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Bioactive compounds as
potential alternative treatments
to prevent cancer therapy-
induced male infertility
Layla Simón* and Marı́a Salomé Mariotti-Celis*

Nutrition and Dietetic School, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
About 8-12% of couples experience infertility, with male infertility being the

cause in 50% of cases. Several congenital and acquired conditions, including

chronic diseases and their treatments, can contribute to male infertility. Prostate

cancer incidence increases annually by roughly 3%, leading to an increment in

cancer treatments that have adverse effects on male fertility. To preserve male

fertility post-cancer survival, conventional cancer treatments use sperm

cryopreservation and hormone stimulation. However, these techniques are

invasive, expensive, and unsuitable in prepubertal patients lacking mature

sperm cells. Alternatively, nutritional therapies enriched with bioactive

compounds are highlighted as non-invasive approaches to prevent male

infertility that are easily implementable and cost-effective. In fact, curcumin

and resveratrol are two examples of bioactive compounds with chemo-

preventive effects at the testicular level. In this article, we summarize and

discuss the literature regarding bioactive compounds and their mechanisms in

preventing cancer treatment-induced male infertility. This information may lead

to novel opportunities for future interventions.
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1 Introduction

Infertility is a major health problem that affects approximately 8% to 12% of couples

worldwide. Male infertility stands as the primary cause in 20% to 30% of cases and

contributes to infertility in an additional 20% of couples. Collectively, male factors account

for 50% of infertility cases. Various congenital, acquired and idiopathic factors contribute

to male infertility. In terms of acquired factors, chronic diseases and their treatments, such

as cancer, chemotherapy and radiation, respectively, play a role in male infertility (1).

Cancer is a major health problem worldwide, with incidence and death rates

historically higher in men than women. In fact, the probability of developing invasive

cancer within lifetime was 1 in 2 men compared to 1 in 3 women in the United States
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between 2017-2019. Indeed, men are more exposed to carcinogenic

factors, such as endogenous hormones, smoking, height, and

immune response. In this sense, it is expected that around one-

half of cancers in men will be concentrated in prostate (29%), lung

(12%) and colorectal (8%) cancers in 2023. In the United States,

prostate cancer incidence has increased by roughly 3% annually,

similar to lung cancer (2%) (2). Therefore, the sustaining increase in

cancer incidence leads to an increment in cancer treatments that

can have adverse effects on male fertility.

Hopefully, the 5-year cancer survival rate has increased from

49% in the mid-1970s to 68% in the last decade. Moreover, prostate

cancer (97%) has the highest survival rate after thyroid cancer

(98%) (2), thereby increasing the number of patients surviving after

cancer treatment.

Male infertility after cancer treatment is caused by: (a)

decreased gonadotropin secretion from the pituitary gland caused

by immune inhibitors, cranial irradiation and central nervous

system tumors surgeries; (b) spermatogenic dysfunction due to

chemotherapy or irradiation; (c) obstruction of seminal tracts

caused by intrapelvic surgeries; (d) sexual dysfunction due to

intrapelvic or retroperitoneal surgeries or irradiation. In fact,

almost 46% of young cancer survivors overcome male infertility,

and 30% of patients have testicular dysfunction due to chemo- or

radio-therapy (3). Unfortunately, male survivors of childhood

cancer have a higher desire for children compared with their

siblings (25% vs. 7%) (4), thereby developing interventions that

preserve male fertility is a necessity for cancer patients.

Adult cancer patients use sperm cryopreservation and hormone

stimulation to preserve male fertility post-cancer treatments.

However, these techniques are invasive, expensive, and unsuitable

in prepubertal patients lacking mature sperm cells. Using less

gonadotoxic chemo- and radio-therapies, organ-sparing surgeries

and cryopreserving testicular tissue are some methods to preserve

or restore fertility in prepuberal males undergoing cancer therapies.

Unfortunately, these approaches are even more expensive, invasive,

possible only for some patients and available in only few medical

centers (5).

