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The present study investigated the synthesis and biological applications 
of green, economical, and multifunctional silver and gold nanoparticles 
(TSAgNPs and TSAuNPs) using the ethnomedical important medicinal 
plant Thespesia lampas for biological activities. Relatively higher levels of 
antioxidant components were measured in T. lampas compared to the well-
known Adhatoda vasica, and Diplocyclos palmatus suggested the potential 
of T. lampas for the study. Synthesized TSAgNPs and TSAuNPs were 
characterized through UV–Vis, XRD, SEM-EDS, HR-TEM, SAED, and FTIR 
techniques. SEM revealed that TSAgNPs and TSAuNPs were predominantly 
spherical in shape with 19  ±  7.3 and 43  ±  6.3  nm crystal sizes. The sizes 
of TSAgNPs and TSAuNPs were found to be12  ±  4.8 and 45  ±  2.9  nm, 
respectively, according to TEM measurements. The FTIR and phytochemical 
analyses revealed that the polyphenols and proteins present in T. lampas 
may act as bio-reducing and stabilizing agents for the synthesis. Synthesized 
NPs exhibited enhanced scavenging properties for ABTS and DPPH radicals. 
TSAgNPs and TSAuNPs were able to protect DNA nicking up to 13.48% and 
15.38%, respectively, from oxidative stress. TSAgNPs possessed efficient 
antibacterial activities in a concentration-dependent manner against 
human pathogenic bacteria, such as E. coli, B. subtilis, P. vulgaris, and S. 
typhi. Furthermore, TSAgNPs and TSAuNPs showed significant cytotoxicity 
against FaDu HNSCC grown in 2D at 50 and 100  μg  mL−1. Tumor inhibitory 
effects on FaDu-derived spheroid were significant for TSAgNPs > TSAuNPs 
at 100  μg  mL−1 in 3D conditions. Dead cells were highest largely for 
TSAgNPs (76.65%  ±  1.76%), while TSAuNPs were non-significant, and Saq 
was ineffectively compared with the control. However, the diameter of the 
spheroid drastically reduced for TSAgNPs (3.94 folds) followed by TSAuNPs 
(2.58 folds), Saq (1.94 folds), and cisplatin (1.83 folds) at 100  μg  mL−1. The 
findings of the study suggested the bio-competence of TSAgNPs and 
TSAuNPs as multi-responsive agents for antioxidants, DNA protection, 
antibacterial, and anti-tumor activities to provide a better comprehension 
of the role of phytogenic nanoparticles in healthcare systems.
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1 Introduction

Metal nanoparticles (NPs), such as silver and gold, have gained 
researchers’ attention as potential nanoproducts that find imperative 
applications in biomedicine (Hawsawi et al., 2023; Nath et al., 2023; 
Sukri et al., 2023). On the ground of medical applications of silver and 
gold nanoparticles, there are various reports on antibacterial 
investigations (Rasheed et al., 2017; Nath et al., 2020; Wypij et al., 
2021; Singh and Mijakovic, 2022; Raja et  al., 2023), antifungal 
activities (AlMasoud et al., 2020; Leyu et al., 2023), anticancer studies 
(Gomathi et al., 2020; Kumari et al., 2020; Nath et al., 2020; Anadozie 
et  al., 2023; Moosavy et  al., 2023; Raja et  al., 2023), antioxidant 
evaluations (Rasheed et al., 2017; Leyu et al., 2023; Moosavy et al., 
2023), wound healing studies (Aldakheel et al., 2023), anthelmintic 
activity (Majumdar and Kar, 2023), and anti-inflammatory and 
analgesic activities (Ahmad et  al., 2015). On the other hand, the 
chemicals employed in the fabrication of nanomaterials are expensive 
but also toxic and hazardous to human life and the environment 
(Dehvari and Ghahghaei, 2018; Rahimi and Doostmohammadi, 2019; 
Altammar, 2023). The byproducts produced during the nanomaterial 
synthesis reactions eventually lead to various biological risks that limit 
their application in biomedical and clinical fields (Khan et al., 2021). 
On the other hand, the green chemistry approach of utilizing 
biological systems to synthesize nanoparticles is a non-toxic, clean, 
biocompatible, and environment-friendly technique (Liaqat et  al., 
2022). Botanical extract-mediated synthesis of metal nanoparticles has 
offered a biocompatible and economical fabrication (Nath et al., 2020; 
Singh and Mijakovic, 2022). Using crude extracts of plant parts to 
fabricate NPs suggests a better option for high-yield production. Fruit 
extract of Couroupita guianensis and Punica granatum (Sathishkumar 
et al., 2016; Sukri et al., 2023), leaf of Lawsonia inermis (Ajitha et al., 
2016), peel of Nephelium lappaceum (Kumar et al., 2015), stem of 
Tinospora cordifolia (Nath et al., 2023), roots of Erythrina indica (Sre 
et al., 2015), and leaf of Carica papaya (Singh et al., 2021) have been 
cited for reducing and stabilizing green NPs. Plants owe a diverse 
range of phytochemicals, metabolites, and antioxidant compounds, 
including polyphenols, lignin, polysaccharides, and cellulose, that 
provide excellent bio-reductants and bio-stabilizers (Susanti et al., 
2022; Kulkarni et al., 2023). These active herbal components may act 
separately or synergistically to prevent the agglomeration of NPs by 
forming a bio-layer around the NPs (Mishra et al., 2013b).

