
AJS

Austrian Journal of Statistics
2024, Volume 53, 99–108.
http://www.ajs.or.at/
doi:10.17713/ajs.v53i2.1730

Generalized Sum-Asymmetry Model and
Orthogonality of Test Statistic for Square

Contingency Tables

Shuji Ando
Tokyo University of Science

Abstract

For analyzing contingency tables, we are usually interested in whether or not the inde-
pendence model holds. On the other hand, for the analysis of square contingency tables,
we are usually interested in whether or not the model having the structure of symme-
try or asymmetry with respect to the main diagonals cells holds. This study proposes
a generalized sum-asymmetry model including the exponential and relative exponential
sum-symmetry models. This generalized model indicates that the cumulative probability
that the sum of classes for row and column variables is s within the upper right cell of
the table, is exponentially higher than the cumulative probability that the sum of classes
for row and column variables is s within the lower left cell. Additionally, this study gives
a separation of the sum-symmetry model using the proposed model, and reveals that the
new separation satisfies the asymptotic equivalence for the test statistic. The utilities of
the proposed methods are demonstrated through the real data analysis.

Keywords: asymmetry, asymptotic equivalence, exponential sum-symmetry, separation, sum-
symmetry.

1. Introduction
For analyzing of contingency tables, we are usually interested in whether or not the indepen-
dence model holds. On the other hand, for the analysis of square contingency tables having
same row and column classifications, we are usually interested in whether or not the model
having the structure of symmetry or asymmetry with regard to the main diagonals cells holds,
instead of the independence. This is because, there is a strong association between row and
column variables in square contingency tables.
Let πij denote the cell probability that an observation will fall in the cell of the row class i and
column class j for the square contingency table (i = 1, . . . , C; j = 1, . . . , C). The symmetry
(S) model (Bowker 1948) has the structure of symmetry between the πij and πji with regard
to the main-diagonals cell of the square contingency table. The S model is defined by

πij = πji for i < j.

The linear diagonals-parameter symmetry (LDPS) model (Agresti 1983) has the structure of
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asymmetry between the πij and πji. The LDPS model is defined by

πij = θj−iπji for i < j.

When the θ = 1, the LDPS model is identical to the S model. Under the LDPS model, the
πij/πji, for all i < j, exponentially varies relying on the absolute gap j − i (i.e., the difference
between the column and row classes). Additionally, the πij/πji, for all i < j, exponentially
varies relying on the relative gap between the difference j − i and its minimum 1.
As a generalization of the LDPS model, the generalized exponential symmetry (GES) model
(Kurakami, Yamamoto, and Tomizawa 2011) is defined by

πij = θwij πji for i < j,

where {wij} are the specified positive values. When {wij = 1}, {wij = j − i}, {wij =
R−(j−i)}, and {wij = j−1}, the GES models are identical to the conditional symmetry (CS)
model (McCullagh 1978; Read 1977), the LDPS model, the another LDPS (ALDPS) model
(Tomizawa 1990), and the linear columns-parameter symmetry (LCPS) model (Tomizawa,
Miyamoto, and Iwamoto 2006), respectively. Moreover, Kurakami et al. (2011) gave the
separation of the S model using the GES model, and revealed that this separation satisfies
the asymptotic equivalence for the test statistic, that is, the likelihood ratio (LR) statistic
for testing goodness-of-fit of the S model is asymptotic equivalent to the sum of LR statistics
of the separated models. The separation of the model M1 implies that the model M1 holds
if and only if both the models M2 and M3 hold. We refer to a separation that satisfies the
asymptotic equivalence for the test statistic as “orthogonal separation”.
Let

Us =
∑∑
(i,j)∈us

πij and Ls =
∑∑
(i,j)∈ls

πij for s = 3, 4, . . . , 2C − 1,

where

us = {(i, j) | i + j = s, i < j} and ls = {(i, j) | i + j = s, i > j}.

