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Abstract

In this paper, the problem of finding a Bayes estimation for the mean matrix of the
scale and shape mixtures of matrix variate extended skew normal distributions is con-
sidered, and its applications in the multivariate linear regression and the stress-strength
models are described. Finally, a simulation study and a real data analysis are presented
for applications.
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1. Introduction

The matrix variate distributions have a very important role in multivariate analysis methods;
for example, the distribution of the maximum likelihood estimator of the covariance matrix
of a multivariate normal distribution is the Wishart distribution, which plays a pivotal role
in related analysis. The matrix variate normal distribution is one of the most important
matrix variate distributions; for more about this distribution, see Gupta and Nagar (1999)
and Gupta, Varga, and Bodnar (2013). A p × n random matrix X follows a matrix variate
normal distribution if its probability density function (PDF) can be written as

ϕp×n(X; M , Ψ ⊗ Σ) = (2π)− pn
2 |Ψ|−

p
2 |Σ|−

n
2 etr

{
− 1

2Ψ−1(X − M)′Σ−1(X − M)
}

,

where etr{A} = exp{tr(A)}, M is a p × n mean matrix, Σ is a p × p positive definite matrix
and Ψ is an n × n positive definite matrix. The normal matrix variate X is denoted by
X ∼ Np×n(M , Ψ ⊗ Σ).
There are different skew versions of the matrix variate normal distribution. One of these skew
versions is the matrix variate extended skew normal distribution, which was introduced by
Ning and Gupta (2012). A p × n random matrix X is said to follow a matrix variate extended
skew normal distribution with a p × n mean matrix M , a p × p positive definite matrix Σ
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and n × n positive definite matrices Ω and Ψ, if its PDF is

fESN (X; M , Ψ ⊗ Σ, Ω, λ, δ) = ϕp×n(X; M , Ψ ⊗ Σ)
Φn(δ; Ω + λ′λΨ) Φn

(
δ + (X − M)′Σ− 1

2 λ; Ω
)
,

where λ and δ are p and q dimensional vectors, respectively, ϕp×n(·; M , Ψ ⊗ Σ) is the PDF
of the matrix variate normal distribution Np×n(M , Ψ ⊗ Σ) and Φn(·; Ω) is the cumulative
distribution function (CDF) of the multivariate normal distribution Nn(0, Ω). The extended
skew normal matrix variate X is denoted by X ∼ ESNp×n(M , Ψ ⊗ Σ, Ω, λ, δ).
Recently the scale and shape mixtures of matrix variate extended skew normal (SSMESN)
distributions was introduced by Rezaei, Yousefzadeh, and Arellano-Valle (2020) as a new
family of matrix variate distributions which includes a wide range of distributions such as
matrix variate normal, matrix variate skew normal, matrix variate t, matrix variate skew t,
matrix variate skew-t-normal and matrix variate skew-normal-Cauchy distributions. A p × n
random matrix Y follows an SSMESN distribution with a p × n mean matrix M , a p × p
positive definite matrix Σ and n × n positive definite matrices Ω and Ψ if

Y | θ = θ0, ω = ω0 ∼ ESNp×n
(
M , Ψ ⊗ k(θ0)Σ, Ω, s(θ0, ω0)λ, δ

)
,

or equivalently, if its PDF is as follows

f(Y ; M , Σ, Ψ, Ω, λ, δ) =
∫

SQ

fESN

(
Y ; M , Ψ ⊗ k(θ)Σ, Ω, s(θ, ω)λ, δ

)
dQ(θ, ω),

where θ and ω are two random variables that have joint distribution Q(θ, ω) with support
SQ and marginal distributions H(θ) and G(ω), k(θ) is a weight function and s(θ, ω) is a real-
valued function. The SSMESN matrix variate Y is denoted by Y ∼ SSMESNp×n

(
M , Ψ ⊗

Σ, Ω, λ, δ; (k, s), Q
)
.

When M = 1′
n ⊗ µ, δ = δ1n and Ω = Ψ = In, where µ ∈ Rp, δ ∈ R1 and 1n is an

n-dimensional vector of ones, an important situation occurs for the SSMESN matrix variate
Y with the columns y1, . . . , yn. In this situation,

yi | θ = θ0, ω = ω0
iid∼ ESNp

(
µ, k(θ0)Σ, s(θ0, ω0)λ, δ

)
, i = 1, . . . , n,

with the conditional PDF

fESN (yi | θ0, ω0; µ, k(θ0)Σ, s(θ0, ω0)λ, δ)

= 1
Φ1(δ/

√
1 + s(θ0, ω0)2λ′λ)

ϕp(yi; µ, k(θ0)Σ)

× Φ1
(
δ + s(θ0, ω0)k(θ0)− 1

2 (yi − µ)′Σ− 1
2 λ
)
, yi ∈ Rp,

where ϕp and Φ1 are the PDF of the p-variate normal distribution and the CDF of the
univariate standard normal distribution, respectively.
The matrix variate SSMESN family includes some different matrix variate distributions, and
is a quite large family of this type of distributions. For example,

- If k(θ) = s(θ, ω) = 1 and λ = 0, then we have the matrix variate normal distribution.

- If λ = 0, then we obtain the scale mixture of matrix variate normal distributions which
proposed by Gupta and Varga (1995). We denote this subfamily by SMNp×n

(
M , Ψ ⊗

Σ; k, H
)
.

- If k(θ) = s(θ, ω) = 1, the matrix variate extended skew normal distribution is obtained.

- If δ = 0, then the SSMESN matrix variate Y follows the matrix variate skew t dis-
tribution with ν degrees of freedom by considering k(θ) = θ and s(θ, ω) = 1 with
θ ∼ IGamma(ν

2 , ν
2 ), where IGamma(a, b) denotes the inverse gamma distribution

with shape parameter a and scale parameter b. We use the notation STp×n
(
M , Ψ ⊗

Σ, Ω, λ, ν
)

to denote this distribution.
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- If δ = 0, Ψ = Ω = In, k(θ) = 1 and s(θ, ω) = ω− 1
2 with ω ∼ IGamma(1

2 , 1
2), then the

SSMESN matrix variate Y follows the matrix variate skew-normal-Cauchy distribution
which is denoted here by SNCp×n

(
M , Σ, λ

)
.