Thespesia lampas is not a well-known ethnomedical medicinal 
plant. The plant has been reported for various therapeutic properties 
including hepatoprotective (Ambrose et  al., 2012), antioxidant 
(Sangameswaran et  al., 2009), anthelmintic (Kosalge and Fursule, 
2009), anti-diabetic (Jayakar and Sangameswaran, 2008), and 
antimicrobial studies (Valsaraj et al., 1997). The root, stem, and leaves 
have been reported for anti-inflammatory, anthelmintic acidity, 
bleeding nose, bronchitis, carbuncle, cough, dysentery, fever, 
gonorrhea, sunstroke, and urinary complaints (Adhikari et al., 2007). 
Recently, the stem part has been explored for its cellulose fibers 
(Chumbhale and Upasani, 2012; Reddy et al., 2014; Ashok et al., 2015, 
2019) and derived silver NPs (Ashok et al., 2018). The therapeutic 
potential and convenient availability of the stem part made it a suitable 
choice to be included in the study. Therefore, the presented study is a 
systematic effort to investigate (i) the phytochemical profile of 
T. lampas and compare it with two medicinal plants of repute, namely, 
Adhatoda vasica (Gantait and Panigrahi, 2018) and Diplocyclos 

palmatus (Packer et al., 2012); (ii) the synthesis of T. lampas stem-
mediated silver and gold nanoparticles (TSAgNPs and TSAuNPs); (iii) 
the multi-responsive functions of TSAgNPs and TSAuNPs for radical 
scavenging activity, DNA protective potential, and broad-spectrum 
antibacterial properties; (iv) cytotoxicity against the FaDu head and 
neck squamous cell carcinoma cells (HNSCCs) in 2D and 3D 
conditions using FaDu-derived spheroid. The study is the first report 
on the biological potential of T. lampas-encapsulated TsAgNPs 
and TSAuNPs.

2 Materials and methods

All chemicals used to synthesize NPs, phytochemical estimation, 
cytotoxic, antioxidant, and antibacterial studies were purchased from 
HiMedia (Mumbai, India). Cell culture media and fetal bovine serum 
were obtained from Invitrogen Life Technologies (Grand Island, NY), 
and pUC19 DNA was obtained from Sigma–Aldrich (St Louis, MO). 
Calcein AM, Ethidium Bromide, and Hoechst 33342 dyes were 
procured from Life Technologies (Thermo Fisher Scientific, Waltham, 
MA). Extracts and NPs were prepared using Millipore Milli-Q water 
(Merck Millipore, Massachusetts, United States). All chemicals were 
of analytical grade.

2.1 Sample collection and identification

Stems of A. vasica, D. palmatus, and T. lampas were collected from 
Dhareshwar Mount in Vijayanagar Forest, North Gujarat, India. The 
voucher number for taxonomic identification (A. vasica SN-01/BSJO, 
D. palmatus SN-06/BSJO, and T. lampas SN-13/BSJO) was provided 
by the Arid Zone Regional Center, Botanical Survey of India, 
Government of India.

2.2 Preparation of aqueous and 
hydromethanolic extracts

Approximately 10 g shade-dried powder of T. lampas stem was 
extracted in 100 mL water at 60°C for 30 min, centrifuged, and the 
supernatant was collected. The exhausted pellet was re-extracted, and 
combined supernatants (5%) of stem aqueous extract (Saq) were 
collected. Hydromethanolic extracts of the dried stems (500 mg in 
80% methanol) of all three plants were prepared according to Nath 
et al. (2017).

2.3 Determination of polyphenols and 
antioxidant activity of Adhatoda vasica, 
Diplocyclos palmatus, and Thespesia 
lampas

The total phenolic content (TPC) of the extracts was assessed 
according to the Folin–Ciocalteau method (Cai et al., 2004). In brief, 
0.25 mL of hydromethanolic extracts was added to 0.25 mL of 2 N 
Folin–Ciocalteu reagent and was neutralized by 7% (w/v) sodium 
carbonate and kept in the dark at room temperature (RT) for 90 min. 
The absorbance of the resulting blue color was measured at 765 nm 
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using a multimode plate reader (Synergy H1 Hybrid Multi-Mode 
Microplate Reader). The results are expressed in mg gallic acid 
equivalent per g dry weight (GAE/g DW) basis.

The total flavonoid content (TFC) of samples was determined 
according to the aluminum chloride method (Nath et al., 2017). In 
total, 500 μL of hydromethanolic extracts was added to AlCl3 (500 μL, 
10% w/v) and potassium acetate (100 μL, 1.0 M). The mixtures were 
incubated at 22°C ± 1°C for 30 min, and the absorbance was measured 
at 415 nm. Data are expressed in mg quercetin equivalent (QE/g DW).

Diluted ABTS solution (absorbance of 0.700) was added to 100 μL 
of hydromethanolic extracts (0.5–2 mg mL−1) and mixed thoroughly 
(Cai et al., 2004). The reaction mixture was allowed to stand for 6 min 
in the dark, and the absorbance was measured at 734 nm. The radical 
scavenging activity (RSA) % was calculated as:

 
RSA A A

A
X% =

−0 1

0

100

 
(1)

where A0 is the absorbance of the control (without test sample), 
and A1 is the absorbance of the reaction mixture (with test sample). 
Trolox (0.03 to 0.2 mg mL−1) was used as a positive control.

DPPH RSA % was measured as described by Blois (1958). Overall, 
100 μL of hydromethanolic extracts (0.5–2 mg mL−1) was mixed with 
2 mL of DPPH. The absorbance of the reaction mixture was measured 
at 517 nm. Ascorbic acid (0.02 to 2 mg mL−1) was used as a positive 
control. The percentage of DPPH decolorization of the sample was 
calculated according to Equation 1.

