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In the setting of underdiagnosed and undertreated perinatal depression (PD), 
Artificial intelligence (AI) solutions are poised to help predict and treat PD. In 
the near future, perinatal patients may interact with AI during clinical decision-
making, in their patient portals, or through AI-powered chatbots delivering 
psychotherapy. The increase in potential AI applications has led to discussions 
regarding responsible AI and explainable AI (XAI). Current discussions of RAI, 
however, are limited in their consideration of the patient as an active participant 
with AI. Therefore, we  propose a patient-centered, rather than a patient-
adjacent, approach to RAI and XAI, that identifies autonomy, beneficence, 
justice, trust, privacy, and transparency as core concepts to uphold for health 
professionals and patients. We present empirical evidence that these principles 
are strongly valued by patients. We  further suggest possible design solutions 
that uphold these principles and acknowledge the pressing need for further 
research about practical applications to uphold these principles.
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1 Introduction

An estimated one in five women in the United States experience depression between 
conception and 6 months postpartum (1). For this reason, the United  States Preventive 
Services Task Force recommends routine perinatal depression (PD) screening (2). Other 
studies have estimated perinatal anxiety may be more prevalent, but there are not yet widely 
used, perinatal-specific screening tools such as the Edinburgh Postnatal Depression Scale (3). 
Clinician time constraints, resource availability, validity of screening tools across the perinatal 
period, and patient willingness to report mental health symptoms present challenges to 
identification (4, 5). Many also face barriers to treatment including limited access to perinatal 
psychiatrists and financial constraints (6, 7). As a result, therapeutic interventions are initiated 
late after symptoms develop (e.g., secondary prevention) (5), and as many as 75% of women 
who experience symptoms of perinatal mood and anxiety disorders (PMADs) go untreated 
altogether (8). Left untreated, PMADs can lead to poor maternal and infant outcomes, 
including pre-eclampsia (9), prematurity (10), low birth weight (11, 12), and behavioral 
dysregulation (13–15), lower vagal tone, decreased immunity, and adverse neurodevelopmental 
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outcomes in the child (16). Suicide and overdoses are leading causes 
death in the first year postpartum (17–19).

In the setting of underdiagnosed and undertreated PMADs, novel 
strategies are needed. Artificial intelligence (AI) is poised to help 
address these barriers to PMADs diagnosis and treatment. AI involves 
the development of computer systems that are able to perform tasks 
that normally require human intelligence such as classifying and 
predicting disease, recommending treatments, and producing 
interactive chatbots that leverage large language models to generate 
humanlike responses (20). For example, AI models can accurately 
identify women with an elevated risk for PD, enabling primary 
prevention, before the onset of severe symptoms (4–6). Primary 
prevention is significantly more effective than secondary prevention 
for at-risk women (21). Numerous studies have reported on predictive 
models that can predict PD with high accuracy using a range of 
datasets (22–24). Specifically, researchers have used electronic health 
records (EHRs) (25), administrative claims data (26), actively and 
passively collected data from smartphones (27), social media data 
(27), and patient-reported outcomes (27, 28), to predict PD, and, in 
one study, postpartum psychiatric admission. AI-powered chatbots 
have also become increasingly researched in mental health generally 
for their potential to deliver psychotherapy (29, 30), and may soon 
be tailored to the unique needs of perinatal individuals (31, 32).

Artificial intelligence for perinatal psychiatry is now in the early, 
proof-of-concept stages, but researchers, health systems, and 
companies are planning for implementation (32). The American 
College of Obstetrics and Gynecology (ACOG) has also issued 
guidelines highlighting the potential for AI and other technologies to 
enhance pregnancy-related care (33). Now is the time to ensure that 
patient perspectives are understood and integrated into care delivery 
that uses AI; failure to do so may undermine the very trust in 
clinicians that is so fundamental in mental healthcare. Research on the 
bioethical implications of AI in healthcare has raised many important 
patient safety and quality considerations (34). These conversations 
have generated popular terms such as responsible AI (RAI), which calls 
for AI that is ethical, transparent, and accountable while also aligning 
with stakeholder expectations (35, 36). Similarly, there has been 
significant interest in explainable AI (XAI), which is a set of techniques 
ensuring that a person can understand how or why an AI system came 
up with a certain output (37). XAI can be considered a subdomain of 
RAI because transparency and explainability help identify biases and 
support autonomous decision-making.