In the next section, a posterior density for the mean matrix of the matrix variate SSMESN
distributions is obtained and some of its particular cases are provided. In Section 3, appli-
cations of the obtained results in the multivariate linear regression and the stress-strength
models will be discussed. Sections 4 and 5 will present a simulation study for comparing the
Bayes estimations of a stress-strength reliability and a real data analysis for a multivariate
linear regression model, respectively.

2. Posterior densities
It must minimize the posterior risk to find a Bayes estimator for a parameter. Therefore, in
the first step, related posterior distribution or related posterior density should be obtained.
In this section, by considering a matrix variate normal distribution as prior for the mean
matrix of the matrix variate SSMESN distributions, a posterior density is derived for it. The
result is given in the following proposition.
Proposition 2.1. Suppose that Y ∼ SSMESNp×n

(
M , Ψ ⊗ Σ, Ω, λ, δ; (k, s), Q

)
where Σ,

Ψ, Ω, λ and δ are known. If M is independent of θ and ω, and has prior distribution as
Np×n(0p×n, Ψ ⊗ ∆), where ∆p×p is a positive definite matrix, then the posterior density of
M is

π(M |Y ) ∝
∫

SQ

ϱθ|Λθ|
n
2

ϕp×n(M ; ΛθτΨ, Ψ ⊗ k(θ)Λθ)
Φn(δ; Ω + s(θ, ω)2λ′λΨ)

× Φn(δ + s(θ, ω)k(θ)− 1
2 (Y − M)′Σ− 1

2 λ; Ω)dQ(θ, ω), (1)

where Λθ = (Σ−1 + k(θ)∆−1)−1, τ = Σ−1Y Ψ−1 and ϱθ = etr
{

ΛθτΨτ ′−τY ′

2k(θ)

}
.

Proof. Since π(M |Y ) ∝ f(Y |M)π(M), by the PDFs of the random matrices Y and M , we
can write

π(M |Y ) ∝
∫

SQ

(2π)− np
2 |Ψ|−

p
2 k(θ)− np

2

Φn(δ; Ω + s(θ, ω)2λ′λΨ)

× etr
{ −1

2k(θ)Ψ−1(M − Y )′Σ−1(M − Y ) − 1
2Ψ−1M ′∆−1M

}
× Φn

(
δ + s(θ, ω)k(θ)− 1

2 (Y − M)′Σ− 1
2 λ; Ω

)
dQ(θ, ω).

Now, since

etr
{ −1

2k(θ)Ψ−1(M − Y )′Σ−1(M − Y )
}

=etr
{ −1

2k(θ)τY ′
}

× etr
{

− 1
2k(θ)Ψ−1M ′Σ−1M + 1

k(θ)τ ′M
}

,

and

etr
{ −1

2k(θ) [Ψ−1M ′Λ−1
θ M − 2τ ′M ]

}
=etr

{ 1
2k(θ)ΛθτΨτ ′

}
× etr

{ −1
2k(θ)Ψ−1(M − Λθτ ′Ψ)′Λ−1

θ (M − Λθτ ′Ψ)
}

,

we have

π(M |Y ) ∝
∫

SQ

etr
{ΛθτΨτ ′ − τY ′

2k(θ)
}

|Λθ|
n
2

ϕp×n(M ; ΛθτΨ, Ψ ⊗ k(θ)Λθ)
Φn(δ; Ω + s(θ, ω)2λ′λΨ)

× Φn
(
δ + s(θ, ω)k(θ)− 1

2 (Y − M)′Σ− 1
2 λ; Ω

)
dQ(θ, ω).
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Note. By substituting U = M − ΛθτΨ, and using Lemma 2.1 of Harrar and Gupta (2008),
the explicit form of π(M |Y ) can be obtained as follows

π(M |Y ) =
∫

SQ

ϱθ|Λθ|
n
2 ϕp×n(M ;ΛθτΨ,Ψ⊗k(θ)Λθ)Φn(δ+s(θ,ω)k(θ)− 1

2 (Y −M)′Σ− 1
2 λ;Ω)

Φn(δ;Ω+s(θ,ω)2λ′λΨ) dQ(θ, ω)∫
SQ

ϱθ|Λθ|
n
2 Φn(δ+s(θ,ω)k(θ)− 1

2 (Y −ΛθτΨ)′Σ− 1
2 λ;Ω+s(θ,ω)2λ′Σ− 1

2 ΛθΣ− 1
2 λΨ)

Φn(δ;Ω+s(θ,ω)2λ′λΨ) dQ(θ, ω)
.

The following corollaries can be written by using Proposition 2.1.

Corollary 2.1. Let Λ = (Σ−1 + ∆−1)−1.

(i) If Y ∼ Np×n
(
M , Ψ ⊗ Σ

)
, then M |Y ∼ Np×n

(
ΛΣ−1Y , Ψ ⊗ Λ

)
.

(ii) If Y ∼ ESNp×n
(
M , Ψ ⊗ Σ, Ω, λ, δ

)
, then the posterior distribution of M is

ESNp×n
(
ΛΣ−1Y , Ψ ⊗ Λ, Ω, −Λ

1
2 Σ− 1

2 λ, δ + (Y − ΛΣ−1Y )′Σ− 1
2 λ
)
.