On the other hand, nutritional therapies enriched with bioactive

compounds seem to be cost-effective, easily-implementable, and

non-invasive approaches to prevent male infertility. In a

metana lys i s rev iew, L-Carni t ine admin is t ra ted wi th

micronutrients, antioxidants and herbal supplements increases

pregnancy rates (6). In fact, antioxidants such as L-Carnitine,

Coenzyme-Q10, w3 fatty acid and selenium improves sperm

quality parameters (7).

In this article, we summarize and discuss the literature

concerning bioactive compounds and their mechanisms of action

within preventing cancer treatment-induced male infertility. This

information may contribute to develop novel opportunities for

future interventions.
2 Etiology of male infertility

Male infertility is classified into four categories: (a)

hypothalamic-pituitary axis disturbances, (b) spermatogenic
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qualitative and (c) quantitative defects, and (d) ductal obstruction

or dysfunction (8). Independently of the category, about 30% of

infertility cases are due to idiopathic conditions, and 70% are caused

by genetic mutations or acquired conditions (9).

Genetic mutations affect almost 15% of males with infertility

and 25% of men with azoospermia (no spermatozoa in the

ejaculate). Some genetic alterations are chromosomal numerical

or structural abnormalities, Y chromosomal deletions, azoospermia

factor (AZF) deletions, androgen receptor (AR) gene mutations,

cystic fibrosis transmembrane conductance regulator (CFTR) gene

mutations (8).

Some acquired conditions that affect male fertility are obesity,

pesticide exposure, smoking and medications (9). For instance,

obesity is a health problem that course with concomitant diseases

such as cardiovascular disease, type 2 diabetes and cancer.

Moreover, obesity affects the hypothalamic-pituitary-gonadal axis,

disrupts testicular steroidogenesis, and induces erectile dysfunction,

poor semen quality and prostatitis. Some mediators of infertility-

induced obesity are hyperinsulinemia, hyperleptinemia, chronic

inflammation and oxidative stress (10). In the case of pesticide

exposure, workers and exposed populations have deleterious semen

quality (volume and sperm count, motility and morphology), DNA

fragmentation and chromosome aneuploidy (11). Males with

smoking habits have a high probability of being infertile, which

increases with long smoking duration (>10 years) (12). Also,

medications have adverse effects on reproductive achievement.

For example, males receiving major antidepressant drugs have

reduced conceptional rates (13).

Similarly, other environmental pollutants that have shown to

affect male fertility are heavy metals, microplastics and endocrine-

disrupting chemicals such as bisphenols, phthalates, and parabens.

Heavy metals such as Zn, Se, Pb, and Cd are known to increase lipid

peroxidation, reduce antioxidant capacity, and thereby impair

sperm function (14). Also, high blood and seminal levels of Pb,

Cd, Ba and U are associated with low sperm viability (15). In the

case of microplastics, it has been proved in animals that

microplastics impair semen quality in an equivalent human dose

of 0.016 mg/kg/d, which is nearly achieved in Japan and South

Korea (16). In addition, bisphenols, phthalates, and parabens

increase ROS production, DNA damage and apoptosis, leading to

abnormal sperm count and semen quality (17).

Testicular tumors represent almost 2% of all cancers in men.

Testicular tumors are classified into two main groups: germ cell and

sex cord tumors. Germ cell tumors include germ cell neoplasia in

situ, seminoma, teratoma, non-seminomatous germ cell tumors,

embryonal carcinoma, Yolk sac tumors, trophoblastic and regressed

germ cell tumors. Sex cord stromal tumors cover Sertoli and Leydig

cells tumors, and myoid gonadal stromal tumors (18). Although

testicular cancer is a disease that reduces male fertility by disturbing

spermatogenesis, vasculogenesis and the secretion of paracrine

factors, the reduction in fertility is more a consequence of cancer

treatment than the primary testicular tumor effects. In the case of

surgery, 50% of patients after orchiectomy have a decrease in sperm

number. Radiotherapy effects on spermatogenesis depend on doses.

