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Plants experience diverse abiotic stresses, encompassing low or high

temperature, drought, water logging and salinity. The challenge of maintaining

worldwide crop cultivation and food sustenance becomes particularly serious

due to drought and salinity stress. Sustainable agriculture has significant promise

with the use of nano-biotechnology. Nanoparticles (NPs) have evolved into

remarkable assets to improve agricultural productivity under the robust climate

alteration and increasing drought and salinity stress severity. Drought and salinity

stress adversely impact plant development, and physiological and metabolic

pathways, leading to disturbances in cell membranes, antioxidant activities,

photosynthetic system, and nutrient uptake. NPs protect the membrane and

photosynthetic apparatus, enhance photosynthetic efficiency, optimize

hormone and phenolic levels, boost nutrient intake and antioxidant activities,

and regulate gene expression, thereby strengthening plant’s resilience to drought

and salinity stress. In this paper, we explored the classification of NPs and their

biological effects, nanoparticle absorption, plant toxicity, the relationship

between NPs and genetic engineering, their molecular pathways, impact of

NPs in salinity and drought stress tolerance because the effects of NPs vary

with size, shape, structure, and concentration. We emphasized several areas of

research that need to be addressed in future investigations. This comprehensive

review will be a valuable resource for upcoming researchers who wish to

embrace nanotechnology as an environmentally friendly approach for

enhancing drought and salinity tolerance.
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1 Introduction

In the current situation, population expansion has become a

serious barrier to maintaining sustainable food production to meet

the increasing population’s requirements (Calicioglu et al., 2019).

The global population is expected to extend 9.6 billion individuals

by the year 2050, necessitating a significant 70–100% increase in

food output to meet the demands of this expanding population

(Alabdallah and Hasan, 2021). Revolutionizing conventional

agricultural practices is urgently necessary to attain the United

Nations sustainable growth objective of “Zero Hunger” by 2030.

These changes may be implemented through eco-friendly and

sustainable approaches (Rajput et al., 2021b; Ranjan et al., 2021).

Crop yields are significantly impacted by several issues, including

increased abiotic stresses, declining fertile land, excessive fertilizer,

pesticide usage, climate change and global warming (Hasan et al.,

2021a; Hasan et al., 2021b). The drastic decrease in agricultural

output is a serious hazard to world food security and a major

problem. The required steps must be taken to lessen the damaging

effects of abiotic stressors on crops if global food security is to be

maintained. Therefore, implementing appropriate measures

becomes imperative to address this issue effectively (Hasan et al.,

2021a). Plants are immobile; hence they cannot relocate physically

to escape the effects of environmental challenges, especially abiotic

stress. Abiotic stresses like soil salinity and drought can cause

considerable reduction in crop yield and quality (Haider et al.,

2021; Yadav et al., 2021). Salt stress causes the cytosol to accumulate

with Na+ and chloride Cl- ions, severely damaging the cellular

structure (Ranjan et al., 2021). The impacts of drought stress

include the induction of stomatal closure, obstruction of

photosynthesis, reduction of leaf area, inhibition of biomass and

growth, reduction of water potential, elevation of osmolyte levels,

and induction of reactive oxygen species (ROS) (Ibrahim et al.,

2019). Hence, the modifications to plant metabolism under abiotic

stress cause disturbances, resulting in the reorganization of the

metabolic network to maintain crucial activities.

Over the last few decades, researchers have made great progress

in creating a variety of stress management techniques. Among other

strategies, nanotechnology is a highly effective strategy for

significantly increasing crop yield (Shahid et al., 2020). However,

most studies on NPs focused on examining their possible toxicity

rather than their benefits (Ranjan et al., 2021). Nanotechnology has

attracted much interest as an auspicious arena widely utilized in

agriculture, food production, and medical (Alabdallah and Hasan,

2021). A tiny molecule cluster with an interfacial layer around it is

called a nanoparticle with diameter 1 and 100 nanometers

(Mohammadi et al., 2016). NPs have unique and uncommon

features do not present in bulk materials because of their tiny

size. Nanoparticle’s interesting scientific appeal arises from their

capacity to link atomic or molecular structures to bulk materials

(Khalid et al., 2022). NPs have been widely used in a variety of

industries, including agricultural and allied ones as well as the

chemical, optical, biomedical, pharmaceutical, culinary, and textile

sectors (Verma et al., 2019). Due to their advantageous and safe

uses, a number of NPs have recently attracted a lot of interest in the

agriculture industry. These NPs comprise TiO2, Fe3O4, ZnO, SiO2,
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Cu-NPs, and Se-NPs (Alabdallah and Hasan, 2021; Hashem et al.,

2021). There are precise methods to produce NPs, such as chemical,

green, and physical synthesis (Akhtar et al., 2022). NPs can

positively affect plant growth and development, although the

precise impacts can vary depending on factors such as their time,

origin, application, and size of crop administration (Rubilar et al.,

2013). Current research exhibited that NPs protect plants by

increasing the antioxidant metabolic activity to reduce oxidative

damage (Ahmed et al., 2021). NPs regulate salt tolerance in diverse

plant species by regulating hormone levels, antioxidant enzyme

activities, ion balance, gene expression, and defense mechanisms

(Zulfiqar and Ashraf, 2021). NPs can effects plant species and the

environment in different ways like, NP shape, applications, and size,

as well as environmental conditions, can influence their impact

(Wahid et al., 2020). Nanopesticides and nano fertilizers are the two

main use of nanotechnology in the agricultural industry.

Nanotechnology acts as a harbinger for a forthcoming industrial

revolution. Agriculture’s productivity might be revolutionized by

nanotechnology. According to a recent study, adding magnetic NPs

through hydroponic system at seedling stage, significantly

augmented the content of chlorophyll (a and b) and carotenoids

in Hordeum vulgare. Additionally, the utilization of magnetic NPs

favoured the genes related to photosystems (Tombuloglu et al.,

2020). The utilization of NPs has been observed to mitigate the

harmful effects of salinity and drought stress (Ali et al., 2021a; Singh

et al., 2021). The effects of foliar spray of the NPs on plant growth

and development are listed in Figure 1.
2 Classification of nanoparticle

The need for an appropriate categorization system for NPs

eventually arose to advise scientists and engineers working on NPs

studies and uses and encourage secure andmore practical use of these

resources. Studies have shown that the two most important factors in

determining the classification of NPs are their dimensionality and

composition. The need for an accurate categorization system to offer

more convenience has grown during the last twenty years as the

number of nanostructured materials has expanded (Prajitha et al.,

2019). The “dimensionality” of the particles is the main criterion for

categorizing NPs. According to Chung et al. (2013) NPs with zero

dimension would effectively lack any observable dimension bigger

than 100 nm in length. The production of zero-dimensional (0D)

nanomaterials with precisely regulated dimensions has been made

possible with the introduction of many physical and chemical

manufacturing techniques (Figure 2).

Recently, numerous study groups have successfully improved

various kinds of zero-dimensional (0D) nanomaterials, including but

not limited to regular particle arrangements like quantum dots, varied

particle arrangements, holy spheres, nano-lenses, and more (Kim et al.,

2010). One dimension beyond the nanoscale distinguishes this class of

nanomaterials, which we refer to as one-dimensional nanomaterials

(1D). Nano horns, nanofibers, nanotubes nanowires, and nanorods are

rare example. The two-dimensional (2-D) category of nanomaterials

has two additional dimensions beyond the nanoscale. Nanolayers,

nanofilms, and nanosheets are three prominent illustrations (Joudeh
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and Linke, 2022). Three-dimensional (3-D) materials, are not hindered

by any dimension to the nanoscale. This category includes a variety of

substances, including bulk powders, nanoparticle dispersions, arrays of

nanowires, and nanotubes (Joudeh and Linke, 2022).

Next to dimensionality, the composition is also viewed

appropriate criterion for nanoparticle categorization as it reliably

reflects the chemical constitutes of the material. The categorization

system includes NPs made entirely of carbon atoms as its initial

category. This category contains substances like fullerenes, carbon

nanotubes, graphene, and others. Carbon-based materials have

several significant qualities, including exceptional strength and

reactivity (Prajitha et al., 2019). The metal-based NPs, often

known as metallic NPs, are categorized as the next group in this

system. These NPs are made of metals with nanostructures,

including titanium, gold, silver, and their equivalent oxides

(Cataldo and Da Ros, 2008). This category also includes metal-

decorated multi-walled nanotubes (MWNTs), metal nanoclusters,

me ta l -fi l l ed s ing l e -wa l l ed nanotubes (SWNTs) and

metallofullerenes. The optical characteristics of metallic NPs are

vital in controlling their functions due to the peculiar surface
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plasmon resonance at visible wavelengths (Kumar et al., 2012).