Proof. As the matrix variate normal distribution is a special case of the matrix variate ex-
tended skew normal distribution, we only prove (ii). Consider the exact form of posterior
density in Note 2. If k(θ) = s(θ, ω) = 1, then

π(M |Y ) =
ϕp×n(M ; ΛτΨ, Ψ ⊗ Λ)Φn

(
δ + (Y − M)′Σ− 1

2 λ; Ω
)

Φn
(
δ + (Y − ΛτΨ)′Σ− 1

2 λ; Ω + λ′Σ− 1
2 ΛΣ− 1

2 λΨ
) ,

where τ = Σ−1Y Ψ−1. Since ΛτΨ = ΛΣ−1Y , λ′Σ− 1
2 ΛΣ− 1

2 λ =
(
−Λ

1
2 Σ− 1

2 λ
)′(−Λ

1
2 Σ− 1

2 λ
)
,

and

(Y − M)′Σ− 1
2 λ = Y ′Σ− 1

2 λ − M ′Σ− 1
2 λ

= Y ′Σ− 1
2 λ − Y ′Σ−1ΛΣ− 1

2 λ + Y ′Σ−1ΛΣ− 1
2 λ − M ′Σ− 1

2 λ

=
(
Y ′ − Y ′Σ−1Λ

)
Σ− 1

2 λ −
(
M ′ − Y ′Σ−1Λ

)
Σ− 1

2 λ

=
(
Y − ΛΣ−1Y

)′Σ− 1
2 λ +

(
M − ΛΣ−1Y

)′Λ− 1
2
(

− Λ
1
2 Σ− 1

2 λ
)
,

we have

π(M |Y ) = ϕp×n(M ; ΛΣ−1Y , Ψ ⊗ Λ)
Φn

(
δ + (Y − ΛΣ−1Y )′Σ− 1

2 λ; Ω +
(

− Λ
1
2 Σ− 1

2 λ
)′(− Λ

1
2 Σ− 1

2 λ
)
Ψ
)

× Φn

(
δ +

(
Y − ΛΣ−1Y

)′Σ− 1
2 λ +

(
M − ΛΣ−1Y

)′Λ− 1
2
(

− Λ
1
2 Σ− 1

2 λ
)
; Ω
)

=fESN

(
M ; ΛΣ−1Y , Ψ ⊗ Λ, Ω, −Λ

1
2 Σ− 1

2 λ, δ + (Y − ΛΣ−1Y )′Σ− 1
2 λ
)
.

Corollary 2.2. If Y ∼ STp×n
(
M , Ψ ⊗ Σ, Ω, λ, ν

)
, then the posterior density of M is as

follows:

π(M |Y ) ∝ Eθ

[
ϱθ|Λθ|

n
2 ϕp×n(M ; ΛθΣ−1Y , Ψ ⊗ θΛθ)Φn

(
θ− 1

2 (Y − M)′Σ− 1
2 λ; Ω

)]
,

where θ ∼ IGamma(ν
2 , ν

2 ), Λθ = (Σ−1+θ∆−1)−1 and ϱθ = etr
{

ΛθΣ−1Y Ψ−1Y ′Σ−1−Σ−1Y Ψ−1Y ′

2θ

}
.

Proof. Matrix variate skew t distribution is one of the distributions belonging to the matrix
variate SSMESN family in which δ = 0, s(θ, ω) = 1 and k(θ) = θ with θ ∼ IGamma(ν

2 , ν
2 ).

Hence, the posterior density in Proposition 2.1 becomes as follows

π(M |Y ) ∝
∫

SH

ϱθ|Λθ|
n
2 ϕp×n(M ; ΛθτΨ, Ψ ⊗ θΛθ)Φn

(
δ + θ− 1

2 (Y − M)′Σ− 1
2 λ; Ω

)
dH(θ)

= Eθ

[
ϱθ|Λθ|

n
2 ϕp×n(M ; ΛθτΨ, Ψ ⊗ θΛθ)Φn

(
δ + θ− 1

2 (Y − M)′Σ− 1
2 λ; Ω

)]
,
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where H is the CDF of the distribution IGamma(ν
2 , ν

2 ) with the support SH = [0, +∞) and
ϱθ = etr

{
ΛθτΨτ ′−τY ′

2k(θ)

}
. The proof is completed by τΨ = Σ−1Y , τΨτ ′ = Σ−1Y Ψ−1Y ′Σ−1,

and τY ′ = Σ−1Y Ψ−1Y ′.

Corollary 2.3. If Y ∼ SNCp×n
(
M , Σ, λ

)
, then

π(M |Y ) ∝ ϕp×n(M ; Λτ , In ⊗ Λ)FC

(
(Y − M)′Σ− 1

2 λ; In
)
,

where τ = Σ−1Y , Λ = (Σ−1 + ∆−1)−1, and FC(·; In) is the CDF of the n-variate standard
Cauchy distribution.

Proof. Since the distribution SNCp×n
(
M , Σ, λ

)
is in fact the distribution SSMESNp×n

(
M , In⊗

Σ, In, λ, 0; (k, s), Q
)

with k(θ) = 1 and s(θ, ω) = ω− 1
2 which ω ∼ IGamma(1

2 , 1
2), by Propo-

sition 2.1, the posterior density of M is

π(M |Y ) ∝ ϕp×n(M ; Λτ , In ⊗ Λ)
∫

SG

Φn
(
ω− 1

2 (Y − M)′Σ− 1
2 λ; In

)
dG(ω),

where G is the CDF of the distribution IGamma(1
2 , 1

2) and SG is its support. Let fC(·; In)
be the PDF of the n-variate standard Cauchy distribution. Since the multivariate Cauchy
distribution is a special case of the scale mixture of multivariate normal distributions, we
have

fC(z; In) =
∫

SG

ϕn(z; 0, ωIn) dG(ω),

where ϕn(·; 0, ωIn) is the PDF of the n-variate normal distribution Nn(0, ωIn). Hence, con-
sidering I(·) as the indicator function, we have∫

SG

Φn
(
ω− 1

2 (Y − M)′Σ− 1
2 λ; In

)
dG(ω)

=
∫

SG

Φn
(
(Y − M)′Σ− 1

2 λ; ωIn
)

dG(ω)

=
∫

SG

[∫
Rn

I
(
z ≤ (Y − M)′Σ− 1

2 λ
)
ϕn(z; 0, ωIn)dz

]
dG(ω)

=
∫
Rn

I
(
z ≤ (Y − M)′Σ− 1

2 λ
) [∫

SG

ϕn(z; 0, ωIn)dG(ω)
]

dz

=
∫
Rn

I
(
z ≤ (Y − M)′Σ− 1

2 λ
)
fC(z; In)dz

= FC

(
(Y − M)′Σ− 1

2 λ; In
)
.