In fact, doses less than 1 Gy allow spermatogenesis recovery after 18

months, doses up to 3 Gy after 30 months, and up to 4 Gy after 5
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years. Moreover, the chemo- and radiotherapy combination

increases their gonadotoxic effects that when are administrated

alone. The main adverse effect of chemotherapy on fertility is a

consequence of targeting proliferating cells as germ cells

(19). Spermatogonia are sensitive to the cytotoxic effects of

cancer treatments, with increased susceptibility during the

spermatogenesis undergoing differentiation (3). In addition,

chemotherapy induces mutations in stem cell spermatogonia,

thereby causing permanent damage to spermatogenesis. Some

alkylating agents such as vincristine, prednisolone and

cyclophosphamide induce permanent germ cell depletion and

azoospermia in 80% of patients. Etoposide and doxorubicin

promote azoospermia in 90% of patients (19).

In addition, other types of tumors dismiss male fertility by

endocrine, nutritional, metabolic and immune alterations (19). In

fact, germ cells are sensitive to the toxic effects of cancer therapy.

Due to spermatogonia are more sensitive than highly differentiated

germ cells, initially cancer treatment reduces the number of

spermatogonia but does not affect the number of spermatocytes,

spermatids and sperm cells. So, the sperm count is maintained at

the beginning of the treatment but is reduced dramatically after 1 or

2 months. The azoospermia occurs after 12 weeks of cancer

treatment, and in the case of low cytotoxic drugs (vinblastine,

bleomycin, methotrexate, 5-fluorouracil), sperm count is

recovered after 12 weeks of discontinuation chemotherapy. But,

the highly cytotoxic drugs (cyclophosphamide, cisplatin, busulfan)

induce more prolonged and even permanent azoospermia.

Furthermore, cranial surgery or irradiation affect the

hypothalamic-pituitary-gonadal axis, reduce gonadotrophin

secretion and thereby spermatogenesis (3).
3 Treatment for male infertility

3.1 Conventional treatments preventing
male infertility

Treatments for male fertility are selected in function of the

etiology. For instance, male hypogonadotropic hypogonadism is

secondary to gonadotropin deficiency and is treated with hormone

stimulation to replace the missing hormones. Therapeutic GnRH

stimulates pituitary gonadotropin secretion. Gonadotropins imitate

LH and FSH. Selective Oestrogen Receptor Modulators (SERMs)

inhibit Oestrogen Receptors in the hypothalamus and pituitary and

suppress the oestrogen-mediated negative feedback on the

hypothalamic-pituitary-gonadal axis. Aromatase inhibitors inhibit

the conversion of testosterone to oestradiol, thereby decreasing the

oestradiol-mediated negative feedback (20). Although hormone

stimulation has promising effects on animals, it is ineffective in

human cancer patients (5).

In the case of male infertility due to cancer treatment in

reproductive age, an alternative to preserve fertility is sperm

cryopreservation followed by in vitro fertilization or intracytoplasmic

sperm injection. These approaches are effective when sperm is collected

for 2-3 ejaculates and before the cancer treatment. But, in some cases

starting cancer treatment is an urgency that no contemplate time for
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sperm cryopreservation. Moreover, this option is expensive and

difficult to develop in some centers (19). Furthermore, sperm

cryopreservation and assisted-reproductive technology have 30%

pregnancy and 25% live birth rates, respectively. Although being

compared to general fertility treatment, is not effective in all the

patients (3).

Cryopreserving sperm is impossible in prepuberal patients. The

cryopreservation of testicular tissue obtained through a biopsy is

possible in these patients (19). Moreover, cryopreserving testicular

tissue is the only option in men unable to ejaculate and those with

azoospermia (3). However, testicular biopsy has potential risks in

leukemia patients. Furthermore, fertility restoration is still a

problem in young cancer survivors for clinical reasons (19). In

fact, the alternatives for using cryopreserving spermatogonia stem

cells are under experimentation. For instance, testicular tissue auto-

or xeno-grafting, spermatogonial stem cells transplantation and in

vitro spermatogenesis are being studied in animals (5). However,

culturing sperm and germ cells has been unsuccessful in humans. In

addition, these approaches have some disadvantages: the small

number of spermatogonia stem cells, contamination with cancer

cells, surgical procedures, intracytoplasmic sperm injection and

virus infection (3).
3.2 Bioactive compounds as potential
alternative treatments preventing
male infertility