These polymeric NPs can contain the required therapeutic

substance within their core due to their unique structural

properties, or they can alternatively adsorb or be attached to their

surface (Weir et al., 2012). The term “nanocomposites” refers to the

next group in this categorization of NPs. Nanocomposites have

been more popular over the past 25 years due to their wide variety

of desired qualities that may be modified to meet particular needs

(Kubiak, 2014). The distinctive physicochemical properties

displayed by these materials result from the morphological and

interstitial features of the component constituents.
3 Uptake, transformation and
translocation of nanoparticles

Plants are the main producers in the environment, they are

extremely important, and their interaction with NPs is a

complicated process involving many variables. Plants are exposed

to NPs found in soil and aerosols in their natural habitat (Azim
FIGURE 2

Classification of NPs based on dimension and composition.
FIGURE 1

Impacts of NPs on plant growth and development.
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et al., 2023). The uptake, translocation, and accumulation of NPs in

plants are induced by various factors like the type, chemical

composition, size, functionalization, root exudates, and

microorganisms linked to the roots of the plant species (Etesami

et al., 2021). The high mobility of NPs is governed by various

factors, such as Brownian motion, Vander Waal forces, double-

layer forces, and gravity. These elements are crucial for the adhesive

properties of nanoparticles. NPs can enter into plants through air

and soil when applied in liquid form (Azim et al., 2023). Aerosol

NPs can reach plant aerial parts by various paths, including

stomata, wounds, direct diffusion, or through aerial parts in

contrast to soil NPs (Hussain et al., 2019). It is supposed that all

the NPs behave differently in different plants and have different

effects. Some researchers also explore that some NPs alter their

shape and structure when exposed to plants like, silver, copper, and

zinc oxide. It was observed that when ZnO NPs were applied on

wheat they dissolve and release Zn ions in the root cells (Ali et al.,

2021b). Likewise, CuO NPs transformed in to Cu(OH)2 and Cu20 in

the roots of the soybean plants (Kim et al., 2017). Moreover, Sliver

NPs converted into silver chloride and silver sulfide in the leaf of the

Arabidopsis thaliana (Thounaojam et al., 2021). Ensuring the

validity and reliability of determining the shape, size, structure,

and composition of NPs before and after exposure to plant tissue is

a great challenge (Zhang et al., 2021). So, there is dire need to

identify the exact, precise, pertinent, trustworthy, and appropriate

method to characterize the NPs.
3.1 Nanoparticles transformations

NPs experience various modifications that are associated with

their interactions, stability, and production in response to the

environmental conditions. These modifications could be crucial in

determining the properties and performance of NPs in different

applications. The modifications carried out are of utmost

importance to validate the safety, effectiveness, and overall

influence of the NPs in plants.

3.1.1 Stabilization and synthesis
NPs are synthesized through the alteration and transformation

of precursor materials at the nanoscale level, resulting in the

creation of distinct nanostructures. Diverse techniques are

employed to synthesize NPs which include physical, biological,

and chemical approaches. Various characterization methods play a

crucial role in determining the physical properties of NPs, such as

their size, shape, and surface properties. These factors have a

significant impact on the performance and functionality of NPs,

making their accurate determination essential for analyzing and

optimizing their applications (Nel et al., 2006). NPs are often

subject to surface modifications aimed at increasing their strength

and enhancing their performance (Badawy et al., 2010).

3.1.2 Aggregation and dispersion
NPs tend to either disperse or aggregate in the soil or water after

their synthesis. The extent of dispersion or aggregation depends on

multiple factors, such as the presence and concentration of organic
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substances, the pH level of the soil or water, and the concentration

of various ions. Organic substances can either stabilize or destabilize

the NPs, while the pH level and ion concentration can affect the

electrostatic repulsion or attraction between the NPs.

Understanding these factors is crucial for predicting and

controlling the behavior of NPs in the environment (Azim et al.,

2023). The stability, bioavailability, and movement of NPs are

crucial factors that determine their interaction with roots. Prior to

the interaction, these parameters play a pivotal role in determining

the effectiveness and efficiency of the process (Baalousha

et al., 2016).

3.1.3 Surface coating and modification
NPs are often coated with a surface layer to improve their

performance. These coatings can be modified using various factors

such as ions, pH, and temperature. (Matzke et al., 2014). The

process of surface coating plays a crucial role in the uptake of NPs,

and also helps in controlling the germination and growth of plants

(Biba et al., 2022). According to a recent study, it was found that the

physiochemical properties of CRISPR Cas gene delivery are

significantly influenced by the surface coating used. This

highlights the importance of carefully selecting the coating

material for effectiveness of NPs (Alallam et al., 2021).

3.1.4 Chemical changes
The fate of NPs is significantly influenced by the oxidation and

reduction reactions taking place in their surrounding environments.

NPs composed of metals are particularly susceptible to oxidation,

which can affect their interaction with plant tissues. Ultimately, the

outcome of these chemical transformations plays a crucial role in

determining the behavior and impact of NPs in different biological

systems (Sotiriou and Pratsinis, 2010). The unique chemical

properties of NPs can cause them to behave differently than bulk

materials in terms of reactivity, conductivity, and strength. This is

due to the high surface area to volume ratio of NPs, which can lead

to increased surface reactivity and altered electronic properties

(Verma et al., 2019; Staroń et al., 2020). As a result, it is

important to consider the specific properties of NPs when

designing and using them in various applications.

3.1.5 Soil components and interaction
NPs display intricate interplay with the rhizosphere,

encompassing a variety of factors such as microbes, minerals,

organic matter, and other substances, which in turn, interact with

the roots of plants (Ge et al., 2014). NPs are biologically inert and

non-destructive, allowing them to persist in soil for extended

periods. This can lead to alterations in soil microflora

populations, soil fertility, and the metabolism and physiology of

plant species (Pittol et al., 2017; Yang et al., 2017). The interactions

demonstrate noteworthy impacts on the accessibil i ty,

transportation, and mobility of NPs in the soil system.

3.1.6 Soil solution and transportation
The behavior of NPs in transportation is significantly impacted

by various factors, such as dissolved ions, water content, and soil

structure. Due to their small size, NPs display increased mobility in
frontiersin.org
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soil water. (Klaine et al., 2008). NPs can penetrate plant cells either

through the transport system or endocytosis. Once inside, they

accumulate in plant tissues and interfere with plant molecules,

leading to disruptions in the plant’s physiological, morphological,

and anatomical features and activities (Burman and Kumar, 2018;

Garcıá-Gómez et al., 2018).
3.2 Mechanism of nanoparticles in drought
and salinity tolerance

NPs exhibited a significant role in increasing plant yield in

drought and salinity. NPs demonstrated their potential to improve

water loss by balancing water status ultimately abiotic stress

tolerance (Rasheed et al., 2022). NPs also regulate stomatal

conductance and transpiration rate through leaf anatomy and

closing of stomata (Acosta-Motos et al., 2017). NPs demonstrated

defensive impacts to protect photosynthetic machinery and increase

photosynthesis in plants, also activate the antioxidant system to

repair the damage caused by ROS in photosystems and chloroplasts.

Moreover, NPs trigger electron transport chain and increase

chlorophyll contents in plant cells (Forni et al., 2017; Manzoor

et al., 2022). They also have influential effects on multiple

physiological systems of plants including stress responsive

mechanisms, hormone metabolism, biosynthesis of osmolytes,

ethylene production, nitric oxide, ABA and calcium signaling.

Additionally, regulate signal transduction pathways during

salinity and drought stress and activate stress responsive genes,

hence empowering the plant to cope and survive in stress conditions

(Rasheed et al., 2022). Overwhelmingly, application of NPs has key

role in plants systems to survive in drought and salinity and capable

the plant to modulate its normal functionality, keep the plant and its

environment healthy as well as maintain the plant yield (Figure 3).
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In-depth knowledge is still imperative to know the details functions

of NPs to comprehend the stress tolerance in plants.
3.3 Seeds

Endocytosis offers a practical and effective method for

internalizing extracellular substances like NPs. Endocytosis is a

transmembrane process that occurs when the cell membrane is

folded. The endocytosis of NPs can occur via clathrin-dependent or

-independent routes. The number of parameters, such as size,

charge, surface qualities, and other relevant parameters,

substantially impact the uptake process of NPs (Azim et al.,

2023). Metal-based NPs showed varied degrees of germination-

unaffected seed penetration in wheat, maize, spinach, zucchini,

rapeseed, and several desert plants (Chichiriccò and Poma, 2015).

NPs may enter seeds and boost absorption, leading to better

germination (Ahmadov et al., 2020). Multiwall carbon nanotubes

(MWCNTs) were used to encourage the upregulation of tomato

seedlings in terms of their seeds and root systems (Khodakovskaya

et al., 2009). The beneficial influences of NPs on seed germination is

also linked to their function in controlling aquaporins, tiny

transmembrane water channels important for water permeability,

seed germination, and plant development.

