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Abstract. In coastal zones, a major objective of groundwater
management is often to determine sustainable pumping rates
which avoid well salinization. Understanding how model and
climate uncertainties affect optimal management solutions is
essential for providing groundwater managers with informa-
tion about salinization risk and is facilitated by the use of
optimization under uncertainty (OUU) methods. However,
guidelines are missing for the widespread implementation of
OUU in real-world coastal aquifers and for the incorporation
of climate uncertainty into OUU approaches. An ensemble-
based OUU approach was developed considering parameter,
observation and climate uncertainty and was implemented in
a real-world island aquifer in the Magdalen Islands (Quebec,
Canada). A sharp-interface seawater intrusion model was de-
veloped using MODFLOW-SWI2 and a prior parameter en-
semble was generated containing multiple equally plausi-
ble realizations. Ensemble-based history matching was con-
ducted using an iterative ensemble smoother which yielded
a posterior parameter ensemble conveying both parameter
and observation uncertainty. Sea level and recharge ensem-
bles were generated for the year 2050 and were then used
to generate a predictive parameter ensemble conveying pa-
rameter, observation and climate uncertainty. Multi-objective
OUU was then conducted, aiming to both maximize pumping
rates and minimize the probability of well salinization. As a
result, the optimal trade-off between pumping and the prob-
ability of salinization was quantified considering parameter,
historical observation and future climate uncertainty simul-

taneously. The multi-objective, ensemble-based OUU led to
optimal pumping rates that were very different from a previ-
ous deterministic OUU and close to the current and projected
water demand for risk-averse stances. Incorporating climate
uncertainty into the OUU was also critical since it reduced
the maximum allowable pumping rates for users with a risk-
averse stance. The workflow used tools adapted to very high-
dimensional, nonlinear models and optimization problems to
facilitate its implementation in a wide range of real-world
settings.

1 Introduction

Seawater intrusion is a major challenge for groundwater
management in coastal zones, which are under pressure due
to population growth, sea level rise and changes in cli-
mate (Michael et al., 2017; Jiao and Post, 2019). Numeri-
cal models are often relied on to support groundwater man-
agement using either advective–dispersive solute transport
codes, which simulate mixing between freshwater and salt-
water and are computationally demanding, or sharp-interface
codes, which consider freshwater and saltwater to be immis-
cible but have significantly shorter simulation times. These
numerical models can provide insight into freshwater avail-
ability under current and projected conditions and are fre-
quently combined with optimization algorithms to deter-
mine sustainable pumping rates which avoid well saliniza-
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tion (Ketabchi and Ataie-Ashtiani, 2015). To provide infor-
mation to groundwater managers about salinization risk, op-
timizations in coastal zones should recognize the uncertainty
in model predictions (Werner et al., 2013). However, be-
cause of the high computational costs associated with both
advective–dispersive solute transport models and stochas-
tic uncertainty quantification, optimization under uncertainty
(OUU) approaches have mostly been implemented in syn-
thetic or simplified real-world cases (Rajabi and Ketabchi,
2017; Mostafaei-Avandari and Ketabchi, 2020). Guidance is
missing for the implementation of OUU in real-world coastal
settings (Ketabchi and Ataie-Ashtiani, 2015).

Real-world coastal OUU applications have generally used
advective–dispersive solute transport models in combina-
tion with surrogate models, evolutionary algorithms and
stochastic uncertainty quantification accounting for the un-
certainty of a few model parameters (e.g., between 2 and
11 parameters in Sreekanth and Datta, 2014; Rajabi and
Ketabchi, 2017; Lal and Datta, 2019; Mostafaei-Avandari
and Ketabchi, 2020; Han et al., 2021). These applications
were also not systematically preceded by parameter estima-
tion (i.e., automated calibration). However, accounting for
model parameter uncertainty accurately and robustly can
require very high numbers of parameters (White, 2018).
Furthermore, conducting data assimilation prior to OUU
is essential, since it allows one to update parameter un-
certainty estimates with observation uncertainty. In Coulon
et al. (2022), the real-world OUU approach used a sharp-
interface model, sequential linear programming (SLP) and
first-order-second-moment (FOSM) uncertainty analysis ac-
counting for both parameter and observation uncertainty
(including 60 parameters and 162 observations). The ap-
proach was preceded by parameter estimation (Coulon et al.,
2021) conducted using the widely used Gauss–Levenberg–
Marquardt (GLM) algorithm. However, the GLM and SLP
algorithms can be computationally costly to apply in very
highly parameterized and nonlinear models, which can limit
the implementation of this workflow in other coastal set-
tings. Furthermore, FOSM-based uncertainty analysis relies
on strong assumptions about model linearity and Gaussian
distributions of uncertainty and therefore can only provide
approximations of model predictive uncertainty. Stochastic,
ensemble-based approaches are needed to provide more re-
liable uncertainty estimates. Developing an ensemble-based
approach for coastal OUU adapted to highly parameter-
ized, nonlinear models would facilitate the implementation
of OUU methods in real-world coastal settings.

Coupling climate uncertainty with model parameter uncer-
tainty and understanding the consequences for groundwater
management was identified as a prospective topic of seawa-
ter intrusion research (Werner et al., 2013). However, cur-
rent OUU approaches have only considered parameter uncer-
tainty (e.g., in hydraulic conductivity, recharge, porosity and
longitudinal dispersivity – Mostafaei-Avandari and Ketabchi,
2020), while climate change projections were incorporated

into optimizations as discrete scenarios (e.g., optimization
under a projected sea level rise scenario or under four pro-
jected recharge scenarios in Roy and Datta, 2018, and Zhao
et al., 2021, respectively). The uncertainty associated with
climate projections has therefore not been considered, al-
though in the field of hydrology, climate uncertainty is often
evaluated using ensembles of climate projections (Mustafa
et al., 2019; Al Atawneh et al., 2021). Generating ensembles
of climate projections and combining them with model pa-
rameter ensembles, within an OUU framework, would enable
evaluation of the coupled impacts of climate and parameter
uncertainty on groundwater management solutions and lead
to more robust decision-making.

The objective of this study was to provide a framework
for stochastic, ensemble-based pumping optimization under
uncertainty in an island aquifer, considering parameter, his-
torical observation and future climate uncertainty and using
methods adapted to very high-dimensional, nonlinear mod-
els. An ensemble-based framework was implemented using a
sharp-interface modeling approach. A sharp-interface model
was first built using MODFLOW-SWI2 (Bakker et al., 2013),
after which ensemble-based history matching was conducted
using the iterative ensemble smoother PESTPP-IES (White,
2018). Sea level and recharge climate ensembles were gen-
erated for the year 2050 and incorporated into the model pa-
rameter ensemble. Multi-objective optimization under uncer-
tainty was then conducted via PESTPP-MOU (White et al.,
2022) using the ensemble to account for uncertainty in the
simulated response to groundwater extraction within the op-
timization process. Results were compared to both the cur-
rent water demand and water demand projections for the
year 2050. This workflow was applied to a real-world is-
land aquifer in the Magdalen Islands (Quebec, Canada) and
was entirely scripted in Python to enhance the transparency
and reproducibility of the analyses (e.g., White et al., 2020a;
Fienen and Bakker, 2016).