Therefore
π(M |Y ) ∝ ϕp×n(M ; Λτ , In ⊗ Λ)FC

(
(Y − M)′Σ− 1

2 λ; In
)
.

3. Some applications
The results obtained in the previous section can be used in many models. In this section, we
explain applications of the obtained results in the multivariate linear regression and stress-
strength models.

3.1. Multivariate linear regression models

One of the methods of parameter estimation in multivariate linear regression is the Bayesian
estimation method. There are many related researches, for example, Arashi, Iranmanesh,
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Norouzirad, and Salarzadeh Jenatabadi (2014) derived different posterior distributions for
the parameters of multivariate regression models with conjugate priors. In this regard, the
following corollary presents a different posterior density for the parameters in multivariate
linear regression models.

Corollary 3.1. Consider the p-dimensional vectors x1, . . . , xn such that

xi
iid∼ SMNp

(
Bzi, Σ; k, H

)
, i = 1, . . . , n, (2)

where zi is a q-dimensional known vector and B is the p×q unknown matrix of regression pa-
rameters. If B has the prior distribution as Np×q

(
0p×q, (ZZ ′)−1⊗Ξ

)
, where Z = (z1, . . . , zn)

is a q × n known matrix and the p × p known matrix Ξ is positive definite, then the posterior
density of B is given by

π(B|X, Z) ∝
∫

SH

etr
{ 1

2k(θ)(ΠθΣ−1 − Ip)XZ ′(ZZ ′)−1ZX ′Σ−1}|Πθ|
q
2

× ϕp×q(B; ΠθΣ−1XZ ′(ZZ ′)−1, (ZZ ′)−1 ⊗ k(θ)Πθ)dH(θ),

where X = (x1, . . . , xn)p×n and Πθ = (Σ−1 + k(θ)Ξ−1)−1.

Proof. From (2) it follows that X ∼ SMNp×n
(
BZ, In ⊗ Σ; k, H

)
and consequently X | θ =

θ0 ∼ Np×n
(
BZ, In ⊗ k(θ0)Σ

)
. By properties of the matrix variate normal distribution, we

know
XZ ′(ZZ ′)−1 ∼ SMNp×q

(
B, (ZZ ′)−1 ⊗ Σ; k, H

)
.

Because of B ∼ Np×q
(
0p×q, (ZZ ′)−1 ⊗ Ξ

)
, the proof is completed by using Proposition 2.1

with Y p×q = XZ ′(ZZ ′)−1, Ψq×q = (ZZ ′)−1, ∆ = Ξ and λ = 0.

By using the posterior density of Corollary 3.1, it is obvious that the Bayes estimator of B
under the squared error loss function is

B̂Bayes =
∫
Rp×q

Bπ(B|X, Z)dB.

The following examples are some special cases of Corollary 3.1.

Example 3.1. If xi
iid∼ Np

(
Bzi, Σ

)
for i = 1, . . . , n, then

B|X, Z ∼ Np×q
(
ΠΣ−1XZ ′(ZZ ′)−1, (ZZ ′)−1 ⊗ Π

)
,

with Π = (Σ−1 + Ξ−1)−1. Therefore, the Bayes estimator of the regression parameters is

B̂Bayes = ΠΣ−1XZ ′(ZZ ′)−1.

Note that because the least squares estimator of B is B̂LS = XZ ′(ZZ ′)−1, we have

B̂Bayes = ΠΣ−1B̂LS .

Example 3.2. If xi
iid∼ Tp

(
Bzi, Σ, ν

)
for i = 1, . . . , n, then B̂Bayes =

∫
Rp×q Bπ(B|X, Z)dB

with

π(B|X, Z) ∝ Eθ

[
etr
{ 1

2θ
(ΠθΣ−1 − Ip)V ZX ′Σ−1}|Πθ|

q
2 ϕp×q(B; ΠθΣ−1V , (ZZ ′)−1 ⊗ θΠθ)

]
,

where θ ∼ IGamma(ν
2 , ν

2 ), V = XZ ′(ZZ ′)−1 and Πθ = (Σ−1 + θΞ−1)−1.
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3.2. Stress-strength models

A common aspect of research on stress-strength models is the estimation of the reliability of
these models. According to this, the Bayesian estimation of stress-strength reliability of ellip-
tically contoured distributions and multivariate skew-normal distribution have been discussed
by Kotz, Lumelskii, and Pensky (2003) and Rezaei and Yousefzadeh (2022), respectively.
Obtaining Bayes estimators for the stress-strength reliability is another application of the
result of Proposition 2.1. In some stress-strength models, the reliability is considered as the
probability R = P (a′x + b′y + c > 0) where x ∈ Rp and y ∈ Rq are two independent random
vectors and a ∈ Rp, b ∈ Rq, and c ∈ R are known. Consider the stress-strength model
corresponding to the random vectors

x | (θ, ω) ∼ ESNp
(
µ1, k(θ)Σ1, s(θ, ω)λ1, δ1

)
, (3)

and

y | (θ, ω) ∼ ESNq
(
µ2, k(θ)Σ2, s(θ, ω)λ2, δ2

)
, (4)

and denote its reliability by RSSMESN .
Suppose that two independent random samples x1, . . . , xn and y1, . . . , ym are from the dis-
tributions of x and y, respectively. It is obvious that

X = (x1, . . . , xn) ∼ SSMESNp×n
(
M1, In ⊗ Σ1, In, λ1, δ1; (k, s), Q

)
,

and

Y = (y1, . . . , ym) ∼ SSMESNq×m
(
M2, Im ⊗ Σ2, Im, λ2, δ2; (k, s), Q

)
,

where M1 = 1′
n ⊗µ1, δ1 = δ11n, M2 = 1′

m ⊗µ2 and δ2 = δ21m. Let Σi, λi and δi for i = 1, 2
are known and consider the prior distributions Np×n(0p×n, In⊗∆1) and Nq×m(0q×m, Im⊗∆2)
for M1 and M2, respectively. By Proposition 2.1, the posterior densities of M1 and M2,
i.e. π(M1|X) and π(M2|Y ), have the form (1). Since µ1 = 1

nM11n and µ2 = 1
mM21m,

the reliability RSSMESN is a function of M1 and M2, i.e. RSSMESN (M1, M2). Therefore,
the Bayes estimator of RSSMESN under the squared error loss function is obtained by

R̂SSMESN =
∫
Rp×n

∫
Rq×m

RSSMESN (M1, M2)π(M1|X)π(M2|Y )dM2dM1. (5)

The following examples present the Bayes estimator of the stress-strength reliability of some
multivariate distributions such as normal, skew t, and skew-normal-Cauchy.