The Us is the cumulative probability that the sum of classes for row and column variables is
s within the upper right cell of the table. Additionally, the Ls is the cumulative probability
that the sum of calsses for row and column variables is s within the lower left cell. Such as
vision data, when we want to evaluate an individual’s acuity of vision, we may be interested
in whether or not the model having the structure of symmetry or asymmetry between the
cumulative probabilities Us and Ls holds.
The sum-symmetry (SS) model (Yamamoto, Tanaka, and Tomizawa 2013) indicates the struc-
ture of symmetry between the cumulative probabilities Us and Ls for s = 3, 4, . . . , 2C − 1.
The SS model is defined by

Us = Ls for s = 3, 4, . . . , 2C − 1.

The exponential sum-symmetry (ESS) model (Yamamoto, Aizawa, and Tomizawa 2016; Ando
2021a) and relative ESS (RESS) model (Ando 2022) indicate the structure of asymmetry
between the cumulative probabilities Us and Ls for s = 3, 4, . . . , 2C − 1. The ESS model is
defined by

Us = Θs−2Ls for s = 3, 4, . . . , 2C − 1.

The RESS model is defined by

Us = Θs/3Ls for s = 3, 4, . . . , 2C − 1.
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When the Θ = 1, the ESS and RESS models are identical to the SS model. Under the ESS
model, the Us/Ls exponentially varies relying on the absolute gap s − 2, and the U3/L3 is
Θ. On the other hand, under the RESS model, the Us/Ls exponentially varies relying on the
relative gap between the s and its minimun 3, and the U3/L3 is Θ.
Ando (2021a) gave the separation of the SS model using the ESS model, and revealed that
this separation is the orthogonal separation. Moreover, Ando (2022) gave the separation of
the SS model using the RESS model, and revealed that this separation is the orthogonal
separation.
In line with the ralation between the LDPS and GES models, this study proposes a gen-
eralized model including the ESS and RESS models. Additionally, this study gives a new
separation of the SS model using the proposed model, and reveals that the proposed sep-
aration is the orthogonal separation. This advance would introduce new models and give
orthogonal separations of the SS model using those models.
The remainder of this paper is organized as follows. Section 2 inducts new models and new
separations of the SS model using proposed models. Section 3 shows that the proposed sepa-
ration is the orthogonal separation. Section 4 demonstrates the utilities of the proposed model
and separation through the data analysis. Sections 5 closes with the concluding remarks.

2. Proposed model and separation of sum-symmetry
In this section, we propose a generalized model including the ESS and RESS models. The
generalized ESS (GESS) model defined by

Us = ΘWsLs for s = 3, 4, . . . , 2C − 1,

where {Ws} are the specified positive values. Under the GESS model, the Us/Ls exponentially
varies relying on Ws for s = 3, 4, . . . , 2C − 1. The advantage of the GESS model is that the
Us/Ls can be resresented a variety of exponential changes, including absolute and relative
gaps. When {Ws = 1}, {Ws = s − 2}, and {Ws = s/3}, the GESS models are identical to
the conditional sum-symmetry (CSS) model (Yamamoto et al. 2013), the ESS model, and the
RESS model, respectively. In line with the relation between the LDPS and ALDPS models,
we can consider new models, that is the GESS models with {Ws = (2C − 2) − (s − 2)} and
{Ws = (2C − 1)/s}.
Additionally, to give a separation of the SS model using the GESS model, we introduce the
generalized weighted global-sum-symmetry (GWGSS) model defined by

2C−1∑
s=3

WsUs =
2C−1∑
s=3

WsLs.

The GWGSS model indicates that the weighted (i.e., Ws) average of Us is equal to the
weighted average of Ls. The restriction of the GWGSS model is weaker than the SS model.
When {Ws = 1}, the GWGSS model is identical to the global symmetry model (Read 1977).
The numbers of degrees of freedom (DF) for testing the goodness-of-fit of the SS, GESS, and
GWGSS models are 2C − 3, 2C − 4, and 1, respectively. It must be noted that the number
of DF for the SS model is equal to the sum of those for the GESS and GWGSS models.
We obtain the following separation of the SS model.