2 Study area

The island of Grande Entrée forms part of the Magdalen
Islands archipelago, which is located in the middle of the
Gulf of Saint Lawrence (Fig. 1). Fresh groundwater is the
only source of drinking water for the sparsely populated is-
land communities and is contained in a lens overlying saline
groundwater. The pumping wells of the water supply system
are at risk of salinization, since freshwater abstraction leads
to the upward migration of saline groundwater towards the
wells, a process called saltwater upconing. Deterministic pa-
rameter estimation and SLP–FOSM-based OUU approaches
were previously implemented on Grande Entrée to determine
maximum pumping rates which avoid well salinization con-
sidering parameter and observation uncertainty and current
climate conditions (Coulon et al., 2021, 2022). This study de-
tails the implementation of the ensemble-based approach for
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Figure 1. Map view of the Grande Entrée numerical model with the seaward extent, geological formations and locations of pilot points,
model observations (including electrical resistivity tomography and time-domain electromagnetic surveys) and pumping wells (domestic
wells not shown). The boundary conditions implemented in MODFLOW are a uniform recharge rate on land cells (RCH package), general
head boundary conditions for sea cells (GHB package) and groundwater pumping at municipal wells (MNW2 package). Modified from
Coulon et al. (2022).

history matching and multi-objective (MO) OUU and the in-
corporation of climate uncertainty (specifically, sea level and
recharge uncertainty) into the pumping optimization. Opti-
mization results of the MO-ensemble approach are compared
to those of the SLP–FOSM approach.

A detailed description of the study area is available in
Coulon et al. (2021). The geology is comprised of a highly
permeable and heterogeneous Permian sandstone (Fig. 1)
along with Quaternary sand dunes and glacial sediments
(mostly fine sand). A spatially distributed recharge represen-
tative of the period 1989–2019 was generated for the Mag-
dalen Islands archipelago by Lemieux et al. (2022) using a
SWB2 groundwater recharge model (Soil-Water-Balance-2,
Westenbroek et al., 2018). A spatial average of 524 mm yr−1

was determined for the whole archipelago, and 559 mm yr−1

was applied for the island of Grande-Entrée specifically. Us-
ing quadratic regression and extrapolation of the Magdalen
Islands’ tide gage data, Barnett et al. (2017) projected a me-
dian relative sea level rise of 0.19 m for the archipelago be-

tween 2020 and 2050 assuming a normal probability distri-
bution for the 2050 projected sea level and a standard devi-
ation of 0.11 m. Nine municipal pumping wells are located
in the Permian sandstone formation, providing freshwater to
approximately 2800 inhabitants and to the commercial, in-
dustrial and institutional sectors since 2013. Between 2014
and 2020, the mean water demand in the network was ap-
proximately 93 m3 d−1. A median water demand projection
of 94 m3 d−1 was estimated for the year 2050, with a range
of possible values between 76 and 115 m3 d−1, showing no
significant evolution in water demand but uncertainty in the
projections (Lemieux et al., 2022).

3 Methods

3.1 Numerical model

A sharp-interface, 2D horizontal model with a 20 m× 20 m
grid was developed using the SWI2 package (Bakker et al.,
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2013) for MODFLOW-2005 (Harbaugh, 2005), which simu-
lates vertically integrated variable-density groundwater flow
but does not account for hydrodynamic dispersion. Within
the single model layer, the groundwater was divided into a
freshwater zone and a saltwater zone separated by an inter-
face representing the 50 % seawater salinity contour. The nu-
merical model is described in detail by Coulon et al. (2021).
A general head boundary condition was implemented in the
offshore cells to convert the sea level into equivalent fresh-
water heads at the seabed (Bakker et al., 2013), and a uniform
recharge rate was implemented on all the land cells (Fig. 1).
Municipal groundwater pumping was simulated using the
MNW2 (Multi-Node Well) package (Konikow et al., 2009)
to assimilate water levels (Coulon et al., 2021) and to cal-
culate optimization constraints (Coulon et al., 2022). While
domestic pumping was also simulated (Coulon et al., 2021),
in the rest of the paper the term “pumping wells” will refer
to the municipal pumping wells only. The hydraulic conduc-
tivity field was parameterized using a combination of pilot
points and zones of piecewise constancy (Doherty, 2003). As
part of the pilot point parameterization, ordinary kriging was
used to interpolate grid cell values from pilot point locations
to the model cells. A homogeneous transverse dispersivity
was implemented as a correction factor for the sharp interface
(Coulon et al., 2021), while two additional parameters, longi-
tudinal dispersivity and the initial transition zone width, were
used in the calculation of the optimization constraint (Coulon
et al., 2022). Apart from recharge, whose prior value was up-
dated with the Lemieux et al. (2022) estimates (Sect. 2), all
the model parameters were assigned prior values and ranges
equal to those in Coulon et al. (2021, 2022) based on field
measurements and the existing literature and assuming nor-
mal or lognormal probability distributions (Table 1). This al-
lowed for the comparison between the previous SLP–FOSM
approach and the current MO-ensemble approach.

3.2 Ensemble-based history matching

Instead of adopting a deterministic approach, which seeks the
minimum error variance parameter set resulting in the best fit
to observations, an ensemble-based approach was selected in
which multiple, equally plausible realizations of parameter
sets were generated (i.e., a parameter ensemble) and carried
forward into the analyses (Anderson et al., 2015). The fol-
lowing definitions will be used throughout the paper. A re-
alization is a parameter set; collectively, many realizations
form a parameter ensemble. The prior parameter ensemble is
the set of realizations that is generated prior to history match-
ing using only expert knowledge to define the statistical dis-
tributions of parameters. The posterior parameter ensemble
is the set of realizations obtained after history matching (i.e.,
the prior parameter ensemble updated by observations). The
predictive parameter ensemble is the set of realizations ob-
tained after incorporating climate ensembles into the poste-
rior parameter ensemble, all other aquifer parameters remain-

Figure 2. Summary of the ensemble-based workflow. An ensemble
represents a sample of the probability distribution function (PDF).
After generating a prior parameter ensemble by drawing from prior
parameter PDFs, (1) ensemble-based history matching yielded a
posterior parameter ensemble; (2) a predictive parameter ensemble
was obtained by updating the posterior parameter ensemble with
year 2050 sea level and recharge projections; and (3) optimization
under uncertainty was conducted using both the posterior and pre-
dictive parameter ensembles to obtain maximum allowable pump-
ing rates considering parameter and observation uncertainty and ei-
ther neglecting or accounting for climate projections, respectively.

ing constant (i.e., the posterior parameter ensemble updated
by climate projections). The size of an ensemble corresponds
to the number of realizations comprising the ensemble. The
term “ensemble” is used in line with the PEST++ terminol-
ogy (White et al., 2020b) and has the same meaning as the
term “stack” commonly used in the OUU literature (Bayer et
al., 2008). Figure 2 summarizes the ensemble-based frame-
work that was developed.

