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Abstract

This paper presents a cryptanalysis attack on the RSA variant with modulus N = prq
for r ≥ 2 with three public and private exponents (e1,d1), (e2,d2), (e3,d3) sharing the
same modulus N where p and q are consider to be primes having the same bit size. Our
attack shows that we get the private exponent σ1σ2σ3 <

( r−1
r+1
)4

, which makes the modulus
vulnerable to Coppersmith’s attacks and can lead to the factorization of N efficiently where
d1 < Nσ1 , d2 < Nσ2 , and d3 < Nσ3 . The asymptotic bound of our attack is greater than the
bounds for May [1], Zheng and Hu [2], and Lu et al. [3] for 2≤ r ≤ 10 and greater than
Sarkar’s [4] and [5] bounds for 5≤ r ≤ 10.

1. Introduction

The importance of keeping information secret cannot be overemphasized, especially in this digital era where intruders can easily eavesdrop on
someone’s information and get access to his private belongings. The Construction of strong encryption scheme(s) using complex mathematics
provides confidentiality and privacy to our daily transactions and communication as they pass through insecure communication channels.
The most acceptable and widely used public key cryptosystem is the RSA cryptosystem which was invented in 1976 by Rivest, Shamir,
and Adleman [6]. The security of RSA modulus N = pq relies on the integer factorization problem and was first exploited using a private
exponent attack by Wiener (1990) as reported in [7]. Other cryptanalysis attacks that led to the polynomial time factorization of the RSA
modulus N = pq can be found in [8, 9].
In order to improve the security of standard RSA modulus N = pq, various researchers proposed many variants. Prime power modulus
N = prq for r ≥ 2 was among the RSA variants developed by Takagi using the Chinese remainder theorem showing that the decryption
process is faster than the standard RSA [10]. Also, Boneh et al. presented a partial exposure attack where they proved that prime power
modulus N = prq can be efficiently factored if someone knows 1

r+1 fraction of the most significant bits (MSBs) of the prime factors p [11].

The decryption exponent bound of [10] was improved from d < N
1

2(r+1) to d < N
r

(r+1)2 or d < N( r−1
r+1 )

2
by May [1] using the lattice-based

technique. Sarkar [4] presented a small secret exponent attack on prime power modulus N = prq for r ≥ 2 where he improved the
work of [1] for r ≤ 5. Similarly, Sarkar improved his work [4] when 2 ≤ r ≤ 8 as reported in [5] with a decryption exponent bound of

d < N
1

r+1 +
3r−2

√
3r+3+3

3(r+1) . Lu et al. [3] proved that prime power modulus N = prq when r ≥ 2 can be factored efficiently when the decryption

exponent bound d < N
r(r−1)
(r+1)2 . Moreover, Zheng and Hu [2] proposed a cryptanalysis lattice-based construction attack on prime power RSA

modulus N = prq for r ≥ 2 with two decryption exponents where they have shown that N is insecure when δ1δ2 < N( r−1
r+1 )

3
where d1 < Nδ1

and d2 < Nδ2 . By assuming δ1 = δ2 = δ , [2] made comparisons with previous results of [1, 4] when r ≥ 4.
In this paper, we employ a similar approach to [2] using lattice-based approach except that we utilize three pairs of public and private
exponents (e1,d1), (e2,d2), and (e3,d3) of RSA variant N = prq for r≥ 2 with three decryption exponents sharing common modulus N, and
prove that the security of prime power moduli N can be broken and prime factors p and q can be factored in polynomial-time. We assume
d1 = Nσ1 , d2 = Nσ2 and d3 = Nσ3 to be the decryption exponents where d1 = d2 = d3 = d = σ for 0 < σ < 1 and utilize generalized key
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equation eidi = 1+ kiφ(N), where ki ∈ Z and φ(N) = pr−1(p−1)(q−1) for the construction of three equations of the form

e1d1 = 1+ k1 pr−1(p−1)(q−1), (1.1)

e2d2 = 1+ k2 pr−1(p−1)(q−1), (1.2)

e3d3 = 1+ k3 pr−1(p−1)(q−1), (1.3)

for some positive integers k1,k2,k3. Let e′1,e
′
2,e
′
3 be the inverses of e1,e2,e3 mod N respectively. Then we get:

e1e′1 = z1N +1, (1.4)

e2e′2 = z2N +1, (1.5)

e3e′3 = z3N +1, (1.6)

for some positive integers z1,z2,z3. In order to easily get the prime factors of N, we assume that inverses e′1, e′2, or e′3 does not exist, we can
then get the result through finding the gcd(e1,N), gcd(e2,N) and gcd(e3,N). Multiplying equations (1.1) by e′1 and (1.4) by d1 respectively
and equating them give

d1− e′1 = [e′1k1(p−1)(q−1)−d1z1 pq]pr−1. (1.7)