Total antioxidant capacity (TAC) was measured according to 
Prieto et al. (1999). Hydromethanolic extract aliquots were added to 
1 mL of reagent solution containing 0.3 N sulfuric acid, 4 mM 
ammonium molybdate, and 28 mM sodium phosphate. Tubes were 
placed at 100°C for 90 min and cooled to RT, and the absorbance was 
noted at 695 nm. The result is expressed as μM ascorbic acid equivalent 
(AAE/g DW).

2.4 Synthesis of TSAgNPs and TSAuNPs

To synthesize TSAgNPs and TSAuNPs, 10 mL of saq (5%, pH 6) 
was added drop by drop into two separate flasks containing 90 mL 
2 mM AgNO3 and 90 mL 2 mM HAuCl4 solutions in the mixing ratio 
of 1:9, respectively. Both flasks were continuously stirred at 400 rpm 
for 24 h at RT. After that, colloidal solutions were centrifuged at 
14,000 rpm at 4°C for 20 min and washed with ethanol and Milli-Q 
water to harvest purified TSAgNPs and TSAuNPs (Ramteke C. et al., 
2013). NPs were air-dried, crushed to powder, and stored in the dark.

2.5 Physical characterization

The absorption spectra of NPs were monitored through UV–vis 
spectrophotometer (Analytical, 2060+). X-ray diffraction (XRD) 
pattern was recorded using X-ray diffractometer (X’Pert Pro, 
PANalytical, BV) operated at 40 kV, 30 mA, CuKα (k = 1.5406 Å), 
K-bet filter in the 2θ range of 10°–80° with a continuous scanning 
speed of 10°/min. Surface morphology was analyzed using field-
emission scanning electron microscopy (FE-SEM; Bruker NANO 
NOVA 450); the Energy dispersive X-ray spectrum (EDS) was 

recorded at 20 kV (Bruker, Germany). Size and surface morphology 
were analyzed using high-resolution transmission electron microscopy 
(HR-TEM; JEOL model, JEM-2000FX) and selected area electron 
diffraction (SAED). Fourier transform infrared (FTIR; KBr pellet 
method) was used to show the functional groups in the range of 
500–4,000 cm−1 (Perkin Elmer, SP-65).

2.6 Estimation of polyphenols before and 
after synthesis reaction

Polyphenol levels (TPC and TFC) before the synthesis reaction, 
i.e., Saq, and after the synthesis reaction (solution left after harvesting 
NPs) were estimated as described in section 2.3.

2.7 Extraction and estimation of protein 
before and after synthesis reaction

Determination of protein content was performed according to the 
Bradford method (Bradford, 1976). Approximately 50 mg of sample 
was mixed with 1 mL of extraction buffer containing 1 M Tris–HCl pH 
6.8, 50% glycerol, 25% beta-mercaptoethanol, 10% SDS, and 1% 
bromophenol blue. The mixture was denatured by placing at 100°C 
for 10 min, followed by 2 min of vortex and centrifugation at 5,600 rpm 
for 8 min. The supernatant (10 μL) was added to 5 mL Coomassie 
brilliant blue dye, and the absorbance was measured at 630 nm. The 
value is expressed as mg BSA/g DW.

Furthermore, the proteins involved in the synthesis of TSAgNPs 
and TSAuNPs were investigated through SDS-polyacrylamide gel 
electrophoresis analysis as described previously (Mishra et al., 2013a). 
Overall, 20–25 μg of protein was taken as a loading sample for 
separation on 10% SDS-PAGE and fixed in 12.5% trichloroacetic acid 
for 1 h at RT. The gel was stained with Coomassie brilliant blue. 
Furthermore, the gel was washed to distain the dye. After proper 
distaining, an image was captured to show the ladder and protein 
bands in the gel.

2.8 Antioxidant activity of TSAgNPs and 
TSAuNPs

ABTS and DPPH RSA % of Saq, TSAgNPs, and TSAuNPs were 
calculated as described in section 2.3.

2.9 DNA damage protective potential

DNA damage protective assay was performed using a Fenton 
reagent following the method proposed by Lee et al. (2002). In total, 
50 μL of the reaction mixture contained 2 μL pUC19 DNA, volume 
of 30 mM H2O2, 80 mM FeCl3, 50 mM ascorbic acid in PBS, and 10 μL 
of 100 μg mL−1 Saq, volume of 20 μg mL−1 of TSAgNPs/TSAuNPs. The 
tubes were incubated at 37°C for 30 min. The mixture was then 
loaded with 2 μL of bromophenol dye onto 0.8% agarose gel and ran 
for 1 h at 90 V with 0.5X TBE buffer. DNA bands were stained with 
ethidium bromide and captured using the Syngene gel 
documentation system.
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2.10 Evaluation of antibacterial activity

Antibacterial assay was performed using the agar well diffusion 
method (Sre et  al., 2015). In total, 100 μL inoculum of human 
pathogenic bacteria, such as E. coli, B. subtilis, P. vulgaris, and S. typhi, 
at their log phase containing density of approximately 1.5 × 108 
cfu mL−1 was poured onto a solidified agar plate and gently spread 
with the help of sterile cotton swab. Wells were punched as per 
requirement on the agar plate using a sterile metal borer with a 
diameter of 0.7 mm. In total, 50 μL of test samples (0.5–50 μg mL−1 
TSAgNPs and TSAuNPS for concentration-dependent study, 
20 μg mL−1 TSAgNPs and 20 μg mL−1 TSAuNPs for comparative study, 
5% Saq, 2 mM AgNO3, and 2 mM HAuCl4) was injected into the wells 
and incubated at 37°C for 24 h. At the end of the incubation period, 
plates were observed to record the zone of inhibition (ZOI).