Fifty-eight model parameters were considered to be ad-
justable, including 56 hydraulic conductivity values, a uni-
form recharge rate and a homogeneous transverse dispersiv-
ity (Sect. 3.1). Nprior random realizations were drawn from
the prior probability distribution functions (PDFs) of these
parameters (Table 1), assuming they could be described by
multi-Gaussian distributions and using a prior parameter co-
variance matrix. It was assumed that all the parameters were
statistically independent, except for the pilot point param-
eters, which were spatially correlated. To describe the spa-
tial correlation between the hydraulic conductivities at pilot
point locations, an exponential variogram with a range equal
to 3 times the pilot point spacing (i.e., 500 m) was used. We
note that parameters varying over several orders of magni-

Hydrol. Earth Syst. Sci., 28, 303–319, 2024 https://doi.org/10.5194/hess-28-303-2024



C. Coulon et al.: An ensemble-based approach for pumping optimization in an island aquifer 307

Table 1. Prior parameter probability distributions of the uncertain model parameters, assumed to be normal or lognormal, described by the
mean and the 95 % confidence interval (i.e., the mean ±2 times the standard deviation).

Mean 95 % confidence interval

Ksand dunes (m s−1) 5× 10−3 5× 10−5–5× 10−1

Ksandstones (m s−1) (offshore)
4× 10−5 3× 10−6–6× 10−4

Ksandstones (m s−1) (52 pilot points)

Kglacial sediments (m s−1) 1× 10−5 1× 10−7–1× 10−3

Kseabed (m s−1) 2× 10−5 2× 10−7–2× 10−3

Transverse vertical dispersivity αT (m) 1× 10−1 1× 10−3–10

Recharge (mm yr−1) 560 360–760

Initial transition zone width M (m) 8 5–11

Longitudinal dispersivity αL (m) 3 1–5

tude were all log-transformed. The prior parameter ensemble
represented a sample of the prior parameter PDF (Fig. 2).
Several constant model parameters were included in this en-
semble and remained fixed during history matching, includ-
ing the sea level, longitudinal dispersivity αL and the initial
width of the transition zone M (Table 2). The dispersivity
αL and transition zone width M were fixed during history
matching but were adjustable during optimization to be con-
sistent with the previous SLP–FOSM approach and to enable
a comparison between both approaches.

Ensemble-based history matching was then conducted us-
ing PESTPP-IES (White, 2018), which implements an itera-
tive ensemble smoother form of the GLM algorithm (Chen
and Oliver, 2013). PESTPP-IES was selected because it
enables history matching of highly parameterized models
with a significantly lower computational effort than sampling
methodologies such as Markov chain Monte Carlo. History
matching was implemented in a Bayesian framework using
the assumptions of multivariate Gaussian prior and posterior
distributions. Over successive iterations, PESTPP-IES con-
ditioned the prior parameter ensemble with the information
contained in 20 freshwater head observations (extracted from
shallow wells, deep open wells and pumping wells) and 142
freshwater–seawater interface elevation observations (de-
rived from deep open wells, TDEM and ERT geophysical
surveys, Fig. 1) by minimizing a model-to-measurement fit
objective function. Observations were paired with random re-
alizations of measurement noise, and the least-squares objec-
tive function was calculated as the sum of squared weighted
differences between simulated and observed data (PEST++
Development Team, 2022). PESTPP-IES was limited to two
iterations as an optimal trade-off between parameter poste-
rior variance and fit to observations (Fienen et al., 2022). De-
tails on the observation dataset and the measurement noise
are provided by Coulon et al. (2021). History matching was
conducted under steady-state conditions using long transient

(500-year) simulations with constant boundary conditions
(i.e., sea level, recharge and pumping rates) representative
of the average conditions during the 2014–2019 calibration
period. The simulations were run until heads and interface
elevations close to pumping wells were stable, which was
achieved within 500 years. The model simulation times were
approximately 8 min on a laptop computer (1.9 GHz Intel
Core i7®). History matching yielded a posterior parameter
ensemble of size Npost representing a sample of the posterior
parameter PDF (Fig. 2). Npost is usually less than or equal to
Nprior, since the parameter realizations resulting in model run
failures and/or excessive simulation times are removed from
the parameter ensemble during history matching. Running
model simulations through the posterior parameter ensemble
yielded posterior prediction ensembles, representing samples
of the posterior prediction PDFs (Fig. 2) and conveying pa-
rameter and observation uncertainty for current conditions.

3.3 Incorporating climate projections

The sea level and recharge ensembles contained in the pos-
terior parameter ensemble were representative of the 2014–
2019 calibration period (Table 2). To make model predictions
for the year 2050 while accounting for climate projections,
the ensembles were replaced with year 2050 sea level and
recharge ensembles (Fig. 2). The climate change predictive
simulations were then conducted under steady-state condi-
tions, with boundary conditions representative of the 2050
sea level and recharge conditions. All the predictive simula-
tions were conducted under steady-state conditions because
the storage parameters were unconstrained by the history
matching and therefore remained highly uncertain. Running
model simulations through the predictive parameter ensem-
ble yielded prediction ensembles for the year 2050 conveying
parameter, observation and climate uncertainty.
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Table 2. Prior, posterior and predictive parameter ensembles, described by the ensemble size, the mean and the 5th–95th percentile range.
Statistics of the prior parameter ensemble are not identical to those of the prior parameter PDFs, because ensembles represent a sample
of probability distributions. During history matching, the sea level, M and αL were fixed to constant values. The recharge and sea level
ensembles were updated in the predictive parameter ensemble. For the OUU, M and αL were considered uncertain in both the posterior and
predictive parameter ensembles. The percentile range of the pilot point hydraulic conductivities is not reported since it is different for each
pilot point.