The research investigated the uptake and buildup of 8 nm ZnO

nanoparticles in soybean seedlings across the 500-4000 mg range of

exposure. At a dosage of 500 mg L-1, soybean seedlings showed a

significantly higher uptake of Zn NPs in comparison to dosage 1000

mg L-1 or more. At lower dosage (500 mg L-1), NP aggregation

seems to be less frequent. On the other hand, greater dosage (1000–

4000 mg L-1) tend to lead to the formation of agglomerates (López-

Moreno et al., 2010). The ability of gold NPs to translocate and

concentrate within soybean plants after seed inoculation has been
FIGURE 3

Molecular mechanism of NPs in drought and salinity stress tolerance.
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shown based on experimental findings (Maharramov et al., 2015).

The thickness of seed coats makes it difficult for NPs to enter seeds

when assessed to plant membranes and cell walls (Srinivasan and

Saraswathi, 2010). Due to a mechanism known as enhanced water

absorption, carbon nanotubes have demonstrated excellent

penetration of the seed coat (Ganguly et al., 2014). It was

discovered that nanotubes function as potential nano

transporters, making it easier to carry DNA and tiny color

molecules into whole plant cells (Savithramma et al., 2012).
3.4 Roots

According to studies, the rate at which NPs build up in plant roots

may depend on environmental factors and NP characteristics (Ali et al.,

2021a). It is believed that the small NPs can penetrate the roots of

plants through capillary forces, osmotic pressure or by accurately

passing through the epidermal cells of the roots (Ali et al., 2021a).

Therefore, the semipermeable cell walls of the root epidermal cells have

microscopic gaps that act as pores and prevent the passage of huge

NPs. Furthermore, the cuticle performs as a key protective obstacle on

leaves, successfully preventing NPs larger than 5 nm from penetrating

the leaf. In general, determining the impacts of nanomaterials on the

absorption, transport, and buildup of NPs within plants depends

critically on their fundamental structure (Raliya et al., 2016). The

term “apoplastic route” describes how holes in the root epidermal cell

walls, generally between 5 and 20 nm in size, allow roots to absorb tiny

NPs (Lin and Xing, 2007). In prior research, the content of Ag-NPs in

both the shoot and roots of lettuce dramatically increased when silver

sulphide (Ag2S) NPs were treated together with KCl and ammonium

thiosulfate (Doolette et al., 2015). In another research, it was shown

that organic matter in the soil reduced the amount of cerium dioxide

(CeO2) NPs taken up by maize roots (Zhao et al., 2012). When

applying NPs to soil or using them as a foliar application, findings

have suggested that the mobility of NPs can be affected by bacteria

associated with roots and leaves. Research has indicated that the use of

NPs on soil or as a foliar application may affect the movement of NPs

through the involvement of bacteria in the roots and leaves (Guo and

Chi, 2014). The mucilage can also make the rhizosphere more acidic

(Schaller et al., 2013), which encourages the disintegration of certain

insoluble NPs (Schwab et al., 2016) and impacts on the extent to which

plants absorb the NPs. Most research shows that the main restriction

on entering NPs into plant cells is the size of the holes in the cell wall.
3.5 Leaves

The stomatal holes offer a different route for NPs to enter plants

when examining foliar absorption (Larue et al., 2014). NPs can be

transported to various plant parts, including the roots, through leaf

translocation. Several plant species, including rapeseed, wheat,

beans, corn, lettuce, and cucumber, show evidence of NPs

internalization through their leaves (Chichiriccò and Poma,

2015). Leaves can internalize NPs of various sizes, varying from a

few nanometers to several hundred nanometers, and are made of

diverse materials, such as ceria, titania, FeO, ZnO, and Ag
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(Chichiriccò and Poma, 2015). Airborne NPs attach to plant leaf

surfaces before being absorbed and entering epidermal cells. When

NPs reach the epidermal cells, they have the potential to travel

through apoplastic or symplastic pathways to numerous plant

organs (Ahmadov et al., 2020). NPs are frequently sprayed onto

leaf surfaces in agricultural applications, where they accumulate and

are then taken up by plants via stomata or cuticle on the leaf surface.

The primary constituents of the leaf epidermis’ waxy cuticle are

wax, cutin, and pectin. The waxy cuticle of plant leaves is a crucial

protective layer, preventing water loss when growing and acting as a

key obstacle to inhibiting NPs from penetrating the leaves (Pérez-

De-Luque, 2017). There are two different channels, lipophilic and

hydrophilic channels, found on the waxy cuticle’s surface. Diffusion

and penetration of lipophilic NPs into leaves are made possible by

lipophilic channels on the cuticle surface (Bussieres, 2014).

Confocal fluorescence microscopy with excellent temporal and

spatial resolution was utilized by Hu et al. to demonstrate the

ability of 2 nm carbon dots to penetrate cotton leaves via the

cuticular route, showing their remarkable potential as a plant

penetration-enhancing agent (Hu et al., 2020). Recent research

has shown that various elements, including the properties of the

NPs themselves, the plant species involved, and the surrounding

environmental conditions, impact the absorption of NPs in plants.

The immersion behavior of NPs in plant leaves can be affected by

numerous properties such as chemical makeup, surface charge,

particle size, and surface alteration (Wang et al., 2023). The particle

magnitude of NPs has become a key component in investigating

their absorption in the blade due to the size restriction limit of NPs

in the blade absorption route (Li et al., 2020). NPs mostly travelled

through the stomatal channel in the epidermis of wheat leaves

before accumulating inside the chloroplasts.
4 Nanoparticles and their impact on
drought and salinity stress

The entry points for NPs into the plant body are the roots and

leaves, which can cause various biochemical, molecular,

physiological and morphological changes in plants (Khan et al.,

2019). The changes made have an important impact on the

development of plants, which can differ based on the amount,

method, and size of using the NPs. Plants’ physiological functions

and overall health can be significantly impacted by the size,

reactivity and chemical composition of NPs (Ahmed et al., 2021).

According to the available research, various nanoparticle kinds may

improve plant growth and development when subjected to salinity

and drought stress (Ali et al., 2021a). Mechanism of NPs and their

possible impacts under drought and salinity stress are depicted in

Figure 4 and Table 1.
4.1 Improve nutrient uptake

Plant development is negatively impacted by nutritional

deficiencies and imbalances caused by drought stress, which

disturbs the balance of nutrients inside plants (Umair Hassan
frontiersin.org
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FIGURE 4

Physiological Mechanism of NPs induced drought and salinity tolerance in plants.
TABLE 1 Impact of Nanoparticles in enhancing crop tolerance under drought and salinity stress.

NPS Plant species Stress Effect Reference

Zn Soybean Drought Accelerated germination and decreased seed residual weight (Sedghi et al., 2013)

Zn Barley Drought Facilitated growth, increased production yield, added essential nutrients
to edible grains, and improved nitrogen uptake.

(Dimkpa et al., 2019)

Zn Maize Drought Increased melatonin synthesis and promoted antioxidant
system function.

(Sun et al., 2020)

Zn Sunflower and soybean Salinity Increased substomatal CO2 concentration, CO2 acclimatization ratio,
chlorophyll content, as well as decreased leaf sodium (Na) and
increased zinc (Zn) levels.

(Torabian et al., 2016)

Zn Lupinus termis Salinity Induced plant development, repaired content of total phenols, organic
solutes, and antioxidant enzymes, while lowering MDA levels.

(Abdel Latef et al., 2017)

Zn Wheat Salinity Boost plant growth and development (Fathi et al., 2017)

Zn Tomato Salinity The concentrations of antioxidant enzymes were increased, leading to
the stimulation of growth in roots and shoots, resulting in increased
biomass and levels of photosynthetic pigments.

(Faizan et al., 2021)

Zn Trigonella foenum-graecum Salinity Augmented proline and protein content, promoted antioxidant activity,
and reduced MDA and H2O2 concentrations.

(Noohpisheh et al., 2021)

Zn Mangifera indica L. Salinity Total sugars, Pro, and antioxidant enzyme levels have all increased. (Elsheery et al., 2020)

Zn Ocimum basilicum Salinity Improved growth characteristics are the result of increased pigment and
Protein content.

(Kalteh et al., 2018)

Zn Lens culinaris Medik. Salinity Reduced germination and seed activity, which reduced fresh
weight (FW).

(Sabaghnia and Janmohammadi, 2015)

Zn Lycopersicum esculentum Salinity Increased root weight and enhanced root development as a result of
improved seed germination.

(Haghighi et al., 2012)

Zn Fragaria sp. Salinity The RWC has increased as a result of the augmented chlorophyll and
Pro concentrations.

(Avestan et al., 2019)

Zn Hawthorn Drought Increased plant tolerance without having any discernible effects on the
concentrations of carotenoid and chlorophyll.

(Ashkavand et al., 2015)

Ag Lentil Drought Root length, FW, DW, and decreased germination ratio. (Hojjat and Ganjali, 2016)

(Continued)
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TABLE 1 Continued

NPS Plant species Stress Effect Reference

Ag Tomato Salinity Improved Fresh and dry weight, root length and germination ratio of
the seedlings.