Theorem 1. The SS model holds if and only if both the GESS and GWGSS models hold.

Proof. The necessary condition obviously holds. Therefore, we need to show that the sufficient
condition also holds.
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Assume that the both GESS and GWGSS models hold, we obtain the following equality:

2C−1∑
s=3

WsΘWsLs =
2C−1∑
s=3

WsLs ⇐⇒
2C−1∑
s=3

(ΘWs − 1)WsLs = 0. (1)

From the expression (1), we obtain ΘWs = 1 for all s = 3, 4, . . . , 2C − 1 because the Ws and
Ls are always positive. Therefore, under the both GESS and GWGSS models hold, the Θ is
equal to one, that is Us = Ls for s = 3, 4, . . . , 2C − 1. The proof is completed.

It must be noted that Theorem 1 includes the former separations (Yamamoto et al. 2013; Ando
2021a, 2022). For the GESS model with {Ws} and the GWGSS model with {W ∗

s ( ̸= Ws)},
Theorem 1 holds. However, they are not the orthogonal separation.

3. Asymptotic equivalence for test statistic
Let nij denote the observed frequency in the cell of the row class i and column class j for
the square contingency table (i = 1, . . . , C; j = 1, . . . , C), with a sample size N (=

∑∑
nij).

Assume multinomial sampling over the cells of the square contingency table.
Each model can be tested for the goodness-of-fit using the LR chi-squared statistic (denoted
by G2) with the corresponding DF. The G2 of the model M is given by

G2(M) = 2
C∑

i=1

C∑
j=1

nij log
(

nij

êij

)
,

where êij is the maximum likelihood estimate (MLE) of the expected frequency eij under the
model M.
Suppose that the model M1 holds if and only if both the models M2 and M3 hold and the
following asymptotic equivalence holds:

G2(M1) ≃ G2(M2) + G2(M3), (2)

where the number of DF for the model M1 is equal to the sum of those for the models M2
and M3. Darroch and Silvey (1963) pointed out that (i) under the expression (2), if both
the models M2 and M3 are accepted with high probability, then the model M1 would be
accepted, and (ii) when the expression (2) does not hold, it will most likely give rise to an
incompatible situation wherein the M1 model is rejected with high probability although both
the models M2 and M3 are accepted with high probability. This incompatible situation has
been exemplified by Darroch and Silvey (1963) and Tahata, Ando, and Tomizawa (2011).
Therefore, it is preferred that the separation satisfies the expression (2). The separation that
satisfies the expression (2) is the orthogonal separation.
We reveal that the separation of Theorem 1 is the orthogonal separation.

Theorem 2. Under the SS model,

G2(SS) ≃ G2(GESS) + G2(GWGSS).

Proof. Let π = (π11, π12, . . . , π1C , . . . , πC1, πC2, . . . , πCC)⊤, and let A⊤ denote the transpose
of the matrix (or vector) A. The GESS model is expressed as follows:

h1(π) = 02C−4,

where

h1(π) = (h1,4(π), h1,5(π), . . . , h1,2C−1(π))⊤
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with

h1,s(π) = (L3)
Ws
W3 Us − (U3)

Ws
W3 Ls for s = 4, 5, . . . , 2C − 1,

and 0d is an d × 1 zero-vector. This is because, under the GESS model,

U3 = ΘW3L3 ⇐⇒ Θ =
(

U3
L3

) 1
W3

.

The GWGSS model is expressed as

h2(π) = 01,

where

h2(π) =
2C−1∑
s=3

WsUs −
2C−1∑
s=3

WsLs.

From Theorem 1, the SS model is expressed as

h3(π) =
(
h1(π)⊤, h2(π)⊤

)⊤
= 02C−3.