Prior parameter Posterior parameter Predictive parameter
ensemble (size Nprior) ensemble (size Npost) ensemble (size Npost)

Parameter Mean 5th–95th percentiles Mean 5th–95th percentiles Mean 5th–95th percentiles

Ksand dunes (m s−1) 4× 10−2 1× 10−4–3× 10−1 7× 10−3 9× 10−5–4× 10−2

Ksandstones (m s−1) (offshore) 7× 10−5 4× 10−6–2× 10−4 1× 10−4 2× 10−5–5× 10−4

Ksandstones (m s−1) (52 pilot points) 8× 10−5 – 2× 10−4 – Identical to the posterior

Kglacial sediments (m s−1) 8× 10−5 1× 10−7–4× 10−4 5× 10−5 5× 10−7–2× 10−4 ensemble

Kseabed (m s−1) 2× 10−4 4× 10−7–1× 10−3 1× 10−5 4× 10−6–3× 10−5

Transverse vertical dispersivity αT (m) 9× 10−1 2× 10−3–5 2× 10−2 2× 10−3–5× 10−2

Recharge (mm yr−1) 547 371–696 572 444–695 574 344–826

Sea level (m a.s.l.) 0.014 – (fixed) 0.014 – (fixed) 0.21 0.052–0.39

Initial transition zone width M (m) 8 – (fixed) Identical to the prior ensemble for 8 6–10
history matching to the predictive

Longitudinal dispersivity αL (m) 3 – (fixed) ensemble for OUU 3 1–5

3.3.1 Sea level ensemble

The reference elevation used for the numerical model was
the local mean sea level of the Magdalen Islands (Lemieux
et al., 2022), and therefore the term “meters above sea level”
(or “m a.s.l.”) is used in reference to this elevation. Using the
relative sea level rise projections for the study area (Sect. 2)
and the current sea level (0.014 m a.s.l.), a 0.204 m a.s.l. mean
sea level was expected for 2050, with a normal distribution
and a standard deviation of 0.11 m. Npost realizations were
drawn from this probability distribution, from which values
above 0 m a.s.l. were truncated, to generate a sea level ensem-
ble for the year 2050. The current sea level used in the poste-
rior parameter ensemble was replaced by the 2050 sea level
ensemble in the predictive parameter ensemble (Table 2).

3.3.2 Recharge ensemble

Seventy-two projections of daily precipitation and minimum
and maximum air temperature were provided by the OURA-
NOS consortium for the Magdalen Islands for the period
2021–2050 (Charron, 2016). These resulted from three emis-
sion scenarios (the representative concentration pathways
RCP2.6, RCP4.5 and RCP8.5) being run through an ensem-
ble of 24 global climate models (GCMs) of the Coupled
Model Intercomparison Project – Phase 5 (CMIP5). These
72 climate projections were run through the SWB2 ground-
water recharge model developed by Lemieux et al. (2022) for
the Magdalen Islands (Sect. 2) assuming a constant land use,

which generated 72 daily recharge projections for the period
2021–2050 (Fig. 3a).

A recharge ensemble for the year 2050 was then ex-
tracted (R2050,SWB2), containing 72 plausible recharge pro-
jections for 2050 generated by a physically based ground-
water recharge model (Sect. 2) and conveying climate uncer-
tainty (specifically, the uncertainty in future emission scenar-
ios and the intermodel uncertainty of the GCMs) (Fig. 3b).
History matching yielded a current recharge ensemble
(Rcurrent, MODFLOW) containing Npost plausible recharge in-
puts for the groundwater model (both informed by the obser-
vation dataset and incorporating possible correlations with
the hydraulic conductivity parameters) and conveying pa-
rameter and observation uncertainty. The information con-
tained in both ensembles needed to be merged to obtain a
2050 recharge ensemble (R2050,MODFLOW) containing Npost
plausible recharge inputs for the groundwater model, pre-
serving the information acquired through history matching
(i.e., fit to observations, parameter correlations) but also ac-
counting for future climate projections and therefore convey-
ing parameter, observation and climate uncertainty.

A 1R ensemble was first generated containing 72 possi-
ble recharge variations between current conditions and 2050,
i.e., 72 possible perturbations to current recharge conditions
(Fig. 3c), by subtracting the average current recharge value
estimated by SWB2, Rcurrent,SWB2 (Sect. 2), from each of
the projections in the R2050,SWB2 ensemble:

1R = R2050,SWB2−Rcurrent,SWB2. (1)
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Figure 3. Processing of the climate ensembles generated by the SWB2 groundwater recharge model: (a) SWB2 recharge projections for
2021–2050; (b) R2050,SWB2 ensemble extracted in 2050 (72 realizations); (c) 1R ensemble obtained by subtracting Rcurrent,SWB2 from
R2050,SWB2 (72 realizations); (d)1R ensemble resampled toNpost realizations (i.e., the size of the posterior parameter ensemble) assuming
a normal distribution. In panels (b), (c) and (d), the data points, mean values (bold black circles) and box plots are superimposed onto the
violin plots.

The 1R ensemble was resampled to Npost realiza-
tions assuming a normal distribution (Fig. 3d). The
1R and Rcurrent,MODFLOW realizations were then randomly
paired together to generate the R2050,MODFLOW ensemble:

R2050,MODFLOW = Rcurrent,MODFLOW+1R. (2)

The Rcurrent,MODFLOW ensemble contained in the posterior
parameter ensemble was replaced by R2050,MODFLOW in
the predictive parameter ensemble (Table 2). The relative
changes in projected recharge (1R) were therefore used
rather than absolute recharge projections (R2050,SWB2). One
of the major assumptions of this approach was that the
recharge perturbations 1R are uncorrelated with the current
recharge value. The sea level and recharge projections for the
year 2050 were also assumed to be independent.

3.4 Optimization using ensemble-based uncertainty

The primary objective of the optimization was to maximize
pumping rates in the well field while avoiding well saliniza-
tion due to upconing. Salinization occurred if the 1 % seawa-
ter salinity contour simulated under the well (ζ1 %), referred
to as the optimization constraint, reached the well bottom
elevation (zbotm). ζ1 % was obtained by postprocessing the
50 % seawater salinity contour simulated by the groundwa-
ter model (ζ50 %), which introduced two new uncertain pa-
rameters, i.e., longitudinal dispersivity (αL) and the initial
width of the transition zone (M) (see Coulon et al., 2022,
for more details). An additional objective was introduced

to the optimization problem, i.e., maximization of reliabil-
ity, effectively converting the single-objective optimization
into a reliability-based, two-objective optimization (Deb et
al., 2007). In an ensemble-based framework, running a single
pumping scenario through a parameter ensemble generates a
constraint ensemble in which the constraints can be satisfied
(i.e., well salinization is avoided) for a fraction of the real-
izations, while constraints are violated (i.e., well salinization
has occurred) in the others. The reliability Re is the probabil-
ity of the constraints being satisfied in all of the realizations
in the ensemble (Bayer et al., 2008), i.e., the probability of
avoiding well salinization simultaneously for all the wells;
100 – Re represents the probability of well salinization. Mul-
tiple optimal pumping scenarios can be determined for dif-
ferent reliability values, depending on the degree of tolerance
towards risk (Fig. 4). The OUU was mathematically formu-
lated as a constrained two-objective optimization.