However, RAI and XAI work has primarily assumed that AI was 
patient-adjacent: that patients are recipients of AI-propagated benefits 
or harms, but that they do not interact directly with it. Rather, 
we argue that there is a need to equally consider patient-centered AI, 
in which the patient interacts directly with AI during the course of 
their care. There are many envisioned use cases of patient-centered AI 
in perinatal psychiatry. Patient engagement and shared decision-
making continue to rise in importance in healthcare, making it likely 
that AI-generated risk predictions will be discussed or presented to 
patients in clinical care as part of the decision-making process (38). 
Additionally, new United  States policies prohibiting “information 
blocking” have also led to a deluge of information being returned to 
patients through patient portals (39), and this information may soon 
include AI-generated risk predictions that are integrated into EHRs. 
Finally, AI-powered chatbots delivering psychotherapy represent 
another example of patients directly interacting with AI (40). 

Considering patient-centered AI calls for understanding how to 
responsibly implement AI in a manner that further fosters, rather than 
undermines, trust. Therefore, in this perspective, we will describe RAI 
and XAI research, relate it to patient-centered AI, articulate important 
bioethical concepts in patient-centered RAI and XAI, and describe 
why these concepts are of particular importance for perinatal 
psychiatry. We argue that patient-centered AI must consider bioethical 
constructs while also factoring in important elements of context 
including type of data being used to develop AI, persons with whom 
AI or data are shared, what tasks AI supports, and intended time 
period of use (i.e., preconception, pregnancy, or postpartum).

2 The current landscape of RAI and 
XAI

Many ethical concerns have been raised about the uses of AI in 
healthcare. From a legal and regulatory standpoint, the European 
Union (EU) has issued seven key requirements for trustworthy AI, 
which relate to human agency and oversight, technical safety and 
rigor, privacy, transparency, fairness, societal and environmental well-
being, and algorithm accountability (21). The EU also has strict 
regulations, the General Data Protection Regulation (GDPR), 
regarding data sharing and secondary uses of personal data, which 
relate to AI algorithm development (41). Such guidance and 
regulations are lacking, however, in the United States and many other 
nations worldwide, though the White House has proposed the AI Bill 
of Rights, containing many elements similar to the GDPR (42).

Responsible AI encompasses the conceptual and empirical work 
investigating responsible uses of AI (36). Four key ethical principles 
of beneficence, non-maleficence, autonomy, and justice have been 
adapted to the AI use case, with new acknowledgments of the interplay 
between these principles and the external agencies, patients, and the 
complex technical and clinical environments with which AI is used 
(43). Research has shown that deliberately communicating 
information about plans to enact these principles when implementing 
AI in healthcare is associated with favorable attitudes, satisfaction, and 
high usage intentions among clinicians (36). Some have proposed 
practical guidelines to operationalize these principles when AI is 
implemented in clinical practice, including checklists, governance 
processes, and training for clinicians (44). We have identified that 
communicating the purpose (why the AI was developed and what it 
does), process (how it operates), and performance (how well it 
functions) of an AI system helps users form greater trust (45). In 
general, however, the majority of RAI work has been highly 
theoretical, and more practical guidance is needed (46). This research 
has also primarily considered clinicians to be the end users, while 
patients are passive participants in the AI–they are considered 
recipients of the benefits and harms of AI, but not agents interacting 
directly with it (47–49).

A fifth bioethical principle, explainability, has been proposed as 
relating to, and upholding, the other four principles previously 
mentioned (36, 50). Explainability, or XAI, is the idea that humans 
should have insight into how an AI system works. In the literature, it 
is an often-used yet poorly defined term. Some have defined it as 
broadly as technological transparency in general, while others argue 
it has specific requirements including the ability of a human operator 
to reconstruct how an AI system uses data, moves through a 
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decision-making process, and arrives at a conclusion (37, 51). XAI has 
been described as a necessary component of RAI because without 
explainability, it is difficult for clinicians to exercise their independent 
clinical judgment (i.e., act autonomously), or for them to ensure that 
AI is helping, not harming, all of their patients–not just a select few 
(i.e., upholding beneficence, non-maleficence, and justice) (36). XAI 
is necessary because of the “black box” problem; for many types of 
models, particularly those that use deep learning (a type of machine 
learning), the internal workings of the algorithm are unknown to the 
developers or end users. Explainability measures attempt to “shine a 
light” into the black box by using additional algorithms to understand 
how and why an AI model is producing certain output (52, 53). For 
example, XAI may tell a clinician which variables included in a model 
are most contributing to a specific patient’s risk of developing PMADs. 
To further enhance clinical utility, researchers have also explored 
visualizations of these explainability measures (54). However, as with 
RAI research in general, nearly all of the research into XAI techniques 
considers clinicians to be the primary end users (38). Therefore, the 
unique information needs and bioethical concerns of patients who 
may be directly interacting with AI in the course of their care have not 
been fully considered.