Example 3.3. By considering k(θ) = s(θ, ω) = 1, λ1 = 0, λ2 = 0, and δ1 = δ2 = 0 in (3) and
(4), the Bayes estimator of the stress-strength reliability corresponding to the multivariate
normal distributions, RN , is obtained by (5) where

RSSMESN (M1, M2) ≡ RN (M1, M2) = Φ1

( 1
na′M11n + 1

mb′M21m + c√
a′Σ1a + b′Σ2b

)
,

and by Corollary 2.1,

M1|X ∼ Np×n
(
Λ1Σ−1

1 X, In ⊗ Λ1
)
, and M2|Y ∼ Nq×m

(
Λ2Σ−1

2 Y , Im ⊗ Λ2
)

with Λi = (Σ−1
i + ∆−1

i )−1 for i = 1, 2.

Example 3.4. The reliability RSSMESN in (5) becomes the stress-strength reliability of the
multivariate skew t distributions (RST ), which has been calculated by Rezaei and Yousefzadeh
(2022), if it is considered

δ1 = 0, k(θ0) = θ0, s(θ0, ω0) = 1, θ1 ∼ IGamma(ν1
2 , ν1

2 ),
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and
δ2 = 0, k(θ0) = θ0, s(θ0, ω0) = 1, θ2 ∼ IGamma(ν2

2 , ν2
2 ),

in (3) and (4), respectively. Hence, the Bayes estimator of RST is

R̂Bayes
ST =

∫
Rp×n

∫
Rq×m

RST (M1, M2)π(M1|X)π(M2|Y )dM2dM1,

where from Corollary 2.2,

π(M1|X) ∝ Eθ1

[
ϱ1

θ1 |Λ1
θ1 |

n
2 ϕp×n(M1; Λ1

θ1τ 1, In ⊗ θ1Λ1
θ1)Φn

(
θ

− 1
2

1 (X − M1)′Σ− 1
2

1 λ1; In
)]

,

and

π(M2|Y ) ∝ Eθ2

[
ϱ2

θ2 |Λ2
θ2 |

m
2 ϕq×m(M2; Λ2

θ2τ 2, Im ⊗ θ2Λ2
θ2)Φn2

(
θ

− 1
2

2 (Y − M2)′Σ− 1
2

2 λ2; Im
)]

,

with Λi
θi

= (Σ−1
i +θi∆−1

i )−1 for i = 1, 2, τ 1 = Σ−1
1 X, τ 2 = Σ−1

2 Y , ϱ1
θ1

= etr
{Λ1

θ1
τ 1τ ′

1−τ 1X′

2θ1

}
and ϱ2

θ2
= etr

{Λ2
θ2

τ 2τ ′
2−τ 2Y ′

2θ2

}
.

Example 3.5. The distribution of the random vectors x and y are SNCp(µ1, Σ1, λ1) and
SNCq(µ2, Σ2, λ2), respectively, by considering δ1 = δ2 = 0, k(θ0) = θ0 and s(θ0, ω0) = ω

− 1
2

0
in (3) and (4) when ω ∼ IGamma

(1
2 , 1

2
)
. From (5), the Bayes estimator of the stress-strength

reliability of these vectors (RSNC) is given by

R̂Bayes
SNC =

∫
Rp×n

∫
Rq×m

RSNC(M1, M2)π(M1|X)π(M2|Y )dM2dM1, (6)

where by Corollary 2.3,

π(M1|X) ∝ ϕp×n(M1; Λ1τ 1, In ⊗ Λ1)FC

(
(X − M1)′Σ− 1

2
1 λ1; In

)
,

π(M2|Y ) ∝ ϕq×m(M2; Λ2τ 2, Im ⊗ Λ2)FC

(
(Y − M2)′Σ− 1

2
2 λ2; Im

)
,

with τ 1 = Σ−1
1 X, τ 2 = Σ−1

2 Y and Λi = (Σ−1
i + ∆−1

i ) for i = 1, 2, and also by Rezaei and
Yousefzadeh (2022),

RSNC(M1, M2) =RN (M1, M2) + 1
π

[ ∫ ∞

0

cos
(
( 1

na′M11n + 1
mb′M21m + c)u

)
u

× e
−u2

2 (a′Σ1a+b′Σ2b)( ∗
τΣ1,λ1 (au)+ ∗

τΣ2,λ2 (bu)
)
du

−
∫ ∞

0

sin
(
( 1

na′M11n + 1
mb′M21m + c)u

)
u

× e
−u2

2 (a′Σ1a+b′Σ2b) ∗
τΣ1,λ1 (au) ∗

τΣ2,λ2 (bu)du

]
,

where ∗
τΣ,λ (t) =

∫∞
0 τ

(
λ′Σ

1
2 t√

1+x2λ′λ
x
)
ϕ1(x)dx with the PDF of the univariate standard normal

distribution ϕ1 and τ(z) =
√

2
π

∫ z
0 exp

{
t2

2
}
dt.