Maximize Qtotal =

n∑
i

Qi (i = 1, . . .,n) (3)

Maximize Re = P(ζ1 %i ≤ zbotm i) (i = 1, . . .,n) (4)
Subject to ζ1 %i ≤ zbotm i (i = 1, . . .,n) (5)

and Qmin i ≤Qi ≤Qmax i (i = 1, . . .,n) (6)

Qtotal is the total pumping rate in the well field (m3 d−1),
n is the number of pumping wells (nine in total), Qi is the
pumping rate at each well i (m3 d−1), i.e., the decision vari-
ables of the optimization, Qmin i and Qmax i are the mini-
mum and maximum pumping rates at each well i, respec-
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tively (m3 d−1), Re is the reliability, ζ1 % i is the elevation of
the 1 % seawater salinity contour under each well i (m a.s.l.),
i.e., the optimization constraints, and zbotm i is the bottom el-
evation of well i (m a.s.l.). Wide Qmin i and Qmax i values
were set, which effectively removed the constraint presented
in Eq. (6).

Parameters M and αL, which had remained fixed during
history matching (Sect. 3.2), were considered to be uncer-
tain in the optimization (Coulon et al., 2022). Npost realiza-
tions were drawn from the prior PDFs ofM and αL (Table 1)
and were spliced into the posterior and predictive parameter
ensembles (Table 2). Long transient (500-year) initial sim-
ulations with no pumping were run through both parameter
ensembles to allow the freshwater lens to reach a steady-state
condition under the climate forcings and hydraulic properties
prescribed in each realization. The pumping optimization un-
der uncertainty was then conducted under steady-state condi-
tions using long transient (200-year) simulations to allow the
freshwater lens to reach a new steady state under the tested
pumping rates. The occurrence of well salinization was ex-
amined at the end of the 200-year simulation period. Model
simulation times were approximately 5 min on a laptop com-
puter (1.9 GHz Intel Core i7®).

The optimization problem was solved using the NSGA-II
nondominated-sorting genetic algorithm (Deb et al., 2002)
implemented in PESTPP-MOU (White et al., 2022) using
ensemble-based constraint uncertainty. PESTPP-MOU was
selected because it implements a wide range of evolutionary
algorithms, which are more effective than traditional opti-
mization methods when solving highly nonlinear optimiza-
tion problems typical of coastal environments (Ketabchi and
Ataie-Ashtiani, 2015). Its use required very little modifica-
tion to input files after having previously used the PEST++
software, and the reliability-based optimization could be
implemented using PESTPP-MOU’s “risk as an objective”
option (White et al., 2022). The NSGA-II algorithm has
been applied in many past coastal OUU studies (Mostafaei-
Avandari and Ketabchi, 2020) and uses a population-based
approach to identify the Pareto front, which is the optimal
trade-off surface between competing objectives (on which
any further improvement to one of the objectives results in
the reduction of another). The NSGA-II algorithm was im-
plemented using a population size of 30 and 150 genera-
tions. At each generation, PESTPP-MOU generated new in-
dividuals (i.e., new combinations of decision variables) from
the parent population using differential evolution (Storn and
Price, 1997), ranked all individuals according to their fitness
using the NSGA-II algorithm (Deb et al., 2002) and selected
the fittest individuals to be the new parent population for the
next generation (details in Fig. 5). The prediction ensemble
was evaluated for all individuals of the initial population, re-
evaluated every 10 generations (which each required a total
of 30×Npost model simulations) and reused in the interme-
diate generations, as a trade-off between uncertainty quantifi-
cation and computational constraints. In intermediate gener-

Figure 4. Schematic 1 % seawater salinity contour (ζ1 %) constraint
ensembles, represented by violin plots and box plots, resulting from
optimizations with reliabilities of (a) 95 %, (b) 50 % and (c) 5 %.
Panels (a), (b) and (c) correspond to probabilities of well salin-
ization of 5 % (risk-averse stance), 50 % (risk-neutral stance) and
95 % (risk-tolerant stance), respectively. Modified from Coulon et
al. (2022).

ations, each individual was mapped to the nearest individual
at which constraint PDFs had been previously evaluated, in a
minimum Euclidean distance sense, and the constraint PDFs
of the latter were translated to the former. This approach as-
sumes that individuals close to each other in decision vari-
able space have similar constraint PDFs (White et al., 2022;
PEST++ Development Team, 2022).

4 Results

4.1 History matching

As the number of realizations increases, the ensembles be-
come more representative of the PDFs that they sample, but
computational times increase. The most important factor in-
fluencing the outcome of the OUU procedure is whether the
statistical moments of the constraint ensembles have con-
verged relative to the ensemble size, since the probabilities
of constraint violation are directly used in the optimization
algorithm (Eqs. 4, 5). Analyzing the convergence of poste-
rior ζ50 % ensemble mean and standard deviation values as a
function of the prior ensemble size led to the selection of a
prior parameter ensemble containing 200 realizations. His-
tory matching required 977 model runs, which took 2 h using
50 cores at 2.3 GHz. During history matching (Sect. 3.2), 27
realizations were abandoned, resulting in a posterior param-
eter ensemble containing 173 realizations. The final model-
to-measurement fit objective function (Sect. 3.2) was in the
range of 1000–3300 with a mean value of 1250. An ac-
ceptable model-to-measurement misfit was obtained for both
freshwater heads (Fig. 6a) and freshwater–seawater interface
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Figure 5. Summary of the main steps undertaken in each generation of the optimization as a result of all the PESTPP-MOU parameters (in
green) being set to their default values (modified from Deb et al., 2002). The handling of chance constraints is not shown. More information
on differential evolution (DE) and the non-dominated sorting genetic algorithms NSGA-II and PESTPP-MOU can be found in Storn and
Price (1997), Deb et al. (2002) and PEST++ Development Team (2022), respectively.

elevations (Fig. 6b), and no prior data conflicts were ob-
served. These results were similar to those of the determinis-
tic parameter estimation conducted by Coulon et al. (2021),
which had yielded a final objective function of 1175 and sim-
ilar patterns in the simulated to observed scatter plots (e.g.,
an outlier in the municipal well dataset and biased freshwa-
ter head observations in deep wells). Hydrogeologically rea-
sonable values were obtained in the posterior parameter en-
semble, with the sand dunes generally more permeable than
the sandstones, which were in turn more permeable than the
glacial sediments (Table 2). Figure 7 presents a random sam-
ple of the 173 hydraulic conductivity fields obtained through
history matching together with the associated recharge val-
ues.

