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Abstract

In this paper, the problem of finding a Bayes estimation for the mean matrix of the
scale and shape mixtures of matrix variate extended skew normal distributions is con-
sidered, and its applications in the multivariate linear regression and the stress-strength
models are described. Finally, a simulation study and a real data analysis are presented
for applications.
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1. Introduction

The matrix variate distributions have a very important role in multivariate analysis methods;
for example, the distribution of the maximum likelihood estimator of the covariance matrix
of a multivariate normal distribution is the Wishart distribution, which plays a pivotal role
in related analysis. The matrix variate normal distribution is one of the most important
matrix variate distributions; for more about this distribution, see Gupta and Nagar (1999)
and Gupta, Varga, and Bodnar (2013). A p x n random matrix X follows a matrix variate
normal distribution if its probability density function (PDF) can be written as

T n 1
Open(X: M, @ ) = (2m)" % |9 F[B[Fetr{ - J¥TN(X - M)ET/(X - M)},

where etr{A} = exp{tr(A)}, M is a p X n mean matrix, X is a p X p positive definite matrix
and W is an n X n positive definite matrix. The normal matrix variate X is denoted by
X ~ Npxn(M, ¥ @ 3).

There are different skew versions of the matrix variate normal distribution. One of these skew
versions is the matrix variate extended skew normal distribution, which was introduced by
Ning and Gupta (2012). A p x n random matrix X is said to follow a matrix variate extended
skew normal distribution with a p X n mean matrix M, a p X p positive definite matrix 3
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and n X n positive definite matrices €2 and W, if its PDF is

Gpxn(X; M, ¥ @ X) ra L
X:M. U2 QNS = O,(6+ (X — MYS iA:Q),
fESN( 3 5 & ) WEy A ) CIDn(5,Q+)\/)\\II) ( +( ) 2 )

where A and d are p and ¢ dimensional vectors, respectively, ¢pxn(; M, ¥ ® 3) is the PDF
of the matrix variate normal distribution Npy,(M,¥ @ X) and ®,(-; Q) is the cumulative
distribution function (CDF) of the multivariate normal distribution N, (0, €2). The extended
skew normal matrix variate X is denoted by X ~ ESNpxn(M, ¥ @ 3,Q, X, 9).

Recently the scale and shape mixtures of matrix variate extended skew normal (SSMESN)
distributions was introduced by Rezaei, Yousefzadeh, and Arellano-Valle (2020) as a new
family of matrix variate distributions which includes a wide range of distributions such as
matrix variate normal, matrix variate skew normal, matrix variate ¢, matrix variate skew t,
matrix variate skew-t-normal and matrix variate skew-normal-Cauchy distributions. A p x n
random matrix Y follows an SSMESN distribution with a p X n mean matrix M, a p X p
positive definite matrix 3 and n X n positive definite matrices 2 and ¥ if

Y | 0=06yw=uwy~ ESNan(M, ¥ ® ]{3(90)2, Q, 8(90,0.)0))\, 5),

or equivalently, if its PDF is as follows
fFY; M, 3. ¥, QN 6) = Tesn(Y; M, ¥ ® k(0)2,Q,5(0,w)X, 8)dQ(0,w),
Sq

where 6 and w are two random variables that have joint distribution Q(6,w) with support
S¢g and marginal distributions H () and G(w), k(0) is a weight function and s(6,w) is a real-
valued function. The SSMESN matrix variate Y is denoted by Y ~ SSMESN,x, (M, ¥ ®
3,Q,,6; (k, 9),Q).

When M =1, ®pu, § = 01, and @ = ¥ = I,, where p € R?, § € R! and 1, is an
n-dimensional vector of ones, an important situation occurs for the SSMESN matrix variate
Y with the columns y,...,y,,. In this situation,

yi | 0= 00,0 =wo < ESN, (1, k(00)%, s(60,wo)\,8), i=1,....n,
with the conditional PDF
JEsN(Y; | 0o, wo; , k(00) 2, 5(60, wo) A, 6)

= ! Pp(yi; 11, k(00) %)
D1(8/4/1+ 5(60, w0)’X'A)

X @6+ S(HOaWO)k(QO)_%(yi - H),E_%)‘), y; € R?,

where ¢, and ®; are the PDF of the p-variate normal distribution and the CDF of the
univariate standard normal distribution, respectively.

The matrix variate SSMESN family includes some different matrix variate distributions, and
is a quite large family of this type of distributions. For example,

- If k(#) = s(f,w) = 1 and A = 0, then we have the matrix variate normal distribution.

- If A = 0, then we obtain the scale mixture of matrix variate normal distributions which
proposed by Gupta and Varga (1995). We denote this subfamily by SM Ny, (M, ¥ ®
3k, H).

- If k(0) = s(A,w) = 1, the matrix variate extended skew normal distribution is obtained.

- If 6 = 0, then the SSMESN matrix variate Y follows the matrix variate skew ¢ dis-
tribution with v degrees of freedom by considering k() = 6 and s(f,w) = 1 with
0 ~ IGamma(g,5), where IGamma(a,b) denotes the inverse gamma distribution
with shape parameter a and scale parameter b. We use the notation STy, (M, ¥ ®
3, Q, A, v) to denote this distribution.
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122 Bayes Estimation for the SSMESN Family of Matrix Variate Distributions

-If0=0,=Q=1,,k(f)=1and s(f,w) = w2 with w ~ IGamma(, 3), then the
SSMESN matrix variate Y follows the matrix variate skew-normal-Cauchy distribution

which is denoted here by SNCpx, (M, X, N).

