluded that for low proof stress materials the Rm cannot be estimated at this 

(low) displacement. Maybe this information can instead be used for improving the SP estimates for proof strength.  
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Figure 14. Room temperature Fi/Rm data from the ASTM materials extracted from the force displacement 

curve at vi=0.645. 

One of the remaining main challenges for increasing the applicability of the SP tests technique in general is to 

establish ductility limitations for successful assessment of both SP and SPC data. For instance what is the impact of 

material “necking” on the SP test curve. For some low ductility materials this could happen already at small 

displacement [26]. The material properties beyond the uniaxial engineering ultimate tensile strength, i.e. after 

necking, will naturally have an effect on vmax and Fmax. In Figure15a a SP tested 15-15Ti specimen clearly failed by 

plastic collapse whereas the SPC specimen in Figure15b has cracked open in a star shaped manner. The change in 

fracture behavior is linked to the deformation rate and differences in tensile and creep ductility.  

 

  
(a) (b) 

Figure 15. Difference in fracture mode of a 24%CW 1515Ti A) SP “tensile” specimen after test at 600C 

and B) SPC creep specimen ruptured after 22 h at 600C/400N. 

6. Conclusions 

A range of different materials with differing tensile strengths have been analyzed with three different models. 

SP data from test set-ups that are non-standard in nature such as the curved samples from fuel cladding tubes have 

also been successfully assessed. The conclusions to be drawn from results from the here presented assessments are: 

 

• Good estimates on the tensile strength can be acquired by the existing conversion models, e.g. the 

ALT model developed for SP data and the MCH model initially developed for SPC data. 

• The force to stress conversion of SP and SPC test can be unified by optimizing models like the MCH. 

• Curved samples such as cladding tubes can be tested by SP and analyzed successfully using curvature 

corrections calculated by FEA. 
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• Tensile strength estimates for less ductile materials should be done on forces extracted at low 

displacement, for instance using an ALT type model.  

• Challenges remain in the field of improving the estimates on proof strength and ductility. 

It could be claimed that the usability of the SP testing has been improved greatly by the new assessment methods, 

such as for estimating tensile strength in general and for nuclear claddings in specifically.  
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