4.2 Incorporating climate projections

All projections in the year 2050 sea level ensemble were
greater than the current mean sea level (Fig. 8a), with a mean
projected sea level rise of 0.2 m and an uncertainty (rep-
resented by the standard deviation) of 0.1 m. The 1R en-
semble, i.e., the ensemble containing possible recharge vari-
ations between current conditions and 2050 (Sect. 3.3.2),

showed little to no evolution in the mean recharge (mean
value close to zero, Fig. 3c) but had a climate-related un-
certainty of 108 mm yr−1. As a consequence, the current
and 2050 recharge ensembles had very similar median val-
ues (less than 1 % variation, Fig. 8b), but the uncertainty of
the 2050 recharge ensemble increased by 86 % (from 78 to
145 mm yr−1). The ζ50 % ensembles obtained using the pos-
terior and predictive parameter ensembles, i.e., when neglect-
ing or accounting for climate projections, respectively, were
compared under steady-state conditions with zero pumping
(i.e., the pumping optimization initial conditions, Sect. 3.4).
Figure 9 shows the variability in the pumping optimization
initial conditions obtained with both ensembles. Both ensem-
bles had very similar median values (less than 0.5 % variation
on average, Fig. 9). However, the uncertainty of the poste-
rior ζ50 % ensembles increased significantly (on average by
114 %, from 4 to 8 m). When accounting for climate projec-
tions, some realizations in the predictive parameter ensemble
led to ζ50 % values reaching well bottom elevations, even with
zero pumping (e.g., at well nos. 7 and 8, Fig. 9).
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Figure 6. Scatter plots of observed vs. simulated data for (a) freshwater heads and (b) freshwater–seawater interface elevations. Each
observation corresponds to an ensemble of simulated values: the line extends from the minimum to maximum values, and the point represents
the mean. The 1 : 1 diagonal line represents equal simulated and observed data. The average MAE value (mean average error) for each
observation group is shown.

Figure 7. Examples of four realizations extracted from the posterior
parameter ensemble. Posterior hydraulic conductivity fields (K) and
the associated recharge values (R) are shown.

4.3 Optimization under uncertainty

The OUU procedure for the posterior and predictive param-
eter ensembles required approximately 89 000 and 86 000
model simulations, respectively, which took a total of 320 h
using 130 cores at 2.3 GHz; 34 and 35 Pareto optimal pump-
ing scenarios were identified. The Pareto front, or the opti-
mal trade-off between pumping and probability of well salin-
ization, was identified (Fig. 10), and the optimal allocation
of pumping in the well field was determined for a range of
probabilities of well salinization (Fig. 11). As the maximum
pumping rate in the well field (Fig. 10) and at individual
wells (Fig. 11) increased, the probability of well salinization
increased as well.

The results of the MO-ensemble approach (when neglect-
ing climate projections) were first compared to those of the
SLP–FOSM approach described in Coulon et al. (2022).
The maximum allowable pumping rates determined by the
MO-ensemble approach were lower for all but highly risk-
tolerant stances (Fig. 10), and the difference between both
approaches was largest at highly risk-averse stances. For ex-
ample, for a 6 % probability of well salinization, the MO-
ensemble approach found a maximum allowable pumping
rate of 98 m3 d−1 vs. 260 m3 d−1 for the SLP–FOSM ap-
proach. For risk-averse stances, the pumping rates at in-
dividual wells were generally lower (e.g., well nos. 1 and
5, Fig. 11). The MO-ensemble approach determined higher
probabilities of well salinization than the SLP–FOSM ap-
proach for equal values of total pumping in the well field. For
example, a 230 m3 d−1 pumping rate corresponded to a 25 %
probability of salinization using the MO-ensemble approach
vs. 2 % using the SLP–FOSM approach. In fact, the MO-
ensemble approach did not identify any pumping scenarios
with probabilities of salinization under 6 % (Fig. 10). Most
importantly, the most risk-averse pumping scenario found
by the MO-ensemble approach (98 m3 d−1) was on the same
order of magnitude as both the current and projected water
demands, whereas the SLP–FOSM approach systematically
found pumping scenarios far greater than the water demand.

The consequences of neglecting or accounting for climate
projections within the MO-ensemble approach were then ex-
amined. When climate projections were considered, the max-
imum allowable pumping rates were lower for risk-averse
stances (Fig. 10). Therefore, when considering climate pro-
jections, pumping rates needed to be lowered to conserve
identical probabilities of well salinization; for example, se-
lecting a 10 % probability of salinization required reducing
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Figure 8. Current vs. year 2050 projected (a) sea level and (b) recharge ensembles as implemented in either the posterior (blue) or predictive
(red) parameter ensembles. Data points, mean values (bold black circles) and box plots are superimposed on the violin plots.

Figure 9. The 50 % seawater salinity contour (ζ50 %) ensembles under each pumping well, under steady-state conditions without pumping,
when neglecting (blue) or accounting for (red) climate projections. Data points, median values (horizontal lines) and well bottom elevations
are superimposed on the violin plots.

the total pumping in the well field from 165 to 60 m3 d−1

(Fig. 10) and the pumping rate at well no. 8 from 19 to
4 m3 d−1 (Fig. 11). On the other hand, neglecting climate
projections resulted in underestimating probabilities of salin-
ization, since a 98 m3 d−1 total pumping rate in the well field
represented a 6 % probability of salinization when neglect-
ing climate projections but a 12 % probability of salinization
when considering climate projections (Fig. 10). The disper-
sion and non-unicity of the individual pumping rates iden-
tified by the ensemble-based method (Fig. 11) made a de-
tailed comparison of individual pumping rates challenging.
Overall, when considering climate projections, no pumping
scenarios were found with probabilities of well salinization
lower than 8 %. Pumping rates under the most risk-averse
scenarios (with probabilities of salinization between 8 % and
10 %) were less than both the current and projected water
demands, while rates under less risk-averse scenarios (with
probabilities of salinization between 10 % and 15 %) were
on the same order of magnitude as the water demand.