Concepts of RAI and XAI are also complex as perspectives may 
vary based on context. For example, a recent survey of 610 
United States-based adults (sampled to reflect racial, sex, and age 
demographics of the United States) found that willingness to share 
health information varied by the type of data (sexual health 
information, imaging data, genetic data, or mental health information) 
and persons with whom the information would be shared (e.g., health 
technology companies, doctors and nurses, and chosen friends and 
family members). Of note for perinatal psychiatry, participants were 
least comfortable sharing sexual and mental health information, 
respectively (55).

3 RAI and XAI matter to perinatal 
psychiatry patients

Trust in AI is one of the biggest challenges in clinical practice and 
one of the goals of AI implementation has been to foster appropriate 
trust. Much of the AI implementation research to date has focused on 
presenting model output and fostering trust in AI among clinicians 
(45). Maintaining the trust of patients who may be directly interacting 
with AI is of equal importance, as trust is a fundamental requirement 
of patient-centered perinatal psychiatry.

Perinatal psychiatry presents a complex bioethical case because of 
the sensitivity of both pregnancy and mental health data, and the 
multiple layers of autonomy. In pregnancy, the autonomy, harms, and 
benefits afforded to the pregnant person, newborn or fetus, and 
partner must be weighed simultaneously (56, 57). Mental health issues 
in the perinatal person can negatively impact the newborn or fetus, 
and partners play an important supportive role in caring for both the 
perinatal patient experiencing PMADs and the newborn. There is also 
a layered network of care providers that may at different points in time 
include, obstetrics, midwifery, doulas, mental health professionals, 
primary care providers, and pediatricians. Although, the perinatal 
person may have different levels of comfort disclosing PMADS 
symptoms to different roles, for example their own obstetrician vs. 
their child’s pediatrician. Furthermore, perinatal persons may 

be reticent to accept AI solutions that can predict or treat PMADs. 
Some concerns relate to the way their personal health data is being 
used. Numerous research studies have noted that integrating multiple 
datasets including EHRs, claims data, patient-reported outcomes, and 
data collected from smartphones and social media improves 
prediction accuracy (26–28). Perinatal people may be  alarmed to 
discover their EHRs are being repurposed and used for AI-based risk 
prediction, and may first learn about it when encountering an 
AI-based risk prediction with their clinicians. Similarly, perinatal 
persons may have unique concerns about wearable data being hacked 
or inappropriately shared (e.g., disclosing their location and 
movements in ways that may be dangerous). For example, many have 
shed light on the privacy violations and monetization of data collected 
from period tracking applications (58, 59). These issues are often 
compounded by the broader concerns about revealing a mental health 
diagnosis during the perinatal period, such as fear of stigma or loss of 
custody of one’s baby (22, 60). Moreover, ethical considerations and 
factors needed to build trust differ by demographic variables, such as 
race and/or ethnicity, due to well-documented issues of algorithmic 
bias (61). Therefore, it is imperative that approaches to patient-
centered AI for perinatal applications inclusively represent different 
patient groups, taking special care to ensure minoritized groups may 
equitably reap benefits and not be  disproportionately exposed to 
harms of AI.

Although in its nascent stages, research on perinatal patients’ 
attitudes toward AI confirms their strong desire to be involved and 
informed about how AI is being used in their care. For example, one 
survey examined the perspectives of 258 English-speaking 
United  States persons registered with an online survey-sampling 
platform regarding their attitudes toward AI use in mental healthcare. 
The sample was reflective of the United States population based on 
race. While the study involved persons with inadequate health literacy 
(24%), those with less than a Bachelor’s degree (47%), and persons 
reporting Hispanic/Latino ethnicity (6.5%), these numbers are 
generally lower than national averages. The authors found most 
participants reported it was “very important” for them to understand 
AI output, that participants with a history of pregnancy were 
significantly more likely to feel this transparency was important, many 
participants were concerned about medical harm resulting from AI, 
inappropriate data sharing, and that AI may lead to their mental 
health provider not knowing them as well (62). Similarly, another 
study surveyed 150 pregnant persons in Spain from a single hospital. 
The respondents had somewhat higher rates of tertiary education than 
the Spanish public (41% in the study vs. 33% nationally). They found 
that participants strongly endorsed the need for AI to be responsible, 
trustworthy, useful, and safe, many have privacy concerns, and, 
importantly, XAI would increase the trust and confidence of 
participants who were averse to AI being used in their care (63). 
Importantly, in both studies, participants reported generally high 
levels of openness to AI being used in one’s healthcare, but all wanted 
their clinical care team to play a role in ensuring the safe, responsible 
use of AI (62, 63). These issues should be further evaluated in a sample 
that is better representative of those that have lower literacy, less 
education, and a greater proportion of those with Hispanic/
Latino ethnicity.