(Almutairi, 2016b)

Ag Satureja hortensis L. Salinity Improved growth metrics, such as shoot length, and higher germination
percentages all contributed to a greater ability to withstand salt stress.

(Nejatzadeh, 2021)

Ag Wheat Salinity Reduced the harmful consequences of salinity stress. (Abou-Zeid and Ismail, 2018)

Ag Wheat Salinity Seed germination efficacy is increased while oxidative stress is decreased
because of the activation of antioxidant enzymes.

(Wahid et al., 2020)

Ag Wheat Salinity Elevated concentrations of Pro and total sugar. (Mohamed et al., 2017)

TiO2 Wheat Drought Enhanced growth, productivity, higher levels of transpiration rate,
stomatal conductance, RWC, and chlorophyll and
carotenoid concentration.

(Faraji and Sepehri, 2020)

TiO2 Linum usitatissimum Drought Decreased hydrogen, buildup and elevated chlorophyll, carotenoids,
H2O2, and MDA concentrations.

(Aghdam et al., 2016)

TiO2 Ocimum basilicum L. Drought Reduced the negative impacts of drought and augmented RWC
and biomass.

(Kiapour et al., 2015)

TiO2 Zea mays L. Salinity Improved seed germination efficacy reduced MDA, Pro and Na+

content while augmented K+ improved antioxidant and phenolic levels
as well as FW, DW, and RWC.

(Shah et al., 2021)

TiO2 Dracocephalum moldavica Salinity Enhanced physiochemical characteristics by activating
antioxidant processes.

(Gohari et al., 2020)

TiO2 Cotton Drought Augmented concentrations of total phenolic, total antioxidant capacity,
and CAT, POD, and SOD activity.

(Shallan et al., 2016)

CeO2 Canola Salinity Efficiency Na+ was transported to shoots more effectively and Na+
buildup was reduced by lowering root apoplastic barriers. This led to a
rise in plant biomass and an improvement in the photosynthetic
system’s effectiveness.

(Rossi et al., 2016)

Chitosan Wheat Drought RWC, High leaf area, photosynthetic rate,chlorophyll content, CAT and
SOD activities, biomass and crop yield.

(Behboudi et al., 2019)

Chitosan Barley Drought Improved grain weight, protein, RWC, pro content, CAT, and
SOD activities.

(Behboudi et al., 2018)

Mn3O4 Cucumber Salinity Salinity increased the amount of photosynthetic pigment, net
photosynthesis, and biomass, which altered the metabolomes.

(Lu et al., 2020)

Fe Sorghum Salinity Improved the rate of photosynthetic activity, the chlorophyll index, the
PSII effectiveness, RWC, and reduced lipid peroxidation.

(Maswada et al., 2018)

Fe Moldavian balm Salinity Augmented leaf length, FW, DW, and leaf area per shoot and per root. (Moradbeygi et al., 2020)

Fe Arabidopsis thaliana Drought Boost biomass, photosynthetic pigments, and internal CO2
concentrations as a result of stimulated H+-ATPase activity controlling
stomatal opening and closing.

(Kim et al., 2015)

Fe Triticum aestivum Drought Better growth indices and higher photosynthetic activities as a result of
increased absorption.

(Adrees et al., 2020)

Se Wheat Drought The plant had better development and an increase in biomass by
maintaining the chlorophyll and carotenoid concentrations and the leaf
hydration status.

(El-Saadony et al., 2021)

CeO2 Glycine max Salinity The modulation of photosynthesis, water usage effectiveness, and
Rubisco carboxylase in Glycine max boosted plant development and
augmented the rate of photosynthesis at a concentration of 100 mg/kg
of CeO2 NPs.

(Cao et al., 2017)

Cu Maize Drought Enhanced the protective mechanism of maize during
drought conditions.

(Van Nguyen et al., 2021)
F
rontiers in
 Plant Science
 08
 frontiersin.org

https://doi.org/10.3389/fpls.2023.1324176
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Rehman et al. 10.3389/fpls.2023.1324176
et al., 2020). The nutrient absorption, transport, and distribution

processes across different plant tissues are significantly improved by

NPs, which also play a critical role in maintaining nutritional

balance in plants (Kopittke et al., 2019). Plants with less water

had lower N, K, Mn, and Zn levels due to reduced transpiration flux,

nutrient uptake and compromised membrane stability (Semida

et al., 2021). The absorption of N, phosphorous (P), K, and zinc

was greatly enhanced by the treatment of NPs (ZnO) via foliar

application and soil, and the negative impacts of drought stress were

lessened (Akhtar et al., 2022). Maize plants that were cultivated

under drought stress showed significant improvement in various

parameters like photosynthesis, relative water content, antioxidant

activity, and nutrient intake when they were co-treated with Si-NPs

and plant growth-promoting rhizobacteria (Hafez et al., 2021).

Adding zinc NPs (Zn-NPs) to wheat and sorghum plants

increased productivity and improved nutrient absorption

significantly (Dimkpa et al., 2019). NPs considerably increased

nutrient intake, nitrate reductase activity, and nitrogen

assimilation, enhancing protein and amino acid synthesis (Yuan

et al., 2013). Using NPs boosts the appropriation of nutrients

towards plant roots and improves plant nutrient absorption

(Jaberzadeh et al., 2013).

Salinity stress is recognized to cause an imbalance in nutrient

levels, resulting in excessive nutritional deficiencies in plants

(Etesami and Maheshwari, 2018). It has been shown that Nano

SiO2 increased the K+ amount in the leaves, which in turn improved

the development of soybean seedlings under salt stress conditions

(Farhangi-Abriz and Torabian, 2018). The exogenous spray of Cu-

NPs was stated to reduce salinity stress in different research on

tomato plants by promoting growth and preserving a balanced Na+/

K+ ratio (Pérez-De-Luque, 2017). Abdoli et al. (2020) applying

Fe2O3 NPs helped Trachyspermum ammi plants reduce salinity

stress by rising the K+/Na+ ratio and Fe content. The research

showed by Liu et al. (2021) augmentation of the K+-to-systolic

sodium ratio in cotton plants was identified as one of the key

processes underlying the improved plant growth observed upon the

treatment of Ce NPs under salt stress. The results of this experiment

show that the treatment of these NPs enhanced the amount of

potassium in cells, which is a method to improve plant stress

resistance. After using NPs, maintaining a balanced nutritional

profile inside the plants is crucial to maximizing plant development

under salt stress. For instance, research suggests that using Zn NPs

can improve nutritional uptake of Zn. The transportation and

intake of various nutrients, such as phosphorus, can be hampered

when Zn absorption rises, causing an imbalance in the Zn-to-P ratio

(Hussein and Abou-Baker, 2018).
4.2 Improve membrane stability

Plant development is significantly reduced by drought stress,

which has negative effects on cellular membranes and the

interactions between plants and water (Umair Hassan et al.,

2020). Drought stress results in the production of ROS, impacts

lipid peroxidation damages cell membranes, and leads to a build-up

of high levels of MDA (malondialdehyde) (Das and Roychoudhury,
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2014). The foliar spray treatment of hydrogen peroxide (H2O2),

ZnO NPs, and MDA accumulation was significantly decreased, and

membrane stability was maintained, preventing the deficiency of

vital osmolytes (El-Zohri et al., 2021). However, when NPs (ZnO)

were added exogenously, they were critical in preserving membrane

integrity and cell water status during drought stress, which led to

better PS-II efficiency and metabolic activities (Semida et al., 2021).

The treatment of NPs preserved cell integrity and membrane

stability, which boosted water absorption by improving the

anatomy of the plants (Hafez et al., 2020). The relative electrolyte

leakages of the maize membrane were dramatically decreased by

priming with TiO2 NPs. This demonstrated that the protective effect

of TiO2 against membrane deterioration caused by salt stress (Shah

et al., 2021). The foliar treatment with CsNPs and modified CsBMs

improved defense-related genes, JA signaling, anthocyanins,

membrane stability, and diterpene glycoside synthesis under salt

stress (Balusamy et al., 2022). Hence, NPs improved membrane

stability, chloroplast formation, and sugar accumulation, all of

which contributed to the improvement overall.
4.3 Improve enzyme activities

It was discovered that the use of 50 mg/L Cu NPs caused a

substantial elevation of the gene expression level of SOD rose six-fold

(Mosa et al., 2018). In contrast, ZnONPs reduced the SOD activity of

Cicer arietinum (Burman et al., 2013). The increases in the levels of

numerous antioxidant enzymes GR, (Catalase), APX, SOD, CAT and

GPX within plants suggest that applying fullerene NPs (FNPs) to the

leaves may have positive effects in lowering the oxidative stress

induced by drought stress (Liu et al., 2016). According to Taran

et al. (2017), ZnO NPs increased wheat antioxidant enzyme (SOD

and CAT) activity, which improved drought resistance.