2.11 In vitro cytotoxic assay

Extracts and NPs were analyzed for their cytotoxic activities 
against the FaDu HNSCC growing at monolayer (2D condition) using 
the MTT method as previously described (Shyanti et al., 2017). Cells 
were seeded at 1 × 104 cells per well in 96-well plates in EMEM 
medium supplemented with 10% FBS. Cultured cells were treated (in 
triplicates) with samples (Saq, TSAgNPs, and TSAuNPs) at 50 and 
100 μg mL−1 concentrations in 1% DMSO. Plates were incubated in 5% 
CO2 at 37°C for 24 h. After incubation, 20 μL of MTT (5 mg mL−1) 
solution was added to each well and incubated for the next 4 h. After 
the time period, 100 μL of DMSO was added to each well, and the 
absorbance was measured at 570 nm in the multimode reader. The 
proliferation percentage of viable cancer cells was calculated relative 
to untreated DMSO as a control.

2.12 In vitro anti-tumor spheroid 
multi-stain assay

FaDu cells were plated (100 μL) at 1,000 cells per well into a 
Corning 96-well ultralow attachment plate in a DMEM F12 medium 
supplemented with EGF, b-FGF, wnt, noggin, R-spondin, and B27. 
The plate was kept inside a 5% CO2 incubator at 37°C. Spheroid 
formation was observed on day 3. On day 7, spheroids were treated 
with control (DMSO), positive control-cisplatin (10 μg mL−1), saq 
(100 μg mL−1), TSAgNPs (100 μg mL−1), and TSAuNPs (100 μg mL−1) 
and subsequently observed for morphological changes and spheroid 
viability. After 72 h (on day 10), Hoechst 33342 (1 μM), calcein 
AM (2 μM), and EtBr (1 μM) cocktail in 1× PBS were overlaid on each 
well having spheroids and incubated for 15–20 min. Calcein 
AM-stained cells were live cells observed as green (FITC channel), 
EtBr-stained cells were dead cells observed as red (TRITC channel), 
and Hoechst 33342-stained cells were observed as blue (UV channel; 
Pandey et al., 2022).

2.13 Statistical analysis

All experiments were performed with three technical replicates. 
The results are represented as mean value ± standard deviation. The 

significance of the difference was analyzed through one-way ANOVA 
following Tukey’s test (p < 0.05) with GraphPad Prism version 6.01 (La 
Jolla, CA).

3 Results and discussion

3.1 Polyphenols and antioxidant potential 
of Thespesia lampas, Adhatoda vasica, and 
Diplocyclos palmatus

Phytochemical analysis of the stem of medicinal plants such as 
A. vasica, D. palmatus, and T. lampas showed that T. lampas expressed 
significant levels of TPC, TFC, ABTS, DPPH RSA %, and TAC 
(p < 0.05; Figures  1A,B). TPC measured in the stem were 7.50 
(D. palmatus), 11.25 (A. vasica), and 26.50 mg GAE/g DW (T. lampas) 
whereas TFC measured were 1.57 (A. vasica), 2.31 (T. lampas), and 
6.74 mg QE/g DW (D. palmatus). ABTS and DPPH RSA % were 
found to be significantly higher in T. lampas compared with A. vasica 
and D. palmatus (p < 0.05) in a concentration-dependent manner. 
ABTS and DPPH RSA % for T. lampas ranged from 13.62% to 37.31% 
and 11.52% to 42.69%, respectively. No ABTS RSA % was detected in 
lower concentrations of A. vasica (0.5 and 1 mg mL−1) and D. palmatus 
(0.5 mg mL−1). Higher TAC was recorded in the stem of T. lampas than 
in A. vasica and D. palmatus (48.84, 28.25, and 23.09 μM AAE/g DW, 
respectively). The values of phenolics and antioxidants of T. lampas, 
A. vasica, and D. palmatus were similar to the reported studies 
(Kumaraswamy and Satish, 2008; Dutta and Maharia, 2012; Attar and 
Ghane, 2017; Shukla et al., 2017). The phenolic and antioxidants of 
T. lampas were detected remarkably higher than A. vasica and 
D. palmatus. Polyphenolics are known for their potential role in 
biological activities as scavengers of free radicals, holding antioxidant 
capacity (Bhatt et al., 2017; Benabderrahim et al., 2019).