Regarding nutritional aspects, abnormal sperm parameters and

hormone levels are associated with a high intake of alcohol,

processed starchy and meat foods and foods rich in trans and

saturated fatty acids (21–27). On the other hand, nutritional healthy

habits such as high consumption of vegetables, fruits and seafood

products have shown a positive association with the prevention of

male infertility (28).

The Western diet is rich in saturated fatty acids, carbohydrates

and proteins found in processed foods. It is also reduced in

polyunsaturated fatty acids, dietary fibers and antioxidants,

consequently having a negative effect on sperm quality. In this

sense, the Western diet is associated with obesity, dyslipidemia,

insulin resistance, oxidative stress, and aromatase activity. As a

result, the Western diet reduces testosterone levels leading to a

decrease in sperm count, motility and morphology. Moreover, the

Western diet modifies the metabolism of sperm cells by decreasing

glycolysis and mitochondrial respiration, reducing ATP content

and sperm motility. Contrary, vegetarian diets are rich in plant-

based antioxidants such as polyphenols with beneficial effects on

sperm quality. For instance, quercetin is a flavonoid that interacts

with mitochondrial membranes at the coenzyme Q-binding site,

suppresses superoxide generation and promotes ATP synthesis

(29). Similarly, the Mediterranean diet is characterized by a high

intake of polyphenols, monounsaturated fatty acids, fiber, w3 fatty

acids, and vitamins, while being reduced in saturated and trans-

fatty acids. Therefore, the Mediterranean diet is associated with a

positive impact on male fertility, high sperm count and motility

(28). Furthermore, the Mediterranean diet reduces oxidative stress
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and increases ATP generated through energetic metabolism, thus

improving sperm quality (29).

As we previously described, there exists an intricate connection

between nutritional habits and fertility. In vivo models have

confirmed that administrating several bioactive compounds found

in plant sources can help to mitigate the detrimental effects caused

by unhealthy habits and environmental pollutants, thereby aiding in
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the recovery of fertility. Table 1 summarizes the nutritional habits

known to prevent male infertility, classifying the sources and

bioactive compounds that control the detrimental effects.

Mice fed with a high-fat diet develop a metabolic syndrome-like

condition (increased body weight, hypercholesterolemia,

hyperglycemia and glucose intolerance) associated with

deleterious reproductive status. For instance, high-fat diet-fed
TABLE 1 Bioactive compounds preventing male infertility.

Source or Bioactive
Compound

Model Effect Reference

Olive oil Rabbit model of high-fat diet-
induced hypercholesterolemia

Recover the semen quality and sperm function (30–32)

Lepidium meyenii (Maca) Healthy men Increase sperm count and motility (33)

Acanthopanacis senticosi Men with asthenospermia Activate sperm motility (34)

Sesamum indicum Infertile men Improve sperm count, motility and normal morphology (35)

Sesamum indicum Caffeine-induced sperm
toxicity in male albino rats

Increase the weight of epididymis and sperm count, and reduce sperm
head abnormalities

(36)

Withania somnifera Infertile men Improve energy metabolism and quality of semen and reproductive
hormone levels

(37)

Morinda officinalis-Lycium barbarum
with ohioensin-A, quercetin
and sitosterol

Men
with oligoasthenozoospermia

Reduce oxidative stress and apoptosis (38)

Camellia sinensis leaves contain flavonol
and epigallocatechin gallate

Wistar rats Increase sperm concentration and viability (39)

Chlorella vulgaris Deltamethrin-intoxicated rats Increase total sperm number and testicular antioxidant enzymes (40)