Additionally, it was showed that bulk zinc oxide NPs caused

higher stress in horticultural crops (Rajput et al., 2021a). According

to a different study, applying selenium NPs and copper NPs to S.

lycopersicum demonstrated increased crop production, higher levels

of vitamin C, glutathione, chlorophyll, and increased activity of

antioxidant enzymes such GPX, SOD and PAL (Hernández-

Hernández et al., 2019). The research revealed that the action of

both POX and SOD enzymes were greater in plants treated with the

substance’s nanoform than those preserved with the bulk form,

except for CAT activity (Ghorbanpour et al., 2015).

Using nano-sized SiO2 and TiO2 together has triggered a

similar protective mechanism that improves fertilizer and water

consumption and increases nitrate reductase activity in soybean

(Changmei et al., 2002). Numerous nitrogen metabolism-related

enzymes, including glutamate dehydrogenase, NiR, GS, and GPT,

are controlled by titanium dioxide NPs (TiO2 NPs) in different

plant species. This control allows the transformation of inorganic

nitrogen into organic nitrogen, which is then converted into

proteins, chlorophyll, and amino acids, as well as the absorption

of nitrate and increased plant biomass (Mishra et al., 2014).

According to Shah et al. (2021), TiO2 NPs defend the chloroplast

from intense light by boosting the activity of antioxidant enzymes

such CAT, POD, and SOD.
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4.4 Improve phytohormone production

It is well known that phytohormones play crucial roles in

assisting plants in becoming acclimated to various environments

through various processes. Studies frequently show that

phytohormones improve a plant’s capacity to endure salt stress

(Fahad et al., 2015). Some studies have suggested that plant’s

improved stress resistance is responsible for the alteration in

plant hormonal balance that NPs induce (Paramo et al., 2020). In

particular research, the presence of silver NPs caused substantial

changes in the concentrations of ethylene, gibberellin and abscisic

acid (ABA) in rice plants (Manickavasagam et al., 2019). The

treatment of Ag-NPs used as priming agent at 1 mg L-1 on wheat

plants improved the amounts of a-napthaleneacetic acid (NAA), 6-

benzyl aminopurine (BAP), and indole-3-butyric acid, while

concurrently reducing the content of ABA. These modifications

were considered a crucial mechanism by which silver NPs boost

plant development in challenging environments (Abou-Zeid and

Ismail, 2018). The sixth hormone in plants, brassinolide (BR), is

important for increasing cell elongation and division and boosting

resistance to salt, drought, and heat stressors (Hou et al., 2018).

NPs reduce oxidative stress by controlling the buildup of

osmolytes and hormones by boosting the antioxidant machinery

(Silva et al., 2022). The treatment of NPs increases plant

performance under drought stress circumstances by up-regulating

the production of proline and sugars, which in turn helps preserve

the integrity of cellular membranes, proteins, and enzymes (Gohari

et al., 2020). Likewise, the utilization of NPs, specifically TiO2,

substantially increases the buildup of phenolic substances, proline,

glycine betaine, soluble sugars, and total proteins and improves

plant development under drought stress (Mustafa et al., 2021).

According to research by (Khan et al., 2019), mesoporous silica NPs

(MSNs) that responded to glutathione were used to successfully

distribute abscisic acid (ABA) to plants. The AtGALK2 was

upregulated due to the limited discharge of ABA from MSNs,

which eventually improved Arabidopsis thaliana’s ability to

withstand drought. The treatment of NPs promotes the

development of plants under drought stress by improving the

production of indole acetic acid and gibberellins (GA) (Li et al.,

2021). Using Fe-NPs and salicylic acid, a crucial plant growth

hormone, dramatically increased the yield of strawberries

(Mozafari et al., 2018). Sun et al. (2020) claim that the increased

melatonin production caused by NPs was responsible for the

induction of greater drought tolerance, suggesting that NPs may

be able to cope drought stress via modulating endogenous

hormones. In conclusion, maintaining hormonal balance with the

treatment of NPs can increase plant’s ability to withstand drought

and salinity.
4.5 Improve the accumulation of
phenolics compounds

NPs can dramatically increase the accumulation of phenolic

compounds in plants, whereas drought stress significantly reduces

this accumulation. ZnO-NPs applied externally at 25 and 50 mg/L
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doses raised phenolic compound levels under drought stress,

resulting in higher antioxidant activity and reduced MDA and

H2O2 buildup (El-Zohri et al., 2021). The ZnO-NPs were

investigated for their impact on the phenolic content of Stevia

rebaudiana. The study exposed that the treatment of ZnO-NPs at

concentrations of both 100 and 1000 mg/L resulted in significant

reduction of the phenolic concentration (Javed et al., 2017).

Additionally, plants treated with NPs have been shown to have a

significant increase in non-enzymatic activities and total phenolic

compounds, which lower lipid peroxidation and lessen oxidative

damage (Ghani et al., 2022). The amounts of anthocyanin, phenolic,

and antioxidant activity were increased after the treatment of Si-

and Se-NPs (Zahedi et al., 2021). The growth and development of

maize depend on the control of proteins and phenolic chemicals

regulated by SiO2 NPs (Suriyaprabha et al., 2012).

The synthesis of phenolic compounds is known to rise in

response to diverse abiotic stimuli because of its critical function

in scavenging free radicals and antioxidants (Król et al., 2014).

External application of TiO2 considerably increased the total

phenolic content in Vigna radiata, which is consistent with

earlier results that TiO2 seed priming efficiently controls phenolic

compound synthesis in the maize hybrid under salt stress (Qi et al.,

2013). The study carried out by Moradbeygi et al. (2020) aimed to

investigate the effects of Fe NPs on Dracocephalum moldavica L. in

salt stress circumstances. According to the experimental results,

NPs enhanced plant development under salt stress by raising the

abundance of flavonoid and phenolic chemicals, particularly in the

roots, and lessening the activity of antioxidant enzymes.

Additionally, compared to the control group, Cu NPs showed a

considerable increase in glutathione, polyphenols, and vitamin C

content under salt stress (Rajput et al., 2021a). The levels of total

phenols, Osmo protectants, tannin, anthocyanins and flavonoids

under salinity stress were also enhanced by the treatment of sulfur

NPs to lettuce (Najafi et al., 2020). Additionally, AgNPs augmented

the amounts of flavonoids and phenolic compounds while

suppressing the leaf Na+/K+ ratio (Khan et al., 2020). For

instance, foliar-applied Cu NPs in tomato plants reduced salinity

stress by promoting growth and controlling the Na+/K+ ratio and

growth (Pérez-Labrada et al., 2019). In contrast, CuNPs

significantly amplified the amounts of phenols by 16%, vitamin C

by 80%, glutathione by 81%, and phenols by 7.8%. Additionally,

Helianthus annuus plants grown in a salty environment profited

from the foliar treatment of Fe NPs because it improved the

activities of polyphenol oxidase, CAT, and POD (Torabian

et al., 2018).
4.6 Shield photosynthetic system and
expand photosynthesis

Drought stress reduce the amount of chlorophyll produced, the

effectiveness of PS-II, and the overall efficiency of photosynthesis in

plants is adversely impacted (Semida et al., 2021). ZnO NPs

enhanced chlorophyll synthesis, the activity of chlorophyll-

synthesizing enzymes like chlorophyllase and fluorescence. As a

result, photosynthetic efficiency increased under drought stress
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conditions (Abd El-Mageed et al., 2021). The external treatment of

NPs aids in the stabilization of the ultrastructure of mitochondria

and chloroplasts, which aids plants to sustain photosynthetic

efficiency in drought stress (Rahmatpour et al., 2018). Titanium

dioxide NPs are used to speed up the process of light-induced water

hydrolysis, which releases oxygen, electrons, and protons (Silva

et al., 2022). The efficiency of plants’ photosynthetic process

subsequently improves significantly due to the faster entrance of

protons and electrons into ETC (electron transport chain)

(Alabdallah and Hasan, 2021). Titanium dioxide NPs foliar

application increases the levels of photosynthetic pigments and

boosts the gas exchange properties of plants by enhancing the

activity of enzymes responsible for CO2 fixation and chlorophyll

synthesis (Faraji and Sepehri, 2020). NPs further enhance the

absorption of light within the chloroplasts, resulting in improved

electron transport, enhanced efficiency of PS-II, increased O2

progression, and more efficient photo-phosphorylation, improved

photosynthetic efficacy in plants under shortage of water (Shafea

et al., 2017).