Let Ht(π) = ∂ht(π)/∂π⊤ (t = 1, 2, 3). Let Σ be D−ππ⊤, where D is a diagonal matrix with
the ith component of π as the ith diagonal element. Let denote p as π with {πij} replaced by
{pij}, where pij = nij/N . Using the delta method (Agresti 2013, p. 591),

√
N(h3(p)−h3(π))

is asymptotically (N → ∞) distributed as an normal distribution, with mean vector 02C−3
and covariance matrix

H3(π)ΣH3(π)⊤ =
[
H1(π)ΣH1(π)⊤ H1(π)ΣH2(π)⊤

H2(π)ΣH1(π)⊤ H2(π)ΣH2(π)⊤

]
.

Under the SS model, all elements of H1(π)ΣH2(π)⊤ are zero. This is because, the following
equalities hold:

∂h1,s(π)
∂π⊤ D

∂h2(π)
∂π

= 0 for s = 4, 5, . . . , 2C − 1,

π⊤ ∂h2(π)
∂π

=
2C−1∑
t=3

WtUt −
2C−1∑
t=3

WtLt.

Therefore, under the SS model, we obtain the following equality:

h3(π)⊤[H3(π)ΣH3(π)⊤]−1h3(π)
= h1(π)⊤[H1(π)ΣH1(π)⊤]−1h1(π) + h2(π)⊤[H2(π)ΣH2(π)⊤]−1h2(π).

We obtain G2(SS) ≃ G2(GESS) + G2(GWGSS) from the asymptotic equivalence of the Wald
statistic and the LR statistic, see, for example, Rao (1973, Sec. 6e. 3), Darroch and Silvey
(1963), and Aitchison (1962). The proof is completed.

Theorem 2 includes the former orthoginal separations (Yamamoto et al. 2013; Ando 2021a,
2022). It must be noted that, when {Ws = 1}, the former orthoginal separation (Yamamoto
et al. 2013) satisfies that the LR statistic for testing goodness-of-fit of the SS model is exactly
equal to the sum of LR statistics of the separated models.
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4. Real data analysis
The real dataset in Table 1 is analyzed to illustrate the proposed models that is competitive
or even better than other models. This real dataset is taken from Tan (2017, p. 78). This
dataset is recorded the distance vision of patients in an eye clinic. An individual’s acuity of
vision is usually evalueted as the sum of right and left eye grades (Yamamoto et al. 2013,
2016; Ando 2021a,b, 2022). Thus, for data such as those in Table 1, we are interested in
applying the GESS model.
In the GESS and GWGSS models, we set {Ws = 1}, {Ws = s − 2}, {Ws = s/3}, {Ws =
(2C − 2) − (s − 2) = 6 − (s − 2)}, and {Ws = (2C − 1)/s = 7/s}. The GESS and GWGSS
models with {Ws = 6 − (s − 2)} and {Ws = 7/s} are innovated in this study. Table 2 gives
the values of G2, for each the SS, GESS, GWGSS model. From Table 2, we see that the
GESS models with {Ws = 1}, {Ws = s/3}, {Ws = 6 − (s − 2)} and {Ws = 7/s} fit well, but
the other models fit poorly. Additonally, the GESS model with {Ws = 1} is the best-fitting
model among applied models, and the GESS model with {Ws = 7/s} is the second best-fitting
model.

Table 1: Dataset of distance vision of patients in an eye clinic; source Tan (2017, p. 78)

Left eye grades
Right eye grades (1) (2) (3) (4) Total

Highest grade (1) 50 21 24 35 130
(50) (21.047) (26.726) (36.322)
(50) (16.465) (25.159) (37.946)

(2) 42 22 12 42 118
(41.953) (22) (12.453) (41.425)
(46.535) (22) (13.010) (45.249)

(3) 56 32 52 16 156
(53.274) (31.426) (52) (12.027)
(54.841) (30.721) (52) (14.058)

Lowest grade (4) 67 82 20 62 231
(65.799) (82.575) (23.973) (62)
(64.323) (77.751) (21.943) (62)

Total 215 157 108 155 635

Note: MLEs of expected frequencies under the GESS models with {Ws = 1} and {Ws = (2C −1)/s = 7/s}
are shown in parentheses in the second and third lines.