4. A simulation study
In this section, a simulation study is presented to compare different Bayes estimators of RSNC ,
the stress-strength reliability of the multivariate skew normal-Cauchy distributions. Note here
that all relevant programs are written in the R software package and are performed by using
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a machine equipped with an Intel Core i5-3230M 2.60 GHz processor and 4 GB RAM. The
R codes can be obtained on request from the authors.
In this simulation study, we focus on comparing the Bayes estimations of the stress-strength
reliability corresponding to the random vectors

x ∼ SNC3

µ1 =

 0
1
2

 , Σ1 =

 4.5 1.5 −0.4
1.5 3.0 2.3

−0.4 2.3 4.5

 , λ1 =

 −1
1

−1


 ,

and

y ∼ SNC3

µ2 =

 2
−1
−1

 , Σ2 =

 2.0 −0.5 −0.8
−0.5 2.2 −0.3
−0.8 −0.3 1.8

 , λ2 =

 0.3
−0.3
−0.3


 ,

with a = b = (0.25, 0.5, −0.25)′ and c = 1 which equals to 0.82164.
We have taken the prior distributions N3×n(03×n, In ⊗ ∆1) and N3×m(03×m, Im ⊗ ∆2) to
obtain the Bayes estimations of RSNC , where

• Prior-1: ∆1 = I3 and ∆2 = I3;

• Prior-2: ∆1 =

 2.73 −0.66 −1.59
−0.66 2.73 1.35
−1.59 1.35 2.73

 , and ∆2 =

 1.66 1.66 1.42
1.66 3.55 1.66
1.42 1.66 2.81

;

• Prior-3: ∆1 =

 1.66 1.66 1.42
1.66 3.55 1.66
1.42 1.66 2.81

 , and ∆2 =

 2.73 −0.66 −1.59
−0.66 2.73 1.35
−1.59 1.35 2.73

 .

As can be seen in (6) the Bayes estimators of RSNC have not closed forms; hence we use
Markov Chain Monte Carlo integration to calculate them. For generating random samples
from the posterior densities π(M1|X) and π(M2|Y ), we employ the independence sampler,
a special case of the Metropolis-Hastings sampler, as follows; see Tierney (1994) for more.

Algorithm 1. Perform the following steps to generate random sample from the posterior
density π(M |Y ) of Corollary 2.3:

• Step 1: Generate the initial matrix M0 from Np×n(0p×n, In ⊗ ∆).

• Step 2: Calculate the matrices τ = Σ−1Y , Σg = (Σ−1 + ∆−1)−1 and M g = Σgτ .

• Step 3: Generate Mπ and U from Np×n(M g, In ⊗Σg) and Uniform(0, 1), respectively.

• Step 4: If
U <

π(Mπ|Y )ϕp×n(M0; M g, In ⊗ Σg)
π(M0|Y )ϕp×n(Mπ; M g, In ⊗ Σg) ,

accept Mπ and consider it as a random sample of π(M |Y ); otherwise, set Mπ as M0
and repeat steps 3 and 4.

For monitoring convergence of the algorithm 1, we use the Gelman-Rubin diagnostic which
is a method to check the convergence of a Metropolis-Hastings chain, see Gelman and Rubin
(1992). For this method, we run 10 independent chains with different initial values and
discard the first 20% of generated samples as the burn-in step in each chain. Table 1 contains
the Gelman-Rubin statistic for different posterior densities π(M1|X) and π(M2|Y ). These
values are close to 1 that indicate the convergence of Algorithm 1 for each posterior density.
Bias and mean squared error (MSE) of different Bayes estimations of RSNC for varying sample
sizes are presented in Table 2. It can be observed that for any pair (n, m), the absolute value



Austrian Journal of Statistics 129

Table 1: The Gelman-Rubin statistic of different posterior densities

Prior-1 Prior-2 Prior-3
π(M1|X) 0.9897789 0.9897852 0.9898353
π(M2|Y ) 0.9897716 0.9898104 0.9897663

Table 2: The results of simulation for different Bayes estimations of RSNC

(n, m) Prior-1 Prior-2 Prior-3
Bias MSE Bias MSE Bias MSE

(10, 10) -0.076379 0.007716 -0.063564 0.010236 0.022696 0.001999
(10, 15) -0.041828 0.004289 -0.075475 0.010454 0.030584 0.002575
(10, 20) -0.053089 0.004330 -0.065466 0.007348 0.017873 0.001680
(15, 10) -0.044426 0.004964 -0.073285 0.008810 0.011459 0.002159
(15, 15) -0.049522 0.004271 -0.057152 0.007266 0.034053 0.003166
(15, 20) -0.048657 0.003523 -0.067342 0.007193 0.005173 0.002467
(20, 10) -0.039217 0.004371 -0.044141 0.007374 0.025004 0.001743
(20, 15) -0.032857 0.002021 -0.066391 0.007225 0.013092 0.001603
(20, 20) -0.042048 0.002895 -0.061840 0.006779 0.001927 0.001908

of bias and MSE of the Bayes estimation obtained by Prior-3 are lower than that of other
Bayes estimations. Hence, Prior-3 introduces considerably more prior information for RSNC .
Also, as the sample sizes increase, the MSE of all Bayes estimations decreases.

5. Real data analysis
In this section, we consider Chemical Reaction Data in Box and Youle (1955) and obtain
different Bayes estimations for the regression parameters. These data consist of the results of
a planned experiment involving a chemical reaction that are given in Table 3. The dependent
variables are the percentage of unchanged starting material (x1), the percentage converted
to the desired product (x2) and the percentage of unwanted by-product (x3) and also the
independent variables are the temperature (z1), the concentration (z2) and the time (z3).

Let X = (x1, . . . , x19) and Z =
(

1 . . . 1
z1 . . . z19

)
. Consider the regression of (x1, x2, x3) on

(z1, z2, z3) in the multivariate normal distribution case. The least squares estimation of the
regression parameters

B = (βij) =

 β10 β11 β12 β13
β20 β21 β22 β23
β30 β31 β32 β33

 .

is

B̂LS = XZ ′(ZZ ′)−1 =

 332.11098 −1.54596 −1.42455 −2.23736
−26.03526 0.40455 0.29299 1.03380
−164.07894 0.91392 0.89947 1.15348

 .

To test overall regression, we must consider the hypothesis that none of (z1, z2, z3) predict
any of (x1, x2, x3). For this purpose, we consider Wilks’ Λ and calculate it as

Λ = |X X ′ − B̂LSZX ′|
|X X ′ − 19x̄x̄′|

= 0.03315764.