Photosynthesis is one of the critical activities that is strongly

influenced by salinity stress, with its impacts varied based on

elements including the plant species, the amount of salt, and

other environmental conditions (Hnilickova et al., 2021). Several

research has shown that adding NPs to plant leaves significantly

increases the amount of chlorophyll present. According to studies,

using manganese NPs (Mn-NPs) can help sustain a healthy rate of

photosynthesis even when faced with severe abiotic stress

conditions (Ye et al., 2020). In Vigna radiata plants under salt

stress, manganese augmentation was found to improve several

variables, including the membrane stability index, the amount of

chlorophyll, and the activity of the enzyme nitrate reductase (Shahi

and Srivastava, 2018). The exogenous treatment of Cu was observed

to be valuable in reducing the negative effects of salinity on

photosynthesis and water relations in maize plants (Iqbal et al.,

2018). In Brassica, cerium NPs enhanced both biomass and

photosynthetic efficiency when compared to plants that weren’t

treated (Rossi et al., 2016). According to studies, Ag NPs to plants

under salt stress can increase their chlorophyll levels and improve

their fluorescence properties. Furthermore, Cao et al. (2017)

showed that the incorporation of 100 mg/kg of CeO2 NPs in the

growth medium accelerated photosynthesis and promoted plant

development by controlling water usage efficiency, particularly in

drought-stressed environments.
4.7 Strengthen antioxidant defense and
remove ROS toxins

Insufficient water intake leads to the generation of ROS, H2O2,

and MDA, which in turn triggers oxidative stress (Sutulienė et al.,

2021). The remarkable ability of NPs to increase antioxidant activity

helps to alleviate the negative consequences of water stress. The

introduction of NPs (Si, ZnO, and Se) led to a substantial upsurge in

the activity of APX, SOD, and CAT enzymes, which led to

decreased oxidative harm triggered by shortage of water (Sun

et al., 2020). The use of zinc oxide NPs has been found to
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improve the non-enzymatic actions of antioxidants like phenolic

compounds and ascorbic acid (AsA). These compounds act in

harmony with the antioxidant enzymes, including APX, CAT and

SOD (El-Zohri et al., 2021). The foliar spray of SiO2 NPs at

concentration 0, 12.5 ppm, 25 ppm, and 50 ppm considerably

boosts non-enzymatic activities in plants under drought stress by

increasing ferric reducing antioxidant power total phenolic content,

2,2-diphenyl-1-picrylhydrazyl scavenging activity, and total

phenolic content, 2,2-diphenyl-1-picrylhydrazyl scavenging

activity, ferric reducing antioxidant power (Sutulienė et al., 2021).

Plants are protected from oxidative stress by NPs, which cause the

buildup of antioxidant genes, osmolytes, minerals, and amino acids

(Mittal et al., 2020).

Certain NPs exhibit characteristics comparable to some

antioxidant enzymes, enabling them to help plants combat

oxidative conditions. For instance, cesium, Mn, Cu, and Fe NPs

exhibited POD-like capabilities, while cobalt, iron, and cesium NPs

show CAT-like properties (Rico et al., 2015). Their investigation

suggested that exposure to these NPs significantly improved the

plant’s growth features. This improvement was associated with an

upsurge in the activity of antioxidant enzymes, such as SOD, CAT

and GPX as well as a reduction in the K+/Na+ ratio. Additionally, it

was shown that using Ce-NPs augmented the activity of antioxidant

enzymes in cotton plants, assisting in the elimination of ROS from

within the cells. Additionally, the NPs supported plant development

despite saline stress (Liu et al., 2021). A recent study examined the

impact of applying iron nanoparticles (Fe-NPs) to Dracocephalum

moldavica L. and found that it has the potential to enhance plant

growth under salt stress conditions. The study showed that Fe-NPs

increased the levels of flavonoids and phenolic compounds in the

roots, which in turn contributed to improved plant development. In

addition, it was shown that the NPs decreased the activity of

antioxidant enzymes (Moradbeygi et al., 2020).
4.8 Enhance stress-responsive
gene expression

NPs treatment causes a considerable upregulation of genes that

respond to drought, including GmRD20A, GmDREB2,

GmMYB118, and GmMYB174 (Kandhol et al., 2022). According

to Yang et al. (2018), applying ZnO-NPs and CuO-NPs

considerably intensified the expression of genes associated with

drought resilience of wheat plant roots. Additionally, Catharanthus

roseus plants cultivated under drought stress circumstances

improved their antioxidant capability and activation of genes

linked to alkaloid production as a consequence of the

administration of CS-NPs (Ali et al., 2021a). Additionally, using

ceria-based NPs caused kidney beans to express more proteins

linked with stress resistance while simultaneously downregulating

the proteins in charge of nutrition storage and glucose metabolism

(Majumdar et al., 2015). GmWRKY27, 118, and 174 was also

showed increased expression by NPs, which promoted hormone

signaling, the formation of seed germination, lignin, and secondary

metabolites in response to shortage of water (Rushton et al., 2010).

The enhanced GmWRKY27 gene expression in plants subjected to
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NPs suggests a link between NPs and the control of ABA

production and stomatal function under drought stress

circumstances (Linh et al., 2020). The utilization of NPs resulted

in a widespread elevation of the expression of genes linked to the

ability to withstand water stress. The higher concentrations of

copper (Cu) and zinc (Zn) were connected with the increased

expression of genes correlated with metal stress in the shoots of

plants treated with ZnO or CuO NPs. This finding implies that

plants exposed to CuO or ZnO NPs defended against various

threats, including drought (Khan et al., 2019).

The foliar treatment of Zn-NPs at 0, 20 and 80 mgL−10 to the

leaves of rapeseed plants under salt stress produced alterations in the

expression of genes associated to stress response such as SKRD2,

MYC, and MPK4 showed decreased expression, whereas ARP and

MPK showed increased expression (Hezaveh et al., 2019). These genes

influence a range of hormonal, developmental, and physiologic

reactions. Notably, the transcription factor-related genes MYC and

SKRD2 showed higher expression and supported improved tolerance

to abiotic stress (Hezaveh et al., 2019). Silicon-NPs have positively

impacted hemp under salt stress, stimulating improved development

and causingmolecular alterations in this plant species (Guerriero et al.,

2021). Silicon NPs were found to affect genes associated with

cytochrome b6f (Cytb6f), ATP-synthase complex and the light-

harvesting complexes in tomato plants subjected to salt stress, as

revealed by a proteomics study. The treatment of silicon NPS changed

the expression of 29 genes, kinase/phosphatase genes comprising

transcription factors, genes involved in photosynthetic processes,

and genes associated with stress. The impact of silicon also extends

to the control of genes involved in manufacturing nitric oxide and

auxin (Tripathi et al., 2021a). Furthermore, silicon NPs reduce the

impacts of salt stress by varying the expression of genes like OsNCED,

and OsZEP, which are essential for manufacturing the hormone ABA.

These genes include OsZEP, OsNCED, and OsZEP (Tripathi et al.,

2021b). Under salinity stress, silicon NPs have been discovered to

promote salt transport into the vacuole by upregulating the protein

OsHMA3, which improves plant development. Furthermore, silicon

shields plants from stress by boosting activity of antioxidant enzymes

(Siddiqui et al., 2020). The downregulation of salt stress genes (DDF2,

MAPK3 and RBOH1) upon exposure to S NPs led to an improvement

in the salt resilience of tomato plants (Almutairi, 2016a).
5 Nanoparticles and
genetic engineering

The cutting-edge development in plant science, known as plant

genetic engineering, is a key instrument to increase crop quality and

production, boosting secondary metabolite levels in medicinal

plants, and growing sustainable crops. Commonly, Agrobacterium

and gene gun methods are used to transfer the gene of interest,

although plant cell walls resist entering nucleus. Agrobacterium

exhibited host specificity while gene gun method has potential to

damage the plant tissues. In recent days, carbon nanotubes,

magneto faction, DNA nanostructure, clay nanosheets, peptide

NPs, CRISPER Cas9 and de novo transgenic plant production

have accelerated progress in crop improvement (Lv et al., 2020).
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The usage of magnetic NPs has primarily been seen in medical

research and animal science (Nasiri et al., 2020). However, research

also exhibited the effective application of magnetoreception in

plants (Zhao et al., 2017) established a quick and simple process

utilizing magnetic NPs to produce transgenic seeds without needing

tissue culture regeneration.

Additionally, SWCNTs exhibit effective membrane penetration

via organelle walls (Hendler-Neumark and Bisker, 2019). The

genetic transformation of chloroplasts and mitochondria

efficiently gets around the restriction of gene migration,

subsequent in increased herbicide tolerance in weeds because of

their maternally transmitted nature (Lv et al., 2020). Kwak et al.

(2019) developed SWCNTs complexed with chitosan specifically

designed for the targeted delivery of DNA to the chloroplasts of

numerous plant species, including spinach tobacco, watercress, and

arugula. Similarly, Zhang et al. (2019) presented DNA NPs as a

ground-breaking stage for siRNA delivery in plants. The researchers

used the intensity of a fluorophore to gauge the internalization of

these nanostructures into plant cells. This fluorophore was joined to

the DNA strands at the connection sites of the DNA nanostructures

through hybridization, enabling detection and analysis (Lv et al.,

2020). NPs have great significance as materials for delivering

biomolecules into cells due to their ability to cross biological

membranes, protect and release a variety of payloads, and achieve

varied targeting through chemical and physical changes. The first

demonstration of the co-delivery of DNA and chemicals to

Nicotiana tabacum plants in 2007 was done by Torney et al.

employing biolistic delivery of gold-capped mesoporous silica

NPs (MSNs) that vary in size from 100 to 200 nm (Torney et al.,

2007). Mesoporous silica NPs (MSN), which were capped with gold

NPs by covalent bonding, had a chemical expression inducer

inserted into their pores (3 nm) (Cunningham et al., 2018).