Under the GESS model with {Ws = 1} (i.e., the CSS model), the MLE of the parameter Θ is
0.502, it is less than 1. Therefore, the patient’s acuity of vision in which the left eye grade is
higher than the right eye grade tends to be better than the patient’s acuity of vision in which
the right eye grade is higher than the left eye grade.
Under the GESS model with {Ws = 7/s}, the MLE of the parameter Θ is 0.641, Thus, the
MLEs of Θ7/s, for all s = 3, 4, 5, 6, 7, are 0.354, 0.459, 0.536, 0.595, and 0.641, respectively,
and they are less than 1. Therefore, in line with the CSS model, the patient’s acuity of vision
in which the left eye grade is higher than the right eye grade tends to be better than the
patient’s acuity of vision in which the right eye grade is higher than the left eye grade.
Using Theorem 1, we consider the causality that the SS model fits poorly for the dataset in
Table 1. From Theorem 1, we see that the SS model does not hold because of the GWGSS
model rather than the GESS model.
The value of G2 of the SS model (i.e., 52.817) is almost equal to the sum of G2 of the GESS
and GWGSS models with corresponding {Ws}, see Table 2. When {Ws = 1}, the value of
G2 of the SS model (i.e., 52.817) is exactly equal to the sum of G2 of the GESS and GWGSS
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Table 2: Values of the G2 for the models applied to the data of Table 1
Models Ws DF G2

SS - 5 52.817∗

GESS 1 4 2.421
s − 2 4 13.288∗

s/3 4 7.829
6 − (s − 2)† 4 3.894
7/s† 4 3.226

GWGSS 1 1 50.396∗

s − 2 1 38.709∗

s/3 1 44.443∗

6 − (s − 2)† 1 48.150∗

7/s† 1 49.010∗

Note: The symbol ∗ indicates significance at the 5% level, and † indicates a new model. The number of
category C is 4 in the data of Table 1.

models (i.e, 2.421 + 50.396 = 52.817). On the other hand, we see that the value of G2 of
the SS model is not nearly equal to the sum of G2 of the GESS and GWGSS models with
conflicting {Ws}. In fact, the sum of G2 of the GESS model with {Ws = 1} and the GWGSS
model with {Ws = s − 2} is 41.130 (i.e., 2.421 + 38.709).
Next, we analyze the real dataset in Table 3, taken from Tomizawa (1984). This real dataset is
recorded the distance vision of students aged 18 to approximately 25 including approximately
10% women in Tokyo University of Science.
Table 4 gives the values of G2, for each the SS, GESS, GWGSS model. From Table 4, we
see that the GESS models with {Ws = 1}, {Ws = s − 2}, {Ws = s/3}, and {Ws = 7/s} fit
well, but the other models fit poorly. Additonally, the GESS model with {Ws = s/3} is the
best-fitting model among applied models, and the GESS model with {Ws = 1} is the second
best-fitting model.

Table 3: Dataset of distance vision data of students in Tokyo University of Science; source
Tomizawa (1984)

Left eye grades
Right eye grades (1) (2) (3) (4) Total

Highest grade (1) 1291 130 40 22 1483
(1291) (131.473) (48.014) (20.479)
(1291) (125.245) (46.687) (20.333)

(2) 149 221 114 23 507
(147.527) (221) (106.120) (21.247)
(153.755) (221) (105.361) (21.548)

(3) 64 124 660 185 1033
(55.986) (132.095) (660) (188.006)
(57.314) (132.874) (660) (194.826)

Lowest grade (4) 20 25 249 1429 1723
(21.306) (26.753) (245.994) (1429)
(21.431) (26.452) (239.174) (1429)