5 Discussion

5.1 Optimization under uncertainty

The OUUs identified sets of maximum allowable pumping
scenarios corresponding to different probabilities of salin-
ization, from which the groundwater managers can choose
depending on their attitude towards risk (Coulon et al.,
2022). Different results were obtained when using a MO-
ensemble approach or a SLP–FOSM approach to OUU.
Since ensemble-based uncertainty quantification is more re-
liable than FOSM-based uncertainty estimates, the probabili-
ties of well salinization determined by the MO-ensemble ap-
proach are more reliable. In the study area, the SLP–FOSM
approach may have overestimated the maximum allowable
pumping rates compared to the MO-ensemble approach and
underestimated the probability of well salinization associated
with pumping scenarios, especially for risk-averse stances.
The SLP–FOSM approach would have led to the conclusion
that the well field is able to supply both the current water de-
mand and the highest water demand projections with a wide
margin while maintaining a very low probability of salin-
ization of 2 %. In comparison, the MO-ensemble approach
found much lower maximum allowable pumping rates, and if
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Figure 10. Optimal trade-off between the total pumping rate in the
well field and the probability of well salinization when neglecting
(blue) or accounting for (red) climate projections (ensemble-based
approach). The results obtained using the SLP–FOSM approach
(neglecting climate change effects) are also shown. The current wa-
ter demand and the probability density function associated with the
projected (year 2050) water demand are superimposed. The y axis
was cut off at 700 m3 d−1.

the highest risk-averse stance were adopted (i.e., a 6 % prob-
ability of well salinization), the well field would barely be
able to meet the current water demand and could only meet
the higher water demand projections with an increased prob-
ability of well salinization. However, in the MO-ensemble
approach, the complete convergence to the Pareto front re-
quires many generations of the NSGA-II algorithm, which in
practice is limited by computational constraints. Therefore,
the maximum allowable pumping rates found by the MO-
ensemble approach for the study area may also be suboptimal
and overly conservative.

Incorporating climate projections into the parameter en-
sembles instead of moving directly from history matching
to OUU was essential, since neglecting climate projections
resulted in underestimating predictive uncertainties (Fig. 9)
and therefore underestimating probabilities of well saliniza-
tion for risk-averse pumping scenarios (Fig. 10). This was
the case even though the climate projections hardly affected
the median model predictions (Fig. 9): the simple increase in
model predictive uncertainty due to additional consideration
of climate uncertainty, which can be expected in other areas,
was enough to impact the results of the OUU. Accounting for
climate projections in the OUU decreased the maximum al-
lowable pumping rates for users with a risk-averse stance and
therefore led to more conservative pumping scenarios. When
accounting for climate projections, if the highest risk-averse
stance was adopted (i.e., an 8 % probability of well salin-

ization), the well field would meet neither the current water
demand nor the lowest water demand projections. Therefore,
groundwater managers could either decide to meet the wa-
ter demand but at higher probabilities of salinization (greater
than 10 %–15 %) or to find supplementary sources of water.
Multiplying the probability of well salinization by its conse-
quences would allow one to characterize the risk of saliniza-
tion and therefore assist decision-makers in their evaluation
of different management options.

While parameter, observation and climate uncertainties
were considered in this study, model conceptual uncertainty
was neglected, and using a sharp-interface approach to sim-
ulate saltwater upconing could result in increased conceptual
uncertainty. However, the posterior parameter values were
physically plausible and consistent with the prior parame-
ter distributions, and the information in the observations was
appropriately assimilated; these are the two indicators avail-
able to detect the potential for conceptual model uncertainty
issues. The Doherty and Christensen (2011) model pairing
methodology could be used to more explicitly investigate
the potential for conceptual model issues through pairing of
a sharp-interface model with an advective–dispersive-based
variable-density model. In the context of lateral seawater
intrusion, methodologies have also been developed to opti-
mize pumping using a coupled sharp-interface or advective–
dispersive approach (e.g., Christelis and Mantoglou, 2018;
Dey and Prakash, 2022), which could be explored in the con-
text of freshwater lenses. This topic is discussed in more de-
tail in Coulon et al. (2022).

5.2 Incorporating climate projections

Although the sea level and recharge projections were consid-
ered to be independent (Sect. 3.3), sea level rise projections
linked to GCMs and RCPs can sometimes be found (e.g.,
James et al., 2021), and linked sea level recharge ensembles
could be used in future OUUs. However, climate uncertainty
is always dependent on the size and nature of the projections
contained in the climate ensemble (e.g., the number and na-
ture of the applied GCMs and RCPs), and the uncertainty
is expected to increase with the ensemble size. Even if all
the available GCMs were used, these would still represent a
subset of possible future climates (Ray and Brown, 2015).
Therefore, the optimal pumping scenarios should regularly
be updated with the latest climate projections. Another ap-
proach could be to integrate robustness to climate uncertainty
into the optimization, aiming to find pumping scenarios that
are less sensitive to climate uncertainty and that perform well
under a wide range of climate projections (Borgomeo et al.,
2018).

This study considered climate change effects under
steady-state conditions and explored the management op-
tions that would result from the groundwater system (i.e., the
freshwater lens) equilibrating with the 2050 climate projec-
tions. In reality, since climate change effects are a transient
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Figure 11. Optimal allocation of pumping in the well field as a function of the probability of well salinization when neglecting (blue) or
accounting for (red) climate projections (ensemble-based approach). The results obtained using the SLP–FOSM approach (neglecting climate
change effects) are also shown. The y axis was cut off at 150 m3 d−1.

process and this steady state may never be reached, this ap-
proach can be viewed as being conservative. When consider-
ing transient conditions, climate uncertainties might increase
with time and interannual climate variability (e.g., variations
in the frequency and intensity of extreme weather events)
may also impact the optimization results.

Few examples were found in the existing literature of
to how to merge the parameter and climate recharge en-
sembles (Sect. 3.3.2). These were obtained independently
through different types of models: a calibrated groundwa-
ter flow model with a simplified representation of recharge
(MODFLOW-SWI2) and a more complex, uncalibrated
groundwater recharge model able to convert weather pro-

jections into recharge projections (SWB2). The groundwater
recharge model could have been coupled to the groundwater
flow model, with its uncertain parameters added to the his-
tory matching procedure, and the weather projections would
then be run directly through the coupled models. However,
the coupling of numerical models is often computationally
demanding. In the approach that was selected, the 1R en-
semble was resampled assuming a normal distribution as a
first approximation, which did not conserve the exact shape
of the 1R distribution (Fig. 3c, d). However, the ensemble-
based approach allows for the incorporation of climate pro-
jections that do not necessarily follow Gaussian distributions.
Rejection sampling or Markov chain Monte Carlo methods
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could also be employed to resample the 1R ensemble while
conserving its shape. Further investigations on this subject
would be of interest.

Recharge (R) and hydraulic conductivity (K) parameters
are known to be correlated (Anderson et al., 2015), and
therefore history matching could have resulted in realiza-
tions where high current R is paired with high K values or
low current R is paired with low K values. The current R
values stayed paired with their corresponding K field, and
recharge perturbations 1R were randomly added to them.
However, no correlation was assumed between current and
future recharge. With this assumption, high future R could
be paired with low K values and low future R with high K
values; therefore, the tails of the constraint PDFs can be ex-
plored more thoroughly. While this assumption might over-
estimate the constraint uncertainty, it can be viewed as be-
ing conservative. Furthermore, bias in future recharge pre-
dictions could be caused by having excessive confidence in
the R–K correlation learned during history matching.