Additionally, recent studies have demonstrated the use of carbon

nanotubes (CNTs) for the direct transport of plasmid DNA and

siRNA into a variety of plant species, including model and non-

model plants (Demirer et al., 2019). NPs have begun to play a

crucial role in enabling and enhancing genome editing procedures

by permitting effective and accurate transport of plasmids, RNA,

and ribonucleoproteins (RNPs).
5.1 CRISPERCas system

Genome editing is gaining popularity for precise modifications

of specific sequences and studying biological processes and plant

genetics. CRISPER Cas, ZFNs and TALENs are three essential

components used to insert specific genetic mutations into plants

in crop improvement (Doman et al., 2020). In contrast, CRISPER

Cas technology is a faster and easier genome editing method which

suggests various horizons for crop improvement against abiotic

stresses (Gao et al., 2020). Sg-RNA initiate Cas9 nuclease to form

complex of Cas9-sgRNA at targeted genomic DNA and spark the

cleavage. Hence leads to the development of double stranded breaks

with the help Cas9 nuclease in DNA of plant (Shan et al., 2013). The

successful stories of CRISPER Cas9 technology were revealed by

three research groups on rice, wheat, tobacco and Arabidopsis
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(Nekrasov et al., 2013). Afterwords, this technology immensely used

in various project and objectives like powdery mildews in wheat to

regulate TaMLO homologs (Wang et al., 2014). Similarly in maize,

yield was improved by editing waxy alleles by CRISPERCas9

successfully (Gao et al., 2020). The utilization of CRISPR-Cas

system has opened new avenues for crop breeding, genetics, and

genomics. Its precise and efficient genome editing capabilities have

enabled researchers to make targeted modifications in the genome

of crops, leading to the development of improved crop varieties with

desirable traits. This technology has revolutionized the field of crop

improvement and holds great promise for the future of agriculture.

This technology has the potential to improve specific traits in plants

while minimizing the risk of unintended effects, making it useful in

addressing both biotic and abiotic stress factors.
6 The toxicity of nanoparticles in
plants and biological environment

ROS are generated due to interactions of NPs with plants

through numerous physical and chemical processes (Figure 5).

Increased ROS generation carried by NPs can negatively impact
Frontiers in Plant Science 13
plant cells, severely limiting plant growth and development (Xie

et al., 2019). The shape, size, and characteristics of the NPs regulate

their hazardous effects. Metal oxide NPs like Fe3O4, ZnO, and TiO2,

which have applications in a variety of sectors, as well as metal NPs

like gold, platinum, silver, and iron, have the potential to endanger

human health. These NPs can harm proteins, DNA, and cell

membranes when they come into contact with cells, significantly

reducing plant development (Hsin et al., 2008).
6.1 Nanoparticles inhibit plant growth

Soil is a significant source of NPs, and plants use active

transport systems in their roots to take up both NPs and

nutrients from the soil (Khan et al., 2021). NPs are uptake by the

roots and pass through the root cortex and epidermis of cell walls

before reaching the upper parts of the plant and causing adverse

effects inside the plant (Rajput et al., 2018). NPs might negatively

affect plant development at higher concentrations by diminishing

antioxidant activities, decreasing photosynthetic effectiveness, and

decreasing chlorophyll production. NPs have the benefit of being

substantially smaller than normal bulky materials, enabling them to
FIGURE 5

Impact of NPs toxicity on plant growth.
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be immersed into biological systems near 15-20 times more quickly

(Khan et al., 2021). Research suggests that the toxicity of NPs in

various microorganisms such as plants and algae is linked to

physical damage and the production of ROS, leading to oxidative

stress (Hou et al., 2018). The colour structure of photosynthesis, the

effectiveness of PS-II (photosystem II), and the development of

aquatic plants like amphibian plants can all be impacted by NPs in

aquatic environments (Jacobasch et al., 2014).

The agriculture industry cannot fully embrace and implement

nanotechnologies due to increasing concerns about the

bioavailability and toxicity of NPs and the shortcomings of the

current regulatory framework (Ali et al., 2021a). According to Rao

and Shekhawat (2016) improper use of NPs can negatively impact

plant development, such as reducing the production of protein and

pigment in plants. Plant cells also develop extra substances like

metallothioneins and phytochelatins due to the stress produced by

NPs. These substances defend against the damaging impacts of

oxidative stress on plant cells (Dev et al., 2018). NPs in the soil

environment go through a sequence of bio/geo transformations that

ultimately regulate their toxicity and bioavailability (Ali et al.,

2021a). NPs of various compositions adversely influence the roots

and shoot elongation of seedlings, which is mostly associated with

the uptake of NPs into the roots. Silver NPs (AgNPs) have cytotoxic

effects on some plants and reduce germination, transpiration, shoot

and root length, and involved changes in gene expression, oxidative

stress and cell death (Thuesombat et al., 2014). The concentration of

the NPs influences the extent that growth is inhibited in mung bean

and sorghum (Lee et al., 2012). Inhibitory and toxic effects of NPs

are listed in Table 2.
TABLE 2 Toxic and inhibitory effects of nanoparticles on plants.

NPS Plant Negative impact Reference

ZnO Glycine max Superoxides were produced, leaf
biomass decreased, gene
expression was changed, and
root elongation, cell viability,
and biomass were
all suppressed.

(Hossain
et al., 2016)

ZnO Zea mays Reduced mineral nutrient
uptake, photosynthesis, and
root activity were caused by
enhance in superoxide anions
and a decreased in superoxide
dismutase activity.

(Wang
et al., 2016)

ZnO Zea mays Showed negative impacts on the
development of seedlings as
well as seed germination.

(Fellmann and
Eichert, 2017)

ZnO Medicago
sativa

Reduced the biomass of the
roots by 80% as a result.

(Bandyopadhyay
et al., 2015)

ZnO Vigna
angularis

Caused plant physiology to be
disturbed, increased oxidative
stress, and decreased amounts
of photosynthetic pigment.

(Jahan
et al., 2018)

(Continued)
F
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TABLE 2 Continued

NPS Plant Negative impact Reference

Ag Lysopersicon
esculentum

Lower fruit production,
photosynthesis, and CO2
assimilation as a result of
reactive oxidative stress that
was induced.

(Das et al., 2018)

Ag Allium cepa Root growth was suppressed (Pittol
et al., 2017)

Ag Allium cepa Significantly reduced root
development, stimulated the
mitotic index, triggered the
production of ROS, and in
higher quantities led to
oxidative DNA damage.

(Cvjetko
et al., 2017)

Ag Lupinus
termis

Decreased RFW and SFW,
decreased overall
chlorophyll content.

(Al-Huqail
et al., 2018)

CuO Zea mays,
Oryza sativa

At a dosage of 2000 mg/L,
maize and rice showed 95% and
97% inhibition in root
length, respectively.

(Yang
et al., 2015)

CuO Brassica rapa Sugar and pigment production
during photosynthesis
was decreased.

(Chung
et al., 2019)

CuO Oryza sativa Reduced water uptake by aerial
parts and roots, grain
yield decreased

(Peng
et al., 2017)

TiO2 Oryza sativa Low water absorption was seen
in the root and aerial sections,
which significantly reduced
grain output.

(Du et al., 2017)

TiO2 Cannabls
sativa, var.
capitata,

Avena sativa,
Lactuca
sativa,

Allium cepa

Root development was impeded
in the cases of oat, corn,
cabbage and lettuce, while
soybean and cucumber
germination was diminished.

(Andersen
et al., 2016)

TiO2 Zea mays Suppression of root and shoot
development as well as
prevention of germination.

(Fellmann and
Eichert, 2017)

TiO2 Oryza sativa Reduced biomass and changes
to the antioxidant
defence systems.

(Wu et al., 2017)

Al2O3 Sinapis alba All concentrations had a
negative impact on
seed germination.

(Landa
et al., 2016)

Al2O3 Triticum
aseivum

The synthesis of anthocyanin
and photosynthetic pigments
decreased as the H2O2
level rose.

(Yanık and
Vardar, 2015)

Au Hordeum
vulgare

Reduced, leaf and root lengths,
fresh plant biomass and
necrotic and yellow roots
and leaves.

(Feichtmeier
et al., 2015)

Au Nicotiana
xanthi

Caused biotoxicity and the
development of necrotic lesions
on leaves.