Similarly, for equations (1.2) and (1.5) we get the following equation

d2− e′2 = [e′2k2(p−1)(q−1)−d2z2 pq]pr−1 (1.8)

Also, for equations (1.3) and (1.6), we get the following equation

d3− e′3 = [e′3k3(p−1)(q−1)−d3z3 pq]pr−1. (1.9)

Equations (1.7), (1.8) and (1.9) reduce to the following equations respectively

d1− e′1 = 0 mod pr−1, (1.10)

d2− e′2 = 0 mod pr−1, (1.11)

d3− e′3 = 0 mod pr−1. (1.12)

Applying method of [12] for solving multivariate linear equations modulo unknown divisor, we can estimate the unknown divisor of our
attacks. Since the modulus is N = prq for r ≥ 2 and q < p < 2q. Multiplying by pr gives N < pr+1 < 2N. Since q≈ p≈ N

1
r+1 , we have

pr−1 ≈ N
r−1
r+1 .

Moreover, the Coppersmith technique will be deployed in finding small roots of the constructed modular equations which can later be
transformed into finding them over integers. This can be achieved through constructing a set of polynomials sharing common root modulo R
to produce some integer linear combinations of the constructed polynomials’ coefficient vectors whose norm is expected to be sufficiently

small using the LLL algorithm. This enables us to get an asymptotic bound σ <
( r−1

r+1
) 4

3 , where d1 < Nσ1 , d2 < Nσ2 , d3 < Nσ3 . Also, we
assume σ1 = σ2 = σ3 = σ in order to compare our results with the theoretical results of [1], [2], [3], [4] and [5], our work show that for
5≤ r ≤ 10 we obtain better bounds.
The rest of the paper is organised as follows. In section 2, we give definitions of lattice and determinant, some important theorems and
a lemma to be used in this research. Section 3 presents the major contributions of this paper where results are thoroughly discussed and
comparisons of theoretical bounds with earlier reported bounds are presented. Finally, in Section 4 we conclude the paper.

2. Preliminaries

In this section, we define some basic terms that are found to be useful in this research work.

Definition 2.1 ( Lattice). A lattice L is a discrete additive subgroup of Rm. Let b1, · · · ,bn ∈ Rm be n≤ m linearly independent vectors.
The lattice generated by {b1, · · · ,bn} is the set

L =
n

∑
i=1

Zbi =

{
n

∑
i=1

xibi|xi ∈ Z

}
.

The set B = 〈b1, · · · ,bn〉 is called a lattice basis for L . The lattice dimension is dim(L ) = n. If n = m then L is said to be a full rank
lattice.
A lattice L can be represented by a basis matrix. Given a basis B, a basis matrix M for the lattice generated by B is the n×m matrix defined
by the rows of the set b1...,bn

M =

b1
...

bn

 .
It is often useful to represent the matrix M by B. A very important notion for the lattice L is the determinant [13].

Definition 2.2 (Determinant [13]). Let L be a lattice generated by the basis B = 〈b1, ...,bn〉. The determinant of L is defined as

det(L ) =
√

det(BBT ).

If n = m, we have

det(L ) =
√

det(BBT ) = |det(B)| .
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Theorem 2.3 ([2], [14]). Let L be a lattice spanned by a basis (b1,b2, · · · ,bm). The Lenstra-Lenstra-Lovasz (LLL) algorithm outputs a
reduced basis (v1,v2, · · · ,vm) of L in polynomial time that satisfies

||V1||, ||V2||, · · · , ||Vm|| ≤ 2
m(m−1)

4(m+1−i) det(L)
1

(m+1−i)

for 1≤ i≤ m.

For i = 3, the above LLL equation becomes

||V1||||V2||||Vm|| ≤ 2
m(m−1)
4(m−2) det(L)

1
(m−2) .

Lemma 2.4 ([15]). Let g(x1,x2, · · · ,xn) ∈ Z[x1,x2, · · · ,xn] be an integer polynomial that is a sum of at most m monomials. Suppose that

1. g(x(0)1 ,x(0)2 , · · · ,x(0)n )≡ 0( mod R), where |x(0)1 |X1, · · · , |x
(0)
n |< Xn,

2. ||g(x1X1,x2X2, · · · ,xnXn)||< R√
m .