5.3 Use of an ensemble-based approach

Ensemble-based history matching yielded a relatively large
range of simulated values for each observation (Fig. 6); how-
ever, this could be explained by the cutoff of PESTPP-IES
after the second iteration. Over successive PESTPP-IES it-
erations, the goodness of fit increases and the ensemble di-
versity (and therefore the posterior parameter variance) de-
creases (Sect. 3.2). While it is recommended to use a small
number of iterations with the IES algorithm (PEST++ De-
velopment Team 2022), the choice of the cutoff iteration can
be subjective. For this study, it was decided to maintain a
large ensemble diversity (and possibly overestimate the pos-
terior parameter variance) rather than take the risk of un-
derestimating the posterior parameter variance and risking
biases in the parameter estimates arising from model error.
This conservative approach was appropriate since there are
no alternative drinking water sources on the island.

Using an ensemble-based approach in combination with
a population-based evolutionary algorithm such as NSGA-II
required a significant number of model simulations. The use
of parallel processing was critical to implementing the frame-
work within reasonable computational times and was greatly
facilitated by using the PEST++ software, which contains
a fault-tolerant, parallel run manager (White et al., 2020b).
However, a compromise had to be made between the number
of realizations in the parameter ensemble, the number of indi-
viduals in the decision variable population, the frequency at
which the prediction ensemble was re-evaluated during the
optimization (Sect. 3.4) and the number of generations of
the optimization algorithm. At the end of the optimization,
several solutions were dominated by other solutions for both
objective functions (Figs. 10 and 11), showing that final con-
vergence to the Pareto front could be further improved. Al-
though complete convergence to the Pareto front was limited

by computational constraints, from a practical perspective,
the Pareto front that was obtained provides valuable solu-
tions and insights. The Pareto front is sensitive to the size of
the parameter ensemble, as shown for example by Sreekanth
et al. (2016), who analyzed convergence to the Pareto front
using different numbers of realizations. In particular, the so-
lutions at the extremities of the Pareto front are expected to
be sensitive to the tails of the constraint PDFs, but the con-
vergence of the extreme percentiles (e.g., 95th, 99th) of con-
straint ensembles could require a prohibitive number of re-
alizations. In our case, while the extremities of the Pareto
front were found to be sensitive to the ensemble size, using
173 realizations was the maximum that was computationally
feasible. Therefore, the highly risk-averse region may not be
fully explored. While it is informative, mapping the entire
Pareto front is computationally expensive, especially con-
sidering that only the high-reliability solutions are generally
of interest to groundwater managers. Stack-ordering meth-
ods have been developed to find high-reliability solutions in
ensemble-based OUUs with a very low computational effort
(e.g., Bayer et al., 2010; Paly et al., 2013), the implemen-
tation of which would be very useful for managers wish-
ing to adopt highly risk-averse stances. Worst-case scenarios
could be explored by running optimizations on the realiza-
tions with the lowest current recharge estimates associated
with the most extreme recharge decrease scenarios (i.e., the
most important −1R perturbations). Finally, with the MO-
ensemble approach, the dispersion and non-unicity of the in-
dividual pumping rates (i.e., of the decision variables) could
make the presentation of the results to decision-makers and
their implementation more challenging.

6 Conclusions

A fully scripted workflow was developed for ensemble-
based history matching, incorporation of climate projections
and pumping optimization under uncertainty considering
parameter, historical observation and future climate uncer-
tainty. The workflow was implemented in a real-world island
aquifer. It allowed for the quantification of the optimal trade-
off between pumping and the probability of well saliniza-
tion considering parameter, observation and climate uncer-
tainty simultaneously, letting groundwater managers choose
the final pumping scenario depending on their attitude to-
wards risk. Incorporating climate projections into the OUU
allows groundwater managers to account for multiple sources
of uncertainty simultaneously, i.e., uncertainty arising from
the model itself (e.g., parameter and observation uncertainty)
and climate uncertainty (e.g., sea level and recharge uncer-
tainty).

The workflow used easily accessible, model-independent
tools for ensemble-based history matching and multi-
objective optimization under uncertainty that are applica-
ble to high-dimensional, nonlinear models and to nonlin-
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ear optimization problems. The approach can therefore be
implemented in a large range of coastal settings, including
high-dimensional and nonlinear models, provided that model
simulations are parallelized. The workflow could also be
adapted to other management problems involving optimiza-
tion under uncertainty. The multi-objective, ensemble-based
approach led to much lower maximum allowable pumping
rates than the previously applied sequential linear program-
ming, FOSM-based approach (Coulon et al., 2022) for users
with risk-averse stances. This was the case even though the
numerical model and the optimization problem were rela-
tively linear.

A method for merging parameter and climate recharge en-
sembles was suggested, and the effect of this coupling on
management optimization was explored. Incorporating cli-
mate uncertainty into the workflow was critical, since it re-
duced the maximum allowable pumping rate for users with
a risk-averse stance and since neglecting climate uncertainty
resulted in underestimating the probabilities of well salin-
ization. In the study area, when considering sea level and
recharge projections to the year 2050, the well field would
be unable to meet the current water demand or any of the
year 2050 water demand projections while maintaining very
low risks of well salinization. Conceptual uncertainty was not
considered in the analysis, but its evaluation and coupling
with the other sources of uncertainty would be useful as it
could also impact the optimization results.

Code availability. The Python scripts used to implement
the workflow and produce the figures are available on
GitHub at https://github.com/Cecile-A-C/swi2-ensembles
(last access: 26 January 2023) and are archived at
https://doi.org/10.5281/zenodo.7574457 (Coulon et al., 2023)
(version 1.0.0, MIT license). MODFLOW-2005 (version 1.12.00)
is available at https://doi.org/10.5066/F7RF5S7G (Harbaugh
et al., 2017). The user’s manual, binaries and source code for
PESTPP-IES, PESTPP-SWP and PESTPP-MOU are available in a
GitHub repository at https://github.com/usgs/pestpp (PEST++ De-
velopment Team, 2023). Version 5.1.13 was used for PESTPP-IES
and PESTPP-SWP and version 5.1.24 was used for PESTPP-MOU.

Data availability. All the data used by the Python-based
workflow are also available on the GitHub repository
https://github.com/Cecile-A-C/swi2-ensembles and are archived
at https://doi.org/10.5281/zenodo.7574457 (Coulon et al., 2023)
(version 1.0.0, MIT license).
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