Chlorella vulgaris Rats with sodium nitrite-
induced reproductive toxicity

Prevent sodium nitrite-induced alterations of sperm parameters,
hormonal concentrations and testicular oxidative–antioxidant status

(41)

Spirulina platensis Cadmium-intoxicated rats Improve spermatogenesis and steroidogenesis after Cadmium exposure (42)

Spirulina platensis Furan-intoxicated rats Improve semen quality, reproductive hormone levels and redox status in
furan-intoxicated rats

(43)

Spirulina platensis Mercuric chloride-
intoxicated rats

Improve mercuric chloride-induced testis injuries and sperm
quality alterations

(44)

Chlorella vulgaris and Spirulina platensis Rats treated with lead acetate Mitigate lead acetate-induced testicular oxidative stress and apoptosis (45)

Halopteris scoparia Mice with cadmium-induced
reproductive toxicity

Recover sperm count, viability and motility, and reduce apoptosis (46)

Laminaria japonica Streptozotocin-nicotinamide-
induced diabetic rats

Restore sperm motility and testosterone level, decrease abnormal sperm
number, and inhibit lipid peroxidation

(47)

Resveratrol Mice intoxicated with
Cadmium and Lead

Improve sperm parameters, redox balance, testicular histology, and
reduce signaling pathways such as Akt

(48)

Resveratrol- loaded nanostructured
lipid carriers

Cryopreserved rooster sperms Increase motility, viability, membrane function, mitochondrial activity,
antioxidant capacity and reduce apoptosis

(49)

Resveratrol Cryopreserved human sperms Decreases DNA fragmentation.
Increase markers of male fertility (protamine 1 and 2) and pregnancy
success (adducin 1 alpha) by activating 5’ AMP-activated protein kinase

(50)

Curcumin Cadmium-intoxicated mice Increase antioxidant enzymes.
Recover REDOX status

(51)

Curcumin Artesunate-intoxicated Swiss
Albino mice

Increase antioxidant enzymes.
Recover REDOX status

(52)

Curcumin Cadmium-intoxicated mice Reduce oxidative stress via nuclear factor erythroid 2-related factor 2
(Nrf2)/antioxidant response element (ARE) pathway

(53)
REDOX, Oxidation-Reduction.
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mice have an increment in gonadal fat, associated with a reduction

in epididymis weight and sperm count (54). However, switching

from a high-fat diet to a normal diet recovers the fertility potential

in obese male mice. In this sense, obese mice changing to a normal

diet have a reduction in gonadal fat content, and an increment in

FSH serum levels and fertility potential (55). In addition, the impact

of a high-fat diet on semen parameters has been studied in a rabbit

model of diet-induced hypercholesterolemia. In fact, a high-fat diet

is associated with a reduction of semen volume, sperm count and

motility, but an increment in sperm cholesterol content, lipid

droplets, functional (acrosomal reaction) and morphological

abnormalities. The testicular inefficiency is associated with

reduced testosterone levels, decreased differentiation from

spermatogonia to sperm cells, and increased apoptosis of germ

cells. On the other hand, the addition of olive oil to the diet

recovered the semen quality and sperm function dismissed by

hypercholesterolemic diet in rabbits Table 1) (30–32).

Plants-based diets are alternative and sustainable approaches

managing male infertility. Active principles and crude extracts of

medicinal plants are used because of their antioxidant, anti-

inflammatory, and positive effects on the testis. They have

bioactive compounds such as polyphenols (anthocyanins,

proanthocyanidins) , phyto-oestrogens, diosgenin and

thymoquinone (56). For instance, Lepidium meyenii (Maca),

administrated to healthy men at 1.75 g/day for 3 months,

increases sperm count and motility (33). Furthermore,

Acanthopanacis senticosi activates sperm motility when

administrated in humans (34). Moreover, Sesamum indicum,

administrated at 0.5 mg/kg during 3 months, improves sperm

count, motility and normal morphology (35, 36). In addition,

roots of Withania somnifera administrated 5 g/day during 3

months improve energy metabolism and quality of semen and

reproductive hormone levels in infertile men (37). Zingiber

officinale (Ginger) powder or root are used because of their

antioxidant, anti-inflammatory, anti-tumorigenic and androgenic

activity. In fact, ginger contains gingerdiol, gingerol, shogaols,

zingerone, zingibrene, folic acid, sesquiterpenes and vitamin C (57).