This can also be true over the integers (x(0)1 ,x(0)2 , · · · ,x(0)n ) = 0.

Thus we can solve the polynomials derived from the LLL algorithm. Consider the three basis vectors by the LLL algorithm, the condition for
finding common root over the integers is as follows

2
m(m−1)
4(m−2) det(L)

1
(m−2) <

R√
m
,

2
m(m−1)
4(m−2) det(L)< Rm−2M−

m−2
2 ,

det(L)< Rm−2M−
m−2

2 2−
m(m−1)
4(m−2) .

Since we usually have m < R, an error term ε is used on behalf of the small terms except Rm, then the above equation reduces to
det(L)< Rm−ε .
We obtain a lower triangular basis matrix in our method all the time. The determinant can be calculated as det(L) = NsNX s1

1 X s2
2 X s3

3 where si
denotes the sum of the total exponents of Xi or N that appears on the diagonal. Hence we give the following condition

NsNX s1
1 X s2

2 X s3
3 < Rm. (2.1)

3. Results

This section presents the major findings of this paper. The discussion is as follows:
To solve equations (1.10-1.12), we apply shift polynomials technique for a positive integer u as define below:

p j1, p j2, p j3(x1,x2,x3) = (x1− e′1)
j1(x2− e′2)

j2(x3− e′3)
j3 Nmax(u− j1− j2− j3,0)

where |x1|< X1, |x2|< X2, |x3|< X3.
So all the polynomials p j1, p j2, p j3(x1,x2,x3) share common root (d1,d2,d3) mod pu(r−1). The optimal condition for choosing the shift
polynomials is given in [12], thus applying it in our case with three unknown private keys we have

0≤ σ1 j1 +σ2 j2 +σ3 j3 ≤
r−1
r+1

u.

When we consider a general case where σ1 = σ2 = σ3 = σ , we get a more concise condition as

0≤ j1 + j2 + j3 ≤
(

r−1
r+1

)
u
σ
.

Taking u = r = 3, we can search for integer linear combinations of all

p j1, p j2, p j3(x1X1,x2X2,x3X3)

by the LLL algorithm and ensure that its norm is sufficiently small to satisfy the conditions of Lemma 2.4. Thus, we have

p j1, p j2, p j3(x1,x2,x3) = (x1− e′1)
j1(x2− e′2)

j2(x3− e′3)
j3 Nmax(u− j1− j2− j3,0).

Using the above equation, we derive the following monomials:
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p
(i1 ,i2 ,i3 )

1
x1

x2
x3

x1 x2
x2 x3

x1 x3
x 21

x 22
x 23

x 31
x1 x2 x3

x 21 x2
x 22 x3

x2 x 23
x 32

x 33
x 41

x 32 x3
x2 x 33

x 22 x 23
p(0,0,0)

N
3

p(1,0,0)
∗

X
1 N

2

p(0,1,0)
∗

∗
X

2 N
2

p(0,0,1)
∗

∗
∗

X
3 N

2

p(1,1,0)
∗

∗
∗

∗
X

1 X
2 N

p(0,1,1)
∗

∗
∗

∗
∗

X
2 X

3 N
p(1,0,1)

∗
∗

∗
∗

∗
∗

X
1 X

3 N
p(2,0,0)

∗
∗

∗
∗

∗
∗

∗
X

21 N
p(0,2,0)

∗
∗

∗
∗

∗
∗

∗
∗

X
22 N

p(0,0,2)
∗

∗
∗

∗
∗

∗
∗

∗
∗

X
23 N

p(3,0,0)
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
X

31
p(1,1,1)

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
X

1 X
2 X

3
p(0,2,1)

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

X
21 X

2
p(0,2,1)

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
X

22 X
3

p(0,1,2)
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
X

2 X
23

p(0,3,0)
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

X
32

p(0,0,3)
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
X

33
p(4,0,0)

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
X

41
p(0,3,1)

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

X
32 X

3
p(0,1,3)

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
X

2 X
33

p(0,2,3)
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
X

22 X
33

Table
3.1:

M
onom

ials
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Taking u as a given parameter, the dimension m of the full-rank lattice can be calculated which can further allow us to compute det(L).
This can be computed by enumerating the exponential numbers of X1, X2, X3 and N respectively from the lower triangular square matrix s
depicted above. Thus we get

m =
1

∑
σ1 j1+···+σn jn

1 =
un

n!
β n

σ1 · · ·σn
+o(un), β =

r−1
r+1

.

So, in our case m = n = 3, we have

m =

r−1
r+1 u

∑
σ1 j1+σ2 j2+σ3 j3

1 =
13

6

( r−1
r+1 u

)3

σ1σ2σ3
=

1
6σ1σ2σ3

(
r−1
r+1

u
)3

+o(u3).