3.2 Synthesis, characterization, and 
mechanism of TSAgNPs and TSAuNPs

Thespesia lampas stem extract, when mixed with AgNO3 and 
HAuCl4 solutions separately at RT, the colorless AgNO3 changed into 
amber, and the yellow HAuCl4 turned into a ruby red-pink color. The 
instant color change of aqueous AgNO3 and HauCl4 was observed due 
to surface plasmon resonance (SPR) excitation (Ramteke C. et al., 
2013; Mata et al., 2016; Castillo-Henríquez et al., 2020; Nguyen et al., 
2020). The addition of Saq to precursor solutions AgNO3 and HauCl4 
initiated the reduction in Ag+ to Ag0, causing the synthesis of 
TSAgNPs and TSAuNPs, respectively (Saxena et al., 2012). Synthesized 
TSAgNPs and TSAuNPs were monitored at regular time intervals 
through UV–VIS spectroscopy. The observed absorption bands 
peaked at 420 and 530 nm for TSAgNPs and TSAuNPs, respectively, 
and increased steadily with time (Figures  2A,B). Spectra were 
periodically monitored as a function of time for 24 h. The synthesis of 
both NPs was completed within 12 h of reaction as λ max approached 
the plateau with time (Figures 2A1,B1). A single symmetric absorption 
peak indicated characteristic SPR of spherical TSAgNPs and 
TSAuNPs, which are similar to earlier reports (Dauthal and 
Mukhopadhyay, 2013; Ramteke P. W. et al., 2013; Sre et al., 2015; 
Sathishkumar et al., 2016).
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The XRD analysis was carried out to measure the peak intensity, 
position, width, and size of the crystal. The characteristic diffraction 
peaks in XRD analysis obtained for TSAgNPs at 38.29, 44.05, 64.38, 
and 77.36 and TSAuNPs at 38.16, 44.47, 64.78, and 77.79 were plotted 
in 2θ range of 10°–80°, as shown in Figure 3. The diffraction peaks for 
TSAgNPs and TSAuNPs were indexed to (111), (200), (220), and 
(311) sets of Bragg’s reflections of crystallite face-centered cubic (fcc) 
structure. The peaks observed at 27.82, 32.21, and 54.89 were indexed 
to (110), (111), and (220) planes, which might correspond to the 
presence of silver oxide NPs (Dhoondia and Chakraborty, 2012; Pawar 
et al., 2016; Manikandan et al., 2017; Fowsiya and Madhumitha, 2019). 
The lattice planes were in agreement with the Joint Committee on 
Powder Diffraction Standards file no. 04–0783 for AgNPs and 04–0784 
AuNPs (Philip, 2010; Bindhu and Umadevi, 2013). The mean crystal 
sizes of TSAgNPs and TSAuNPs were calculated from the full width 
half maximum using the Debye–Scherrer equation (Philip, 2010).

d 9= 0. / cosλ β θ

where d is the mean diameter of NPs, λ = 1.5406 = 1.5406, Å is the 
wavelength of the X-ray source, β is the angular full width half 
maximum (FWHM) of the peak in radians, and θ is the Bragg angle. 
The mean crystal sizes of TSAgNPs and TSAuNPs obtained were 13 
and 26 nm, respectively. High concentrations of metal ions decreased 
the peak height and caused the broadening, which indicated that the 
particles were in the nano range (Bindhu and Umadevi, 2013). The 
unassigned peaks in the XRD spectrum may be  attributed to the 
crystallization of the phyto-organic phase on the surface of the 
crystalline nano-sliver (Philip, 2009).

FE-SEM imaging at 100 nm magnifications revealed the surface 
morphology and shape of TSAgNPs and TSAuNPs (Figures 4A,B). 
A narrow diametric size distribution of NPs, indicating 
polydispersity in the range of 6–46 nm for TSAgNPs (N = 290) and 
23–63 nm for TSAuNPs (N = 240), was realized through the 
corresponding histograms (Figures 4A1,B1). The obtained TSAgNPs 
and TSAuNPs were polydisperse and spherical in shape. The mean 
diametric sizes of TSAgNPs and TSAuNPs were found to be 19 ± 7.3 

FIGURE 1

Phytochemical analysis of selected plant species. TPC and TFC (A), ABTS RSA %, DPPH RSA %, and TAC (B). AV—Adhatoda vasica, DP—Diplocyclos 
palmatus, and TL—Thespesia lampas. ***p  <  0.001, ****p  <  0.0001.

FIGURE 2

UV–visible spectra of phyto-synthesized TSAgNPs and TSAuNPs were recorded as a function of time. TSAgNPs and TSAuNPs show absorbance at 420 
and 530  nm, respectively (A,B). Variation of the corresponding λmax vs. reaction time shows the maximum formation of TSAgNPs and TSAuNPs within 
12  h (A1,B1).
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and 43 ± 6.3 nm, respectively. EDS analysis confirmed the qualitative 
and quantitative presence of elemental silver and gold in TSAgNPs 
and TSAuNPs. Characteristic strong peaks of silver and gold were 
displayed at 3 and 2 KeV, respectively (Figures 5A,B). The oxygen 

signal indicated the possibility of silver oxide NPs. The weight 
percentages of silver and oxygen were 68.22% and 9.02% in 
TSAgNPs, and the weight percentage of gold was 91.48% in 
TSAuNPs (Jemal et al., 2017).

FIGURE 3

XRD pattern of TSAgNPs and TSAuNPs.

FIGURE 4

FE-SEM images of TSAgNPs and TSAuNPs (A,B) and the corresponding histogram displaying particle size distribution (A1,B1).
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TSAgNPs and TSAuNPs observed in HR-TEM micrographs 
revealed predominantly spherical shape, uniform contrast, 
polydisperse, and agglomeration forming irregular contours 
(Figures 6A,B). Uniform contrast reflection in particles indicated the 
consistency of homogeneous electron density within the volume 
(Kumari et  al., 2015). The mean particle sizes of TSAgNPs and 
TSAuNPs were obtained to be 12 ± 4.8 and 45 ± 2.9 nm, respectively 
and were comparable with the results of the SEM polydispersity range 
(Lokina et al., 2014; Raj et al., 2018). A clear lattice fringe space was 
measured to be 0.23 nm in each NP, corresponding to the spacing 
between (111) Bragg’s reflection plane of nanocrystals (Figures 6A1,B1). 
The crystalline nature of the lattice space was further evidenced by a 
selected area electron diffraction (SAED) pattern with bright circular 
dots of metallic NPs, which corresponded to (111), (200), (220), and 
(311) planes of crystallite fcc structure (Figures 6A2,B2). SAED pattern 
indicated the enhanced growth of crystals, sharing identical 
orientation (Radziuk et al., 2010). The results obtained in TEM were 
in agreement with earlier reports (Dauthal and Mukhopadhyay, 2012; 
Ramteke P. W. et  al., 2013). Some layer-kind outside coating was 
observed on the surface of NPs at high magnification, probably due to 
the presence of bio-capping of phytochemical moieties from T. lampas 
Saq (Saxena et al., 2012).