Morinda officinalis-Lycium barbarum coupled herbs are

traditional Chinese medicines that reduce oxidative stress and

apoptosis, thereby improving male fertility. These herbs contain

ohioensin-A, quercetin and sitosterol that target androgen and

estrogen receptors, MAPK, PI3K/Akt and glyceraldehyde-3-

phosphate dehydrogenase (38). Camellia sinensis (green tea)

leaves contain flavonol and epigallocatechin gallate and increase

sperm concentration and viability when administrated for 52 days

in rats (39, 57). Microalgae such as Chlorella vulgaris and Spirulina

platensis improve spermatogenesis and steroidogenesis and protect

against oxidative stress in rats (40–45). Algae such as Halopteris

scorapia and Laminaria japonica increase sperm count, motility

and testosterone levels, meanwhile decreasing sperm abnormalities,

inflammation and oxidative stress, in mice and rats, respectively

(46, 47, 57).

Vitis vinıf́era (grape) contains resveratrol and flavonoids

(catechin, quercetin, anthocyanin and pro-anthocyanidins) with

protective effects on testicles. In this sense, grape seed extracts

reduce oxidative stress and apoptosis, meanwhile improve testicular
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histology, hormone levels, and sperm count and morphology (57).

In mice, resveratrol reduces the toxic effects of cadmium and lead at

the testicular level. Moreover, resveratrol prevents the development

of testicular germ cell neoplasia in situ promoted by heavy metals.

In this sense, resveratrol improves sperm parameters, redox

balance, testicular histology, and reduces signaling pathways such

as Akt (48). Moreover, resveratrol supplementation in a

cryopreservation medium improves the post-thawed sperm

quality and fertility of roosters. Indeed, rooster semen

cryopreserved with 40 µM resveratrol-loaded nanostructured lipid

carriers has higher motility, viability, membrane function,

mitochondrial activity, antioxidant capacity and lower apoptosis

than non-treated frozen sperm (49). In human cryopreserved

semen samples, 15 µM resveratrol decreases DNA fragmentation

mean increases markers of male fertility (protamine 1 and 2) and

pregnancy success (adducin 1 alpha) by activating 5’AMP-activated

protein kinase (50).

Antioxidants lead the list of natural products that are protective

agents for male infertility. In this regard, oxidative stress damages

sperm membranes and DNA, thereby promoting infertility.

Curcumin is a bioactive compound present in the turmeric plant

Curcuma longa that reduce oxidative stress, lipid peroxidation and

oxidative DNA damage. Curcumin increases the levels of GSH,

glutathione peroxidase, superoxide dismutase and catalase. In

addition, curcumin increases testosterone, FSH and LH levels in

mice (51–53). Ellagic acid is a polyphenol with similar effects to

curcumin. Vitamin C protects spermatogenesis, prevents sperm

agglutination, and increases testosterone, FSH and LH levels.

Moreover, vitamin C induces antioxidant enzymes, and reduces

LDL cholesterol and lipid peroxidation. Vitamin E is an antioxidant

that protects cell membrane components from oxidative damage.

At reproductive level, vitamin E also protects spermatogenesis and

testosterone levels (57).
3.3 Bioactive compounds as potential
alternative treatments preventing cancer
therapy-induced male infertility

Because of their availability, safety and low cost, bioactive

compounds contained in fruits, vegetables and spices are potential

agents for the prevention and treatment of cancer. Even though they

have limitations (low bioavailability, high metabolism, poor water

solubility), these molecules have antitumorigenic effects against a

wide range of cancers: colon, lung, prostate, breast, gastric, liver,

and brain cancer (58). Moreover, contrary to current cancer

treatments, bioactive compounds are potential chemo-preventive

and -therapeutic agents with low side effects on the health of

patients (59, 60).