The United States-based study described also, found differences 
in participants’ comfort with AI based on the task the AI performed. 
Participants were least comfortable with diagnosis delivery tasks (i.e., 
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AI telling someone they have a mental health condition) and 
recommending medication. Participants were relatively more 
comfortable with non-pharmacological treatment recommendations 
and AI performing mental health assessments (62).

4 How can we uphold 
patient-centered RAI and XAI in 
perinatal psychiatry?

A practical understanding of patient-centered RAI in perinatal 
psychiatry is critically needed to support patients in seeking care, 
receiving care, and maintaining a positive therapeutic alliance with 
mental health professionals when AI may be involved. As a first step, 
it is important to identify the bioethical issues of importance to 
patients that may be  operationalized in practice in the future. 
Previously, our team has synthesized research on RAI generally (64), 
as well as the ethics of using consumer-generated data (65), AI in 
psychiatry (20), and maternal health (66, 67) to identify core ethical 
concepts to be considered in the perinatal psychiatry space.

We propose six bioethical constructs for upholding patient-
centered RAI, including autonomy, privacy, beneficence, justice, 
transparency, and trust (also shown in Figure 1). Autonomy calls for 
patient self-determination regarding how their data are used by those 

developing AI, and provide informed consent in ways that are specific 
to the data type, recipient, and use case. We assert that this autonomy 
lies with the birthing person involving informal support (e.g., 
partners, family members) as desired, or in rare circumstance where 
medical proxies may be  required. Relatedly, privacy calls for the 
appropriate and confidential uses of personal health data to train AI, 
and for data use to be deferential to patient wishes as described in a 
consent process. Communication of privacy-related practices is even 
more crucial from a reproductive health perspective given the 
sensitivity of the data that may be involved. When data involve the 
infant, privacy from the perspective of the non-birthing partner may 
also become a consideration. Beneficence calls for AI to demonstrably 
improve patient outcomes and, as an implied partner to this, that risks 
and harms from AI are minimized (i.e., non-maleficence). In perinatal 
settings, beneficence must not only consider the birthing person but 
also ensuring potential harms to the child are minimized while 
prioritizing the autonomy and wellbeing of the birthing person. Justice 
calls for the equal and fair access of the benefits of AI to be evenly 
distributed among all patients. As part of this, it is important to 
consider the diversity of patients affected by AI, which includes 
considering potential sources of algorithmic bias as well as differing 
information needs and preferences based on different levels of health 
literacy, numeracy, and experiences of implicit bias in healthcare 
interactions. Given United States-based disparities in perinatal health 

FIGURE 1

Temporal, person, data, and task-based elements that must be considered in the context of bioethical principles to support RAI and XAI for perinatal 
psychiatry. * Patient reported outcomes.
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outcomes, the disproportionate share of adverse perinatal outcomes 
occurring in low-and-middle-income countries, and the lack of 
mental health support for minoritized groups, justice holds particular 
importance in perinatal psychiatry. Transparency calls for XAI that 
considers the patient as the end user, and ensures that patients can 
understand how AI is used in their care, how their personal health 
data was used for that AI, and, crucially, how AI arrived at a specific 
conclusion relating to their health or healthcare. This principle may 
be the most different from the general discussions of XAI and RAI as 
communicating AI output to patients has not previously been 
explored. Finally, underlying each of these principles is Trust—the 
need to ensure that trust between patients, clinicians, and AI is not 
undermined. Because AI research both within and beyond perinatal 
psychiatry has demonstrated that clinicians’ perceptions of AI play a 
significant role in patients’ attitudes toward it (62, 63, 68, 69), we must 
consider the interplay of trust between patient, clinician, and AI.