Here, the corresponding lower critical value is Λ0.05,3,3,15 = 0.309. Since Λ < Λ0.05,3,3,15, we
reject the hypothesis and hence at least one of (z1, z2, z3) predicts x’s. For more information
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Table 3: Chemical reaction data
Experiment Dependent variables Independent variables

Number x′ = (x1, x2, x3) z′ = (z1, z2, z3)
1 x′

1 = (41.5, 45.9, 11.2) z′
1 = (162, 23, 3)

2 x′
2 = (33.8, 53.3, 11.2) z′

2 = (162, 23, 8)
3 x′

3 = (27.7, 57.5, 12.7) z′
3 = (162, 30, 5)

4 x′
4 = (21.7, 58.8, 16.0) z′

4 = (162, 30, 8)
5 x′

5 = (19.9, 60.6, 16.2) z′
5 = (172, 25, 5)

6 x′
6 = (15.0, 58.0, 22.6) z′

6 = (172, 25, 8)
7 x′

7 = (12.2, 58.6, 24.5) z′
7 = (172, 30, 5)

8 x′
8 = (4.3, 52.4, 38.0) z′

8 = (172, 30, 8)
9 x′

9 = (19.3, 56.9, 21.3) z′
9 = (167, 27.5, 6.5)

10 x′
10 = (6.4, 55.4, 30.8) z′

10 = (177, 27.5, 6.5)
11 x′

11 = (37.6, 46.9, 14.7) z′
11 = (157, 27.5, 6.5)

12 x′
12 = (18.0, 57.3, 22.2) z′

12 = (167, 32.5, 6.5)
13 x′

13 = (26.3, 55.0, 18.3) z′
13 = (167, 22.5, 6.5)

14 x′
14 = (9.9, 58.9, 28.0) z′

14 = (167, 27.5, 9.5)
15 x′

15 = (25.0, 50.3, 22.1) z′
15 = (167, 27.5, 3.5)

16 x′
16 = (14.1, 61.1, 23.0) z′

16 = (177, 20, 6.5)
17 x′

17 = (15.2, 62.9, 20.7) z′
17 = (177, 20, 6.5)

18 x′
18 = (15.9, 60.0, 22.1) z′

18 = (160, 34, 7.5)
19 x′

19 = (19.6, 60.6, 19.3) z′
19 = (160, 34, 7.5)

about Wilks’ Λ, see Rencher (2002). To determine whether each of the predictors z1, z2, and
z3 contributes to the model, we must consider the hypothesis that (x1, x2, x3) do not depend
on zr for r = 1, 2, 3. For this purpose, we use Pillai’s test statistic which is calculated as

V (r) = tr
(
(X X ′ − B̂

r
LSZrX ′)−1(B̂LSZX ′ − B̂

r
LSZrX ′)

)
,

where B̂
r
LS is the least squares estimation of the regression parameters without considering

zr in the model and Zr contains the rows of Z corresponding to B̂
r
LS . For more information

about Pillai’s test statistic, see Rencher (2002). Table 4 contains the values of Pillai’s test
statistic, their approximate F -statistics, and the related p-values. Based on the obtained
results, it can be concluded that z1, z2, and z3 are significant predictors for x’s.

Table 4: The obtained results for Pillai’s test statistics
Variable Test statistic Approx. F -statistic df p-value

z1 0.9536407 89.140 (3,13) 6.364 × 10−9

z2 0.8881265 34.401 (3,13) 1.894 × 10−6

z3 0.7639332 14.023 (3,13) 0.0002279

Hence, by considering B̂LS , the fitted model is

x̂LS =

 x̂LS
1

x̂LS
2

x̂LS
3

 =

 332.11098 − 1.54596(z1) − 1.42455(z2) − 2.23736(z3)
−26.03526 + 0.40455(z1) + 0.29299(z2) + 1.03380(z3)
−164.07894 + 0.91392(z1) + 0.89947(z2) + 1.15348(z3)

 .

Assume the prior distributions N3×4
(
03×4, (ZZ ′)−1 ⊗ Ξ1

)
and N3×4

(
03×4, (ZZ ′)−1 ⊗ Ξ2

)
with

Ξ1 =

 9 1.5 0.5
1.5 6.25 0.25
0.5 0.25 9

 and Ξ2 =

 2.25 0.05 −0.25
0.05 2.25 −0.25

−0.25 −0.25 2.25

 ,
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for B. From Example 3.1,

B̂Bayes−1 =
(
β̂Bayes−1

ij

)
= Π1S−1B̂LS =

 50.93274 −0.09489 −0.09204 −0.05708
29.22740 0.00049 −0.01894 0.13893
21.08979 0.03507 0.04355 0.06247

 ,

and

B̂Bayes−2 =
(
β̂Bayes−2

ij

)
= Π2S−1B̂LS =

 31.22191 −0.03787 −0.03720 0.00107
27.46278 −0.00687 −0.01644 0.08360
24.01381 0.00142 0.00409 0.03963

 ,

where

S = 1
19 − 1

19∑
i=1

(xi − x̄)(xi − x̄)′ =

 99.29620 −28.56863 −59.02813
−28.56863 22.24801 5.78395
−59.02813 5.78395 45.27140

 ,

is the sample covariance matrix of the dependent variables,

Π1 = (S−1 + Ξ−1
1 )−1 =

 5.16859 −1.07754 −2.95790
−1.07754 3.50550 −1.67304
−2.95790 −1.67304 4.38077

 ,

and

Π2 = (S−1 + Ξ−1
2 )−1 =

 1.74444 −0.41109 −0.76121
−0.41109 1.62515 −0.66010
−0.76121 −0.66010 1.58611

 .

To examine the significance of B̂Bayes−1 and B̂Bayes−2, we use the following algorithm for
obtaining bootstrap confidence intervals for their elements. See Efron and Tibshirani (1994)
for more information about the bootstrapping methods.