Total 1524 500 1063 1659 4746

Note: Note: MLEs of expected frequencies under the GESS models with {Ws = s/3} and {Ws = 1} are
shown in parentheses in the second and third lines.
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Table 4: Values of the G2 for the models applied to the dataset of Table 3
Models Ws DF G2

SS - 5 16.668∗

GESS 1 4 4.692
s − 2 4 4.799
s/3 4 4.159
6 − (s − 2)† 4 9.860∗

7/s† 4 7.343
GWGSS 1 1 11.976∗

s − 2 1 11.867∗

s/3 1 12.509∗

6 − (s − 2)† 1 6.797∗

7/s† 1 9.305∗

Note: The symbol ∗ indicates significance at the 5% level, and † indicates a new model. The number of
category C is 4 in the dataset of Table 3.

Under the GESS model with {Ws = s/3}, the MLE of the parameter Θ is 0.891. Thus, the
MLEs of Θs/3, for all s = 3, 4, 5, 6, 7, are 0.891, 0.858, 0.825, 0.794, and 0.764, respectively,
and they are less than 1. Therefore, the sutudent’s acuity of vision in which the left eye grade
is higher than the right eye grade tends to be better than the student’s acuity of vision in
which the right eye grade is higher than the left eye grade.
Under the GESS model with {Ws = 1} (i.e., the CSS model), the MLE of the parameter Θ
is 0.815, Therefore, in line with the CSS model, the student’s acuity of vision in which the
left eye grade is higher than the right eye grade tends to be better than the student’s acuity
of vision in which the right eye grade is higher than the left eye grade.
Using Theorem 1, we consider the causality that the SS model fits poorly for the dataset in
Table 3. From Theorem 1, we see that the SS model does not hold because of the GWGSS
model rather than the GESS model except when {Ws = 6−(s−2)}. When {Ws = 6−(s−2)},
we see that the SS model does not hold because the both GWGSS and GESS models do not
fit.
From Table 4, we see that the value of G2 of the SS model (i.e., 16.668) is almost equal to
the sum of G2 of the GESS and GWGSS models with corresponding {Ws}.

5. Concluding remarks
This study proposed a generalized model (i.e., the GESS model) including the ESS and RESS
models, and established a separation in which the SS model holds if and only if both the GESS
and GWGSS models hold (i.e., Theorem 1), Moreover, this study revealed that the proposed
separation satisfied the expression (2) (i.e., Theorem 2), that is, the G2(SS) is asymptotically
equivalent to the G2(GESS) + G2(GWGSS). Theorems 1 and 2 are the generalization of
Ando’s results (Ando 2021a, 2022).
This study showed the utilities of the GESS model, Theorems 1 and 2 through the real data
analysis. In the real data analysis, we introduced that the GESS model is useful to right and
left eye distance vision data. However, when the expression (2) holds, it will not most likely
give rise to this conflicted situation. Therefore, it is preferred that the separation satisfies the
expression (2).
A two way contingency table with I row-categories and J column-categories classifies N
individuals in I × J cells, with nij individuals assigned to the (i, j)th cell. Assuming the
sampling was multinomial, each of the (i, j)th cells has some probability, πij > 0, of an
individual to be assigned to it, with

∑∑
πij = 1. Probabilities of a multinomial distribution
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add to 1 and, consequently, they are an element of the D = (I×J)-part simplex, the set of real
vectors with strictly positive components adding to a constant. The simplex has been proven
to be a (D − 1)-dimensional Euclidean space, which particular algebraic-geometric structure
is called Aitchison geometry (Fačevicová, Hron, Todorov, Guo, and Templ 2014). In two-
way contingency tables, Egozcue, Pawlowsky-Glahn, Templ, and Hron (2015) discussed the
independence between the row and column variables using Aitchison geometry. In future
study, we will discuss the proposed models in this study using Aitchison geometry.
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