Bioactive compounds target cancer cells, macrophages and

adipocytes in the tumor microenvironment, thereby preventing

cancer development and progression (61). In this way, curcumin,

myricetin, geraniin, genistein, tocotrienol, fucoxanthin,

anthocyanin, epigallocatechin gallate, gallic and ellagic acids have

anti-proliferative, pro-apoptotic and anti-metastatic effects. For

instance, curcumin, in nanoparticles, piperine, phospholipid
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complexes and liposomes, inhibits PI3K/Akt and NF-kB pathways,

but upregulates p53 and Bax expression, thereby promoting

apoptosis of cancer cells. In addition, curcumin downregulates

MMP-9 expression and reduce the metastatic potential of cancer

cells (59). Furthermore, Tripterygium wilfordii used in the Chinese

medicine contains bioactive compounds such as triptolide, celastrol

and tripchlorolide that also inhibit PI3K/Akt and NF-kB pathways

thereby exerting anticancer and anti-inflammatory effects (62).

As previously mentioned, several plant-derived bioactive

compounds are effective in improving male infertility. In addition,

these compounds have been shown to reverse cancer-induced

infertility. Table 2 summarizes the sources and bioactive

compounds known to prevent cancer-associated male infertility

by controlling the detrimental effects of cancer therapy.

For instance, ginger and algae extracts have beneficial

reproductive effects post cancer-therapy (57). Rats treated with a

single intraperitoneal (IP) injection of 5mg/kg busulfan (chronic

myelogenous leukemia treatment) and with 100-150 mg/kg ginger

extract for 48 days have increased volume of seminiferous tubules,

sperm count and testosterone levels, previously impair by busulfan

(Table 2) (63). Another group demonstrated that oral

administration of 300-600 mg/kg ginger extract recovers the

epithelium thickness and germ cell count of rat testis affected

after a single IP dose of 100 mg/kg cyclophosphamide treatment

by increasing antioxidant and testosterone serum levels (64). In

addition, oral administration of fucoxanthin-rich brown algae
Frontiers in Endocrinology 06
Sargassum glaucescens extract ameliorates cisplatin-induced

testicular damage in hamsters. Hamsters were intraperitoneal

injected with 7 mg/kg cisplatin and treated with 100, 200 and 500

mg/kg fucoxanthin extract orally administrated. In fact,

fucoxanthin-enriched extract recovers the testosterone level,

seminiferous tubules morphology and sperm number, motility

and morphology affected by cisplatin treatment (65).

Additionally, several bioactive compounds such as curcumin,

ellagic acid and vitamin E are involved in reverting cancer-induced

male infertility (57). For instance, rats treated with a single IP dose of 5

mg/kg cisplatin and 100 mg/kg/day curcumin during 7 days reverse

testicular damage by reducing NF-kB and caspase-3 activated by

cisplatin (66). Rats treated with a single IP dose of 7 mg/kg cisplatin

and orally administrated 200 mg/kg/day curcumin for 10 days recover

oxidative stress and testicular damage induced by cisplatin viamitogen-

activated protein kinase and nuclear factor-kappa B signaling pathways

(67). Mice treated with 4 mg/kg curcumin nanocrystals recover the

negative effects of cyclophosphamide in sperm activity, sperm

chromatin condensation, and seminiferous tubule architecture,

meanwhile have a reduction in germ cells apoptosis induced by the

treatment with 200 mg/kg cyclophosphamide (IP) (68). Mice with

colon cancer treated with 5 mg/kg cisplatin (IP) have a reduction in

sperm count which is recovered after 5 weeks of treatment with 10 mg/

kg ellagic acid (oral) (69). Rats receiving 250 mg/kg vitamin E with 500

mg/kg L-carnitine control the oxidative stress induced by the treatment

with 20 mg/kg methotrexate (IP) via reducing malondialdehyde and
TABLE 2 Bioactive compounds preventing cancer therapy-induced male infertility.