Also, to compute uN we can use similar method as outlined in [2] and [12]. Thus, we have

uN =
s

∑
i1+i2+···+ jn=0

(
n

∑
i= j

ji +n−1)(u−
n

∑
i=1

ji) =
un+1

(n+1)!
+o(un+1),

uN =
1
4!

u4 +o(u4) =
1
24

u4 +o(u4),

un = ∑
σ1+σ2+···σ jn=0

jn =
un+1

(n+1)!
β n+1

σ1 · · ·σi−1σ2
j σi +σn

+o(un+1),

u1 =

r−1
r+1 u

∑
σ1 j1+σ2 j2+σ3 j3=0

j1 =
14

24

( r−1
r+1 u

)4

σ2
1 σ2σ3

=
1

24σ2
1 σ2σ3

(
r−1
r+1

u
)4

+o(u4),

s2 =

r−1
r+1 u

∑
σ1 j1+σ2 j2+σ3 j3=0

j2 =
14

24

( r−1
r+1 u

)4

σ1σ2
2 σ3

=
1

24σ1σ2
2 σ3

(
r−1
r+1

u
)4

+o(u4),

s3 =

r−1
r+1 u

∑
σ1u1+σ2u2+σ3u3=0

j3 =
14

24

( r−1
r+1 u

)4

σ1σ2σ2
3

=
1

24σ1σ2σ2
3

(
r−1
r+1

u
)4

+o(u4).

Since, we have det(L) = NunXu1
1 Xu2

2 Xu3
3 for X1 = Nσ1 , X2 = Nσ2 , X3 = Nσ3 as mentioned above.The norms of the first three vectors can

be sufficiently small only if the condition for finding the common root is fulfilled as derived from LLL-reduced basis. This can further be
transformed using Lemma 2.4 into the corresponding polynomials with same root and lastly solve for the integers (d1,d2,d3) We can now
estimate σ1, σ2, σ3. Using equation 2.1, we have

N
1
24 s4+o(u4)N

σ1
1

24σ2
1 σ2σ3

( r−1
r+1 u)

4
+o(u4)

N
σ2

1
24σ1σ2

2 σ3
( r−1

r+1 u)
4
+o(u4)

N
σ3

1
24σ1σ2σ2

3
( r−1

r+1 u)
4
+o(u4)

< N
r−1
r+1 u 1

6σ1σ2σ3
( r−1

r+1 u)
3
+o(u3)

.

Taking u→ ∞ and omitting the lower term o(u3) gives the following result

1
24

+
1

24σ1σ2σ3

(
r−1
r+1

)4
+

1
24σ1σ2

2 σ3

(
r−1
r+1

)4
+

1
24σ1σ2σ2

3

(
r−1
r+1

)4
<

1
6σ1σ2σ3

(
r−1
r+1

)4

σ1σ2σ3 <

(
r−1
r+1

)4

In order to make comparison with other bounds, we assume σ1 = σ2 = σ3 = σ as shown in Table 3.2. It gives asymptotic bound of

σ <
( r−1

r+1
) 4

3 .

r
( r−1

r+1
) 4

3 [1] [2] [3] [4] [5]
2 0.231 0.222 0.192 0.222 0.395 0.395
3 0.396 0.250 0.353 0.375 0.461 0.410
4 0.506 0.360 0.464 0.480 0.508 0.437
5 0.582 0.444 0.544 0.550 0.545 0.464
6 0.638 0.510 0.603 0.610 0.574 0.489
7 0.681 0.562 0.649 0.65 0.598 0.512
8 0.715 0.605 0.685 0.690 0.619 0.532
9 0.742 0.640 0.715 0.720 0.637 0.549

10 0.868 0.669 0.740 0.743 0.653 0.565

Table 3.2: Comparison of Bounds

From Table 3.2, one can observe that, our bound is better than [2], [4] and [5] for r ≥ 2 and also better than all the compared bounds for
5≤ r ≤ 10.
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4. Conclusion

This paper shows that prime power RSA modulus N = prq for r ≥ 2 with three decryption exponents can be attacked using lattice-based
attack through combinations of Coppersmith’s and [12] lattice-base construction methods. We also showed that the modulus N is insecure if

d1 < Nσ1 , d2 < Nσ2 and d3 < Nσ3 which yielded asymptotic bound σ <
( r−1

r+1
) 4

3 . Our results is an improvement on the work of [1], [2], [3],
[4] and [5].
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