FTIR spectroscopy was carried out to identify the possible 
bio-functional groups present in the stem of T. lampas which were 
involved in NP synthesis (Figure 7). Peaks at 3426.72 cm−1 in Saq 
assigned to O-H stretching vibration modes of polyphenolic 
components shifted to 3385.44 cm-1  in TSAgNPs. The peak at 
1567.74 cm-1  in Saq corresponded to amide II and shifted to 
1607.25 cm-1 in TSAgNPs (Dauthal and Mukhopadhyay, 2012; Ran 
et al., 2019). The peak at 1046.90 cm-1 in Saq occurred due to the C-N 
stretching of aliphatic amines confined to TSAgNPs. The IR spectrum 

of TSAuNps showed alteration only in a single peak, and the 
disappearance was observed at 1567.74 cm−1. However, other peak 
positions remain unchanged. The presence of polyphenols, including 
ellagic acid, tannic acid, quercetin, gallic acid, and rutin, has been 
reported in T. lampas which might be involved during the bioreduction 
process (Ambrose et al., 2012).

To identify the contribution of polyphenols and proteins to the 
synthesis of NPs, TPC, TFC, and total protein were estimated before 
the synthesis reaction, i.e., Saq and after the synthesis reaction 
(supernatant left after harvesting NPs; Figure 8). The polyphenol level 
before the synthesis reaction, i.e., Saq, was noted to decrease in the 
after synthesis supernatant in TSAgNPs (TPC p < 0.0001, TFC ns) but 
not in TSAuNPs (Figures 8A,B). On the other hand, the levels of 
protein decreased in the after synthesis supernatant of both TSAgNPs 
(p < 0.01) and TSAuNPs (p < 0.001; Figure 8C). The involvement of 
protein in NP synthesis was further shown through SDS-PAGE 
electrophoresis. Lanes 3 and 4 were loaded with the supernatants of 
TSAgNPs and TSAuNPs, respectively. Saq illustrated two bands 
between 75 and 100 kDa as stabilizing proteins that play a crucial role 
in checking the oxidation of Ag(0) into Ag+ (Rodrigues et al., 2013; 
Chowdhury et  al., 2014; Pallavi et  al., 2022). The band range of 
75–100 kDa evidently disappeared in the after synthesis supernatant 
of both TSAgNPs and TSAuNPs (Figure  8D). A decrease in 
polyphenols and protein levels and the disappearance of protein bands 
in the after synthesis supernatants suggested their possible utilization 
as bio-reductants and stabilizers that might be absorbed on the surface 
of NPs during synthesis reactions. Hence, the original forms of these 
metabolites were probably modified, and consequently, their levels 
decreased in the after synthesis supernatants (Mishra et al., 2013a; 
Zheng et al., 2013). Based on the above explanations, two schemes for 
NP synthesis mechanisms have been proposed (Figure 9). In scheme 

FIGURE 5

EDS of TSAgNPs and TSAuNPs indicate the elemental presence of silver and gold (A,B).
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A, polyphenols acted as bio-reductants for Ag+ to form Ag(0), and 
further protein-aided stabilization of Ag(0) occurred to form 
phytochemical encapsulated TSAgNPs (Saxena et al., 2012; Mathur, 
2014). In scheme B, protein has been suggested to perform a dual 
function of bio-reductant and stabilizer in synthesizing TSAuNPs 
(Dauthal and Mukhopadhyay, 2012; Sathishkumar et al., 2016).

3.3 Antioxidant properties

ABTS RSA % of TSAgNPs and TSAuNPs ranged from 14.79 to 
66.84% and 25.42 to 90.82%, respectively (Figure  10A). TSAgNPs 
(EC50 = 1.49 mg mL−1) and TSAuNPs (EC50 = 1.13 mg mL−1) exhibited 
higher ABTS RSA % than Saq (EC50 = 36.23 mg mL−1) in a concentration-
dependent manner. Similarly, DPPH RSA % for TSAgNPs 
(EC50 = 0.88 mg mL−1) and TSAuNPs (EC50 = 0.65 mg mL−1) was found 
higher than Saq (EC50 = 14.00 mg mL−1; Figure 10B). TSAuNPs were 

found to be  better scavengers of free radicals than TSAgNPs. The 
improved radical quenching ability of NPs may be attributed to the (i) 
electron transfer property that neutralized the free DPPH and ABTS 
radicals and (ii) intrinsic higher surface-to-volume ratio of NPs, 
facilitating more linkages between antioxidants and radicals (Dauthal 
and Mukhopadhyay, 2013; Sathishkumar et al., 2016).