Algorithm 2. Suppose that B̂Bayes = (β̂ij) with i = 1, 2, 3 and j = 0, 1, 2, 3, is a Bayes
estimation for B and z∗

i = (1, zi)′ for i = 1, . . . , 19.

• Step 1: Generate x∗
l from Np

(
B̂Bayesz∗

l , S
)

for l = 1, . . . , 19.

• Step 2: Obtain the Bayes estimation B̂
(1)
Bayes =

(
β̂

(1)
ij

)
based on x∗

1, . . . , x∗
19.

• Step 3: Repeat the above steps as much as T repetition until get the parametric boot-
strap sample B̂

(1)
Bayes =

(
β̂

(1)
ij

)
, . . . , B̂

(T )
Bayes =

(
β̂

(T )
ij

)
.

• Step 4: Obtain a 100(1 − α)% percentile bootstrap confidence interval for β̂ij by(
β̂

α
2

ij , β̂
1− α

2
ij

)
, where β̂

α
2

ij and β̂
1− α

2
ij are respectively α

2 and 1 − α
2 percentiles of the para-

metric bootstrap sample β̂
(1)
ij , . . . , β̂

(T )
ij .

Note that falling each element of B̂Bayes within its obtained confidence interval indicates its
significance.

The bootstrap 95% confidence intervals (considering T = 5000) for the elements of B̂Bayes−1
and B̂Bayes−2 are presented in Tables 5 and 6.
The results of Table 5 show that among the elements of B̂Bayes−1, β̂Bayes−1

11 and β̂Bayes−1
10 are

not significant, while the results of Table 6 show the significance of all elements of B̂Bayes−2.
Therefore, the fitted models are as follows:

x̂Bayes−1 =

 x̂Bayes−1
1

x̂Bayes−1
2

x̂Bayes−1
3

 =

 −0.09204(z2) − 0.05708(z3)
29.22740 + 0.00049(z1) − 0.01894(z2) + 0.13893(z3)
21.08979 + 0.03507(z1) + 0.04355(z2) + 0.06247(z3)
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Table 5: The bootstrap confidence intervals of B̂Bayes−1’s elements

Element Estimation Confidence interval Explanation0.025 percentile 0.975 percentile
β̂Bayes−1

10 50.93274 24.02470 45.34254 Not significant
β̂Bayes−1

20 29.22740 11.90661 40.36312 Significant
β̂Bayes−1

20 21.08979 18.54900 47.23474 Significant
β̂Bayes−1

11 -0.09489 -0.07655 0.03598 Not significant
β̂Bayes−1

21 0.00049 -0.09020 0.06050 Significant
β̂Bayes−1

21 0.03507 -0.08981 0.06268 Significant
β̂Bayes−1

12 -0.09204 -0.10725 0.05836 Significant
β̂Bayes−1

22 -0.01894 -0.12630 0.09132 Significant
β̂Bayes−1

22 0.04355 -0.12706 0.10032 Significant
β̂Bayes−1

13 -0.05708 -0.14867 0.23455 Significant
β̂Bayes−1

23 0.13893 -0.19981 0.32302 Significant
β̂Bayes−1

23 0.06247 -0.22406 0.30187 Significant

Table 6: The bootstrap confidence intervals of B̂Bayes−2’s elements

Element Estimation Confidence interval Explanation0.025 percentile 0.975 percentile
β̂Bayes−2

10 31.22191 19.82957 31.25661 Significant
β̂Bayes−2

20 27.46278 17.69807 33.14585 Significant
β̂Bayes−2

20 24.01381 19.74956 34.28943 Significant
β̂Bayes−2

11 -0.03787 -0.04425 0.01648 Significant
β̂Bayes−2

21 -0.00687 -0.05500 0.02735 Significant
β̂Bayes−2

21 0.00142 -0.05218 0.02614 Significant
β̂Bayes−2

12 -0.03720 -0.06016 0.02834 Significant
β̂Bayes−2

22 -0.01644 -0.07536 0.04321 Significant
β̂Bayes−2

22 0.00409 -0.07124 0.04358 Significant
β̂Bayes−2

13 0.00107 -0.06942 0.13907 Significant
β̂Bayes−2

23 0.08360 -0.09388 0.18981 Significant
β̂Bayes−2

23 0.03963 -0.09804 0.16986 Significant

x̂Bayes−2 =

 x̂Bayes−2
1

x̂Bayes−2
2

x̂Bayes−2
3

 =

 31.22191 − 0.03787(z1) − 0.03720(z2) + 0.00107(z3)
27.46278 − 0.00687(z1) − 0.01644(z2) + 0.08360(z3)
24.01381 + 0.00142(z1) + 0.00409(z2) + 0.03963(z3)


To check the distribution of the residuals, we use Royston’s multivariate normality test;
see Royston (1983) for further information. The results of Royston’s tests, which are presented
in Table 7, show the multivariate normality of the residuals of the fitted models.

Conclusion
In this paper, to obtain a Bayes estimator for the mean matrix of the matrix variate SSMESN
distributions, we presented a posterior density by considering a matrix variate normal dis-
tribution as its prior. As applications of the results, we used the obtained posterior density
for estimating in the multivariate linear regression and the stress-strength models. Finally,
different Bayes estimations of the stress-strength reliability of the multivariate skew normal-
Cauchy distributions were compared by a simulation study, and the Bayes estimations of
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Table 7: The results of Royston’s tests
Model Test statistic p-value
x̂LS 1.192189 0.5718729

x̂Bayes−1 2.334849 0.2095501
x̂Bayes−2 2.206623 0.2177015

the regression parameters for Chemical Reaction Data were obtained. Here, we focused on
obtaining a Bayes estimator for the mean matrix of the matrix variate SSMESN distributions
when the matrix variate normal distribution was considered as prior and other parameters
of this family of matrix variate distributions were known. In this way, obtaining Bayes esti-
mators for the mean matrix by considering other priors for it, obtaining Bayes estimators for
other parameters, using other methods to estimate parameters of this family of distributions,
comparing the Bayesian estimators of the parameters with other types of their estimators and
applying artificial intelligence algorithms in this regard can be considered as future works.
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