Source or Bioactive
compound

Model Chemotherapy Dose Effect Reference

Ginger extract Rat 5 mg/kg busulfan, IP 100-150 mg/kg for 48 days ↑ volume of seminiferous tubules
↑ sperm count
↑ testosterone levels

(63)

Ginger extract Rat 100 mg/kg
cyclophosphamide,
IP

300-600 mg/kg, oral ↑ antioxidant and testosterone
serum levels

(64)

Fucoxanthin-rich extract obtained
from Sargassum glaucescens

Hamster 7 mg/kg cisplatin, IP 100-500 mg/kg, oral ↑ antioxidant enzymes
↑ testosterone serum levels
↑ sperm count and motility
↓ sperm abnormality

(65)

Curcumin Rat 5 mg/kg cisplatin, IP 100 mg/kg/day for 7 days ↓ NF-kB and caspase-3 activation (66)

Curcumin Rat 7 mg/kg cisplatin, IP 200 mg/kg/day for 7 days ↓ MAPK and NF-kB (67)

Curcumin nanocrystals Mouse 200 mg/kg
cyclophosphamide,
IP

4 mg/kg ↑ sperm activity
↑ sperm chromatin condensation
↑ seminiferous tubule architecture
↓ germ cells apoptosis

(68)

Ellagic acid Mouse 5 mg/kg cisplatin, IP 10 mg/kg for 5 weeks, oral ↑ sperm count (69)

Vitamin E and L-carnitine Rat 20 mg/kg
methotrexate, IP

250 mg/kg vitamin E with
500 mg/kg L-carnitine

↓ malondialdehyde
↑ superoxide dismutase

(70)

Resveratrol Rabbit 5 mg/kg
paclitaxel, IV

4 mg/kg for 8 weeks, IV ↓ DNA fragmentation and abnormal
DNA integrity in epididymal sperms

(71)

Resveratrol Mouse 30 mg/kg
busulfan, gavage

100 mg/kg/day for 2 weeks ↑ proliferation of germ cells (72)
IP, Intraperitoneal; IV, Intravenous.
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increasing superoxide dismutase (70). In rabbits, the treatment with 4

mg/kg resveratrol (intravenous) for 8 weeks ameliorates the DNA

fragmentation and abnormal DNA integrity in epididymal sperms

induced by 5 mg/kg paclitaxel (71). In addition, 20 µM resveratrol

induces the proliferation of spermatogonia stem cells in vitro. In mice,

100 mg/kg/day resveratrol for 2 weeks promotes the proliferation of

germ cells thereby reversing the loss of spermatogenic cells in the testis

and sperm cells in the epididymis induced by 30 mg/kg busulfan

treatment (gavage) (72).
4 Conclusion

Cancer incidence is increasing worldwide and men are more

affected than women. Current cancer treatments involve surgery,

chemotherapy and radiation, which have side-effects such as

infertility. Moreover, male infertility is responsible for 50% of

couples with fertility problems. Adult cancer patients are

subjected to invasive and expensive techniques to recover fertility

after cancer treatment such as cryopreservation of sperm cells and

in vitro fertilization (Figure 1). However, prepuberal patients

without sperm cells are unable to access to these techniques. In

this age group, cryopreserving testicular tissue to culture germ and

sperm cells and do intracytoplasmic injection seems to be another

invasive, expensive technique that is unsuccessful in humans. In this

way, looking for alternative treatments for cancer and male

infertility is a need to alleviate patient suffering post-cancer

survival. Natural products rich in bioactive compounds are

increasing interest in this scenario as alternative, novel, non-

invasive agents to prevent and treat cancer preserving male

fertility. Curcumin, ellagic acid, and resveratrol seem to be

potential compounds that recover testicular function by

increasing proliferation, reducing oxidative stress, inflammation,

and apoptosis of germ cells. However, further research regarding

bioavailability, solubility and metabolism of these natural
Frontiers in Endocrinology 07
compounds must be taken in consideration to improve the

current therapy approaches.
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Treatments for male infertility in cancer patients.
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