Our empirical research with 258 pregnancy-capable (female sex 
at birth) United  States-based survey respondents (also described 
above) showed that these concepts resonated with participant groups 
relevant to perinatal psychiatry. The majority of participants surveyed 
about the potential use case of AI for mental health endorsed that it 
was “very important” that they could understand which of their 
individual risk factors for depression are used by AI (85%), AI will 
decrease the chance of negative outcomes (77%), they were aware of 
how their personal data was being used for AI (75%), they were able 
to make up their own mind about their risk for depression based on 
AI output (71%), they can understand how likely it is that they develop 
depression within the next year according to AI (71%), and AI will 
improve depression and/or depressive symptoms (62%) (62).

The endorsed importance of the six bioethical constructs among 
survey participants suggests they may serve as a future research 
agenda for those studying the ethical implications of patients 
interacting with AI in mental healthcare. However, given the 
sensitivities and complexities related to perinatal psychiatry, there 
are also data, person, task, and temporal factors that must 
be considered. Figure 1 outlines important elements to consider as 
it pertains to each of these factors in the context of perinatal 
psychiatry. First, patients may have different needs or perspectives, 
or there may be  different persons to involve based on temporal 
factors, specifically whether they are preconception, currently 
pregnant, or postpartum. This also considers that patient 
perspectives and needs are fluid within and outside of these time 
frames. Second, there are numerous persons who may influence data 
used for AI or may have access to AI-related information, including 
both informal support persons and health professionals. Which 
persons are involved and patient perspectives regarding their 
involvement will likely be individually dependent. Third, AI may 
be  informed using various different kinds of patient and health-
system generated data elements, some of which have been described. 
While these elements may not differ much for perinatal persons, the 
information may have increased sensitivity which should 
be considered, for example, app-related data that track ovulation or 
pregnancy, or mental health reported outcomes. Fourth, AI may 
be  used to support diagnosis/classification, treatment 
recommendation, or treatment support related tasks. Needs and 
opinions on diagnosis and classification tasks may vary based on 
perceived severity of disease (e.g., psychosis vs. moderate depression) 

or other factors. Based on our previous work, patient comfort with 
treatment recommendation tasks may vary based on whether or not 
the treatment involves pharmacotherapy, and these perceptions may 
also differ throughout the preconceptions, pregnancy, and 
postpartum life-cycle. Fourth, treatment support may come in many 
different forms with varied levels of autonomy, such as using patient-
reported outcomes (PROs) to support health-professional led care 
to having a nearly-autonomous chatbot leading therapy. Last, these 
factors must continue to be  weighed with the foundation of 
bioethical principles described above. There are likely more 
questions than answers related to AI use for perinatal psychiatry in 
these nascent stages, but we advocate that a research agenda should 
consider these bioethical constructs and contextual factors in order 
to ensure AI in perinatal psychiatry may be  safe, inclusive, and 
patient-centered.

It may be  possible to design patient education materials, or 
features in the AI-integrated technology itself, to uphold bioethical 
principles in practice while still considering important contextual 
factors. For example, computational interpretability methods that 
explain important predictors in AI-generated risk prediction [e.g., 
SHapley Additive exPlanations, or SHAP (70)] may improve patient 
and clinician trust in the AI and foster its appropriate, safe use. 
Because visualizations objectively improve comprehension (71, 72), 
these methods should include visualizations that are comprehended 
by patients, not just clinicians. Additionally, patient educational 
materials or “InfoButtons” embedded directly in AI-enhanced 
technologies can explain an AI’s purpose, its use of personal health 
data, and its performance, which may support autonomy and 
transparency. Communication of this information should also follow 
inclusive design principles to uphold distributive justice (73). Based 
on described shortcomings in the samples included in previous 
relevant research (62, 63), it is also important that further empirical 
studies be conducted with samples that reflect the ethnicity, literacy, 
and educational backgrounds of diverse perinatal populations. This 
may be accomplished scientifically by instituting sampling quotas or 
over-sampling typically under-represented groups. Practically, it will 
be  important to work with community-based organizations to 
support: recruitment, use of appropriate language, and fostering trust 
with groups that have a history of facing discrimination in a 
healthcare setting.

In the near future, perinatal patients may interact with AI during 
clinical decision-making (38), in their patient portals (39), or through 
AI-powered chatbots delivering psychotherapy (40). Current 
discussions of RAI are limited in their consideration of the patient as 
an active participant with AI. Therefore, we  propose a patient-
centered, rather than a patient-adjacent, approach to RAI and XAI, 
that identifies autonomy, beneficence, justice, trust, privacy, and 
transparency as core concepts to uphold. Although we suggest possible 
design solutions, research about practical applications to uphold these 
principles is needed as a next step.
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