3.4 DNA damage protective activity

In gel electrophoresis, Lane 1 contained reference DNA—a native 
supercoiled circular form of DNA (C-DNA) denoted by Band C. Lane 
2 contained a mixture of DNA and a Fenton reagent (Figure 11A). 
Hydroxyl radicals generated during Fenton reactions exerted oxidative 
stress, leading to the nicking of native C-DNA to relaxed-DNA form 
(R-DNA), shown as B and R in the electrophoretic pattern 
(Figure 11A; Soumya et al., 2013). Saq, TSAgNPs, and TSAuNPs were 
mixed along with DNA and Fenton reagent in Lanes 3, 4, and 5, 
respectively, to assess their ability to protect against nicking of C-DNA 
to R-DNA. Densitometric analysis was performed to measure band 
intensity using ImageJ software (Figure 11B). The quantification of the 
electrophoretic image showed that Saq was poorly protective (0.38%) 
toward DNA nicking, and thus, intense B and R of relaxed DNA were 
observed in the electrophoretic pattern (Figure  11C). However, 
TSAgNPs and TSAuNPs were able to recover 13.48% and 15.38% of 
C-DNA significantly (p < 0.001) from hydroxyl damage and aid DNA 
in retaining its native form observed as light B and C in Lanes 4 and 
5. The electron accepting/donating property of NPs led to the 
interconversion of Ag(0)/Au(0) to Ag+1/Au+1 which may check ferric 
ion reduction to ferrous and thus interfered with the Fenton reactions 
(Ramamurthy et al., 2013; Ajitha et al., 2016). The results suggested 

FIGURE 6

HR-TEM micrograph of TSAgNPs and TSAuNPs (A,B), corresponding lattice fringes with d-spacing of single nanocrystal (A1,B1), and SAED pattern 
(A2,B2).

FIGURE 7

FTIR spectra of Saq, TSAgNPs, and TSAuNPs showing the presence 
of functional groups.
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the therapeutic quality of TSAgNPs and TSAuNPs and their utilization 
in stress-induced disorders such as diabetes and cancer (Ramamurthy 
et al., 2013; Soumya et al., 2013).

3.5 Antibacterial investigations

The broad-spectrum antibacterial nature of TSAgNPs and 
TSAuNPs was evaluated in this study. According to the World Health 

Organization, there are limited antimicrobial agents for gram-negative 
bacteria for which novel antibiotics are a priority (Al-Ansari et al., 
2019). Therefore, three gram-negative (E. coli, P. vulgaris, and S. typhi) 
and one gram-positive (B. subtilis) pathogenic bacteria were included 
in this study. The antibacterial activity of TSAgNPs and TSAuNPs was 
performed as i) a concentration-dependent study and ii) a comparative 
study. The bacterial inhibition of TSAgNPs followed a concentration-
dependent (0.5–50 μg mL−1) mode of action, where ZOI was observed 
to increase with increasing concentration. ZOI ranged from 8 ± 0.3 to 

FIGURE 8

Quantitative phytochemical analysis of Saq, TSAgNPs, and TSAuNPs. Total phenolic content (A), Total flavonoid content (B), protein content (C), SDS-
PAGE (D). **p  <  0.01, ***p  <  0.001, ****p  <  0.0001, ns, non-significant.

FIGURE 9

Proposed mechanism for the synthesis of TSAgNPs, and TSAuNPs. Scheme A represented polyphenol and protein acting as bio-reductants and 
stabilizers for TSAgNPs, and Scheme B represented protein performing dual action of bio-reductant and stabilizer for TSAuNPs.
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16 ± 0.1 for E. coli, 4 ± 0.1 to 7 for B. subtilis, 12 to 16 ± 0.2 for P. vulgaris, 
and 2 to 8 for S. typhi (Figure 12A). However, 20 μg mL−1 of TSAgNPs 
was noted to be effective ZOI, causing maximum inhibition against all 
pathogens. A comparative antibacterial study among TSAgNPs 
(20 μg mL−1), TSAuNPs (20 μg mL−1), Saq (5%), AgNO3 (2 mM), 5—
HAuCl4 (2 mM), and TSAgNPs exhibited significant inhibitory effects 
against E. coli (23 ± 0.0 mm) followed by P. vulgaris (15 ± 0.1 mm), 
S. typhi (10 ± 0.0 mm), and B. subtilis (8 ± 0.0 mm). TSAgNPs showed 
inhibition in the order of E. coli > P. vulgaris > S. typhi > B. subtilis 
(Figure 12B). There was no noticeable ZOI formation for treatments 
of Saq or TSAuNPs. Silver NPs have been reported earlier for effective 
antibacterial studies in different reports that interfere with the cell 
membrane permeability, causing cell death (Azam et al., 2012; Dadi 
et al., 2019). AgNPs were found to be more effective against gram-
negative bacteria than gram-positive because the thinner glycan layer 
in the cell wall makes the former more vulnerable to antibacterial 
agents (Shrivastava et al., 2007).

3.6 Cytotoxicity of TSAgNPs and TSAuNPs 
on 2D monolayer and 3D spheroid tumor

Cancer is a challenging disease in the present healthcare system 
(Mao et al., 2022). Plant-mediated silver and gold NPs have emerged 
as robust solutions for several cancer types (Rossi and Blasi, 2022; 
Chaturvedi et  al., 2023). Here, the cytotoxicity of TSAgNPs and 
TSAuNPs was first validated in vitro on the FaDu HNCC 2D 
monolayer using an MTT cell proliferation assay. In 2D conditions, 
TSAgNPs reduced the cell viability by 66.97% at 50 μgmL−1 (p < 0.005) 
and 74.9% at 100 μg mL−1 (p < 0.05) as compared with the control 
(Figure 13A; Barua et al., 2017). NPs at higher concentrations have 
been reported to interfere with the absorbance wavelength of MTT, 
resulting in higher absorbance values (Diaz et al., 2008; Ghasemi et al., 
2021). TSAuNPs were significantly effective (50.47%) at a higher dose 
of 100 μg mL−1 (p < 0.001). The anti-tumor efficacy of TSAgNPs and 