(Wang
et al., 2023)
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6.2 Oxidative damage of nanoparticles

The increasing antioxidant enzyme activity is an indirect

indication of increased cellular ROS levels. The plants containing

NPs can protect biological components from oxidative stress by

using phenols and phenolic acids (Yasur and Rani, 2013). Wang

et al. (2011) investigated the effects of Fe3O4 NPs on cushaw

pumpkin and ryegrass plants. They investigated how these NPs

affected the production of ROS, which affected membrane stability.

According to other research, releasing copper ions or copper oxide

NPs might cause oxidative stress (Nair and Chung, 2015).

Nevertheless, the solubilization of copper oxide NPs within

plant cells leads to the subsequent release of copper ions.

Consequently, a redox process involving both Cu2+ and Cu+

ions leads to oxidative damage (Shi et al., 2011). Lipid

peroxidation was shown to be primarily caused by ROS, which

is produced by the Fenton reaction due to the existence of

polyvalent CuO NPs (Fubini et al., 2007). Panda et al. (2011)

supervised a study on Allium cepa and examined the formation of

certain ROS, including superoxide radicals (O2%-) and H2O2.

They discovered that the presence of silver NPs caused these

reactive species levels to rise, which caused an oxidative burst in

the plant. According to Atha et al. (2012), copper oxide NPs were

discovered to cause DNA harm and prevent growth in radishes,

and annual ryegrass. The association between titanium oxide NPs

and DNA and the underlying mechanism causing DNA damage

in onion and tobacco have been shown through the use of atomic

force microscope imaging (Ghosh et al., 2010). Mukherjee et al.

(2014) examined the membrane damage produced by zinc oxide

NPs in Pisum sativum and observed a comparatively higher level

of lipid peroxidation in plants exposed to NPs evaluated to the

control (non-treated) plants. The study also reported that Pisum

sativum plants treated to zinc oxide NPs produced an excessive

amount of hydrogen peroxide (H2O2).

Dimkpa et al. (2012) carried out research to evaluate the

promising impacts of CuO and ZnO NPs. The study showed a

rise in lipid peroxidation levels and reduced chlorophyll content,

indicators of oxidative stress. Compared to the corresponding

control groups, the incidence of copper oxide NPs in wheat

induced a nearly four-fold increase in lipid peroxidation, whereas

the existence of ZnO NPs resulted in a two-fold increase. It was

shown that cerium oxide NPs had an adverse effect on asparagus

lettuce, causing membrane degradation, lipid peroxidation, cell

membrane impairment, and inhibiting root elongation (Cui et al.,

2014). Marusenko et al. (2013) they stated a decrease in chlorophyll

content in A. thaliana plants when subjected to Fe NPs. Faisal et al.

(2013) examined that NiO nanoparticle treatment of tomato plants

caused oxidative stress to be induced in their roots. Additionally,

flow cytometry analysis found that the protoplasts had a greater

level of oxidative stress production. Higher levels of enzymes like

CAT and SOD were associated with increased reactive stress. Shaw

and Hossain (2013) demonstrated that copper oxide NPs affected

both root and shoot development as well as photosynthetic system

in Hordeum vulgare.
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6.3 The impacts of NPs on human health
and the environment

NPs are being used at an exponential rate; however, it’s

important to remember that there may be harmful and

toxicological impacts on environment and human health. NPs

have the potential to be released into the environment through

several processes, including manufacture, use, recycling, or disposal.

These NPs may linger in biological systems, soil, water, or the air

(Roy et al., 2014). NPs can enter the body of a person or an animal

by skin contact, oral ingestion, or inhalation through the respiratory

system, then spread to other bodily compartments. The activation

of pro-inflammatory cytokines and chemokines upon exposure to

NPs was discovered to result in the recruitment of inflammatory

cells, which affects the immune system’s homeostasis and can cause

autoimmune, allergy, or malignant illnesses (Roy et al., 2014).

Additionally, breathing in or exposure to ultrafine particles has

been linked to several respiratory, cardiovascular, and central

nervous system problems (Joudeh and Linke, 2022). Similarly,

NPs can penetrate plant cells and have negative effects (Stark,

2011). For example, zinc oxide (ZnO) and aluminum (Al) NPs

have been discovered to hinder the development of plant roots (Lin

and Xing, 2007). Numerous NPs have been studied for their

potential to cause immunological and cellular damage. The effect

of NPs on human health has been examined using in vitro toxicity

assessment models, such as cell cultures that include cancer cell

lines. However, a substantial body of research on the impacts of

nanomaterials on human health and the environment reveals that

metal NPs can cause cytotoxic effects, which are determined by their

charge (Pande and Arora, 2019). NPs can increase their toxicity at

the nanoscale level by interacting electrostatically with biological

membranes and various cellular metabolites in the cytoplasm

(Prasad et al., 2017). According to research, when exposed to

light and molecular oxygen, certain photochemically active NPs,

including fullerenes, ZnO, SiO2, and TiO2, can directly transfer

electrons to produce reactive oxygen species such as superoxide

radicals. The result might be oxidative stress (Nayan et al., 2016).
7 Conclusion and future thrusts

Currently, the use of NPs is constantly growing and becoming

indispensable in many industries, including agriculture. For

sustainable agriculture, we need ecologically acceptable solutions

to crop yield decline caused by drought and salt stress. Intensive

research is underway to explore the possible role of various NPs in

mitigating damage caused by drought and salinity stress to enhance

plant development and crop yield. Due to their tiny size, NPs may

easily enter plant tissues and have a favorable effect on morphology,

physiology, and biochemistry of plant, promoting plant growth and

increasing agricultural output, especially under drought and salinity

stress situations. Moreover, the application of NPs greatly increases

plant functioning and offers tremendous resilience to plants,

enabling them to tolerate drought and salt stress efficiently. The
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application of NPs enhances membrane integrity, nutrient

absorption, and defends the plant’s photosynthetic system from

injury produced by salt and drought stress, subsequent augmenting

plant development in these challenging circumstances. The

utilization of NPs also enhances the production of phenolic

compounds and hormones that protect plants from stress. The

expression of antioxidant and stress-responsive genes is also

increased by NPs, which considerably strengthens the defense

mechanism against salinity and drought stress. The function of

NPs in aiding numerous processes to promote resilience to drought

and salt stress has recently been the subject of substantial

investigation. The use of NPs in crop development and

sustainable agriculture is still nascent, and the existing research in

this field lacks consistency and is insufficient. The impact of NPs on

seed germination remains unexplored, highlighting the need to

investigate their role in germination mechanisms, encompassing

water uptake, radical protrusion, and activation of enzymes

responsible for food mobilization. Furthermore, it is critical to

investigate how NPs affect their metabolic functions because

gibberellins and abscisic acids are essential for seed germination.

NPs enhance nutrient absorption in plants under drought and

salinity stress, but further research is required to fully understand

their function in nutrient channels and ionic transporters in plants

under such stresses. The treatment of NPs substantially protects the

photosynthetic apparatus, but further research is needed to

determine how they affect stomata motions, anion channel

control, and intercellular signaling in guard cells of plants under

salinity and drought stress. The investigations on the effects of NPs

on proteome may be advantageous to understand better the

numerous processes by which NPs promote drought and salinity

tolerance. The impacts of NPs on genetic and proteomic parameters

have not received enough attention, underlining the need to

investigate these topics in future studies. The synergistic potential

of combining microorganisms with NPs to promote drought and

salinity tolerance also constitutes an interesting research direction.

Additionally, understanding the interactions between NPs and

plants would help us understand how plants cope with drought

and salt. The timing and content of NPs under diverse climatic

circumstances must be optimized to meet the unique needs of

distinct crops. While the bulk of research focuses on the impacts of

NPs on plants under salt and drought stress, it is critical to examine

the influence of NPs on plants exposed to various stressors at altered

times throughout their life cycle.
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M., Peralta-Videa, J. R., et al. (2015). Comparative phytotoxicity of ZnO NPs, bulk
ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium
meliloti in soil. Sci. Total Environ. 515, 60–69. doi: 10.1016/j.scitotenv.2015.02.014

Behboudi, F., Tahmasebi Sarvestani, Z., Kassaee, M. Z., Modares Sanavi, S., Sorooshzadeh,
A., and Ahmadi, S. B. (2018). Evaluation of chitosan nanoparticles effects on yield and yield
components of barley (Hordeum vulgare L.) under late season drought stress. J. Water
Environ. Nanotechnology 3, 22–39. doi: 10.22090/jwent.2018.01.003

Behboudi, F., Tahmasebi-Sarvestani, Z., Kassaee, M. Z., Modarres-Sanavy, S.,
Sorooshzadeh, A., and Mokhtassi-Bidgoli, A. (2019). Evaluation of chitosan
nanoparticles effects with two application methods on wheat under drought stress. J.
Plant Nutr. 42, 1439–1451. doi: 10.1080/01904167.2019.1617308
Frontiers in Plant Science 17
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