TSAuNPs was measured through multiple staining on FaDu-derived 
cancer spheroids that resemble the 3D organization of in vivo tumor 
conditions. Immunofluorescence images of the spheroid with 
treatment groups are shown in Figure  13B. The Hoechst-stained 
nucleus of the cancer cell with fluorescent blue signals reflected the 
live-dead cell population of the spheroid. The AM-stained live cell 
populations with fluorescent green signals in the peripheral layer and 
EtBr-stained dead cell populations with fluorescent red signals in the 
inner necrotic core were measured for integrated fluorescence 
intensity (IFI) % (Figure  13B). The live cells IFI % for TSAgNPs 
(100 μg mL−1) and Cisplatin (10 μg mL−1) significantly reduced to 
24.31% and 32.56% compared with the control, respectively 
(p < 0.0001; Figure 13C). The IFI % of dead cells was maximum for 
TSAgNPs (76.65%), followed by Cisplatin (67.58%). However, 
TSAuNPs (100 μg mL−1) and Saq (100 μg mL−1) were found to 
be ineffective against tumor growth. Additionally, the diameter of the 
spheroid was measured using Merged fluorescent signals that were 
critically reduced for all the treatments compared with the control 
(p < 0.0001). The spheroid diameter of control (515.29 μm) reduced to 

FIGURE 10

Antioxidant potential of extract and NPs. ABTS RSA % (A), DPPH RSA 
% (B).

FIGURE 11

DNA protective activity of Saq, TSAgNPs, and TSAuNPs against ROS-
induced damage, depicted as an electrophoretic pattern (A), 
densitometry analysis against R-DNA (B), and quantification of 
C-DNA and R-DNA bands (C). LD—ladder DNA, C—circular DNA, and 
R—relaxed DNA. Lane 1—DNA, Lane 2—DNA  +  Fenton reagent, Lane 
3—DNA  +  Fenton reagent + Saq, Lane 4—DNA  +  Fenton reagent + 
TSAgNPs, and Lane 5—DNA  +  Fenton reagent + TSAuNPs. 
***p  <  0.001; ns, non-significant.
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130.78 μm (25.38%) for TSAgNPs, 199.49 μm (38.71%) for TSAuNPs, 
265.24 μm (51.47%) for Saq, and 281.94 μm (54.71%) for Cisplatin. 
Although TSAuNPs were not effective against tumor viability, they 
significantly lowered the spheroidal diameter. These findings were 
similar to the earlier reports of the cytotoxic efficacy of biologically 
formulated silver and gold NPs on monolayer and spheroids 
(Henrique et al., 2022). Here, the comparative 2D and 3D cytotoxicity 
studies suggested that cancer progression was largely inhibited by 
TSAgNPs, even better than cisplatin, a well-known chemotherapeutic 
drug. This promising efficacy of TSAgNPs needs to be explored more 
mechanistically and can be used further in the research advancements 
of cancer chemotherapeutics.

4 Conclusion

The present study discussed the synthesis and biological activities 
of environmentally safe and economical TSAgNPs and TSAuNPs from 
the stem of the ethnomedically important medicinal plant T. lampas. 

The higher levels of phytochemicals in T. lampas compared to two 
other medicinal plants A. vasica and D. palmatus, suggested T. lampas 
as a potential candidate for the study. TSAgNPs and TSAuNPs 
employed a facile and one-pot aqueous system at RT, eliminating the 
need for regular hazardous chemicals and external energy sources. 
Synthesized TSAgNPs and TSAuNPs were of spherical shape in nano-
regime. The study proposed a possible mechanism for the synthesis of 
NPs, involving polyphenols and proteins as bio-reductants and 
stabilizers. Furthermore, TSAgNPs and TSAuNPs were found to 
be multi-responsive to a range of biological activities. NPs were able to 
scavenge ABTS and DPPH radicals, suggesting their antioxidant 
potential. NPs were capable of protecting DNA against oxidative stress 
damage. TSAgNPs may serve as active agents to bacterial pathogens in 
a concentration-dependent mode. TSAgNPs and TSAuNPs showed 
promising cytotoxic effects against in vitro FaDu HNSCC monolayers. 
Moreover, NPs promoted the inhibition of FaDu-derived HNSCC 
spheroid by reducing both the viability of live cells and the size of the 
spheroid. The findings of the study indicated the promising role of 
synthesized NPs in pharmacological sectors. However, detailed 

FIGURE 12

Concentration-dependent antibacterial activity of TSAgNPs (0.5–50  μg  mL−1) against E. coli, S. typhi, B. subtilis, and P. vulgaris with representative 
bacterial plates (A), comparative antibacterial activity of 50  μL Saq, TSAgNPs and TSAuNPs with representative bacterial plates (B). 1—Saq (5%), 2—
TSAgNPs (20  μg  mL−1), 3—TSAuNPs (20  μg  mL−1), 4—AgNO3 (2  mM), 5—HAuCl4 (2  mM), W—water.
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biomedical activities, in vivo investigations, and drug delivery 
challenges are needed to confirm its therapeutic applicability.
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FIGURE 13

In vitro cytotoxicity of Saq, TSAgNPs, and TSAuNPs against FaDu HNSCC. MTT assay for Saq, TSAgNPs, TSAuNPs (each 50 and 100  μg  mL−1), and 
Cisplatin (5  μg  mL−1), after 24  h in 2D condition (A), immunofluorescence images of anti-tumor efficacy for the treatment groups Saq, TSAgNPs, 
TSAuNPs (each 100  μg  mL−1), and Cisplatin (10  μg  mL−1) on FaDu-derived spheroid in 3D condition (B), quantification of the integrated fluorescence 
intensity % and diametric size of Saq, TSAgNPs, TSAuNPs, and Cisplatin treated spheroid (C). *p  <  0.05, **p  <  0.005, ***p  <  0.001, ****p  <  0.0001, ns, 
non-significant.
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