In the next section, a posterior density for the mean matrix of the matrix variate SSMESN
distributions is obtained and some of its particular cases are provided. In Section 3, appli-
cations of the obtained results in the multivariate linear regression and the stress-strength
models will be discussed. Sections 4 and 5 will present a simulation study for comparing the
Bayes estimations of a stress-strength reliability and a real data analysis for a multivariate
linear regression model, respectively.

2. Posterior densities

It must minimize the posterior risk to find a Bayes estimator for a parameter. Therefore, in
the first step, related posterior distribution or related posterior density should be obtained.
In this section, by considering a matrix variate normal distribution as prior for the mean
matrix of the matrix variate SSMESN distributions, a posterior density is derived for it. The
result is given in the following proposition.
Proposition 2.1. Suppose that Y ~ SSMESN,.,(M,¥ ® X,Q, X, §; (k,s),Q) where X,
U QX and d are known. If M is independent of 0 and w, and has prior distribution as
Npsn(0pxn, ¥ @ A), where Apyp is a positive definite matriz, then the posterior density of
M s
% prxn(M; A@T‘I’, v & k(G)Ag)

D, (8;Q + s(0,w)2 N AP)

X B (8 + 5(0,w)k(0) "2 (Y — M)E"2: Q)dQ(0,w), (1)

(MY oc/S 06l Ay
Q

where Ag = (571 + K(OAT) L, T = EY S and gy — etr{Ambr=rY' )

Proof. Since m1(M|Y) < f(Y|M)n(M), by the PDFs of the random matrices Y and M, we
can write

(2m) % | |75 k(0)" 7
So Pn(8;Q2+ 5(0,w)2XN'AD)

T(M|Y)

-1 1
I M-YVE I M-Y)- 0 'MA M
TN )= )= 3 }

X B, (8 + 5(0,w)k(0) "2 (Y — M)'S™2X;Q)dQ(0,w).

Now, since

etr{_—l\p—l(M ~Y)STHM - Y)} =etr{ ! Y’}

2k(6) 2k(0)
_ 1 —1ag/s—1 1 /
xetr{ zk(e)‘l' M'S M+k(9)TM},
and
-1 1
O IMATIM — 27 M|} = —— g
etr{2k(9)[ 9 T ]} etr{Qk(G) 0T T}
-1 —1 / 1A —1 /
xetr{Qk(e)\Il (M — Apm'®) A, (M — Apr' )},
we have

ApgTO T — TY’}‘A 3 Gpxn(M; AgT¥®, ¥ @ k(0)Ay)
2k(0) O T, (8,0 + 5(0,w) 2N AW)

x By (8 + 5(0,w)k(0)2(Y — M)'S™2X;Q)dQ(0, w).

T(M]Y) x ; etr{
Q
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Note. By substituting U = M — Ap7W¥, and using Lemma 2.1 of Harrar and Gupta (2008),
the explicit form of w(M]Y") can be obtained as follows

n 1 1
[ eolal® dpen(MiAGr OO Ag)on (04500)k(0) (Y MYEIX0)
Q D, (6;92+5(0,w)2 N AT) ’

I g9|A9|%¢’n(5+s(9,w)k(9)_%(Yng‘r\I')’E_%A;Q+s(9,w)2)\’2_%A92_%A\II)dQ(g )
So 3,02+ 5(0.0) 2N AT) » W

T(M[Y) =

The following corollaries can be written by using Proposition 2.1.
Corollary 2.1. Let A = (71 + A~1H)~L,
(i) If Y ~ Npxn (M, ¥ @ ), then M|Y ~ Npsn(AZ7'Y, T ® A).
(ii) If Y ~ ESNpyn (M, ¥ @ 3,Q,X,8), then the posterior distribution of M is
ESN,yn(AS'Y W@ A, Q, A5 2X 6+ (Y — AR"'Y)E 2 )).

Proof. As the matrix variate normal distribution is a special case of the matrix variate ex-
tended skew normal distribution, we only prove (i7). Consider the exact form of posterior
density in Note 2. If k(0) = s(f,w) = 1, then

 Gpxn(MGATE, W @ A)D, (6 + (Y — M)S 72X Q)

m(M[Y) — —
0,(6+ (Y — ATE)YE 2A; Q + NE 2AT 2 AD)

where 7 = SV ¥ Since AT¥ = AS 'Y, N 2AS 2A = (—A2E X)) (—AZE 2,
and
(Y —M)S2A=Y'S72A - M'S 72
—Y'STIA-Y'S AT A+ VS TIAT IA - M/E A
= (VY -Y'S AT 2A - (M - Y'S 'A)T 2
= (Y -AS'Y)S 2+ (M - AS'Y) A 2(— A28 2)),
we have
Gpsn(M;AZTY ¥ @ A)

T(M]Y) = 1 1 T L/ Tl
B, (8 + (Y —ARTIYYI I Q4 (~ AT TIN) (- ATE TN D)

x B, (84 (Y = AXT'Y)STEA 4 (M - ART'Y) AT (- AZRTIN); Q)
=fesn(M;AS 'Y, U@ A, Q A5 2 6+ (Y — AR 'Y)E 2 ).
0

Corollary 2.2. If Y ~ STpun(M,¥ ® X,Q,\,v), then the posterior density of M is as
follows:

T(M|Y) o Ep [09|Ag|? $pren(M; AgZ 'Y, W © 0A0),, (072 (Y — MY B30, Q)]

-1 —1ly/y—1 -1 —1y7
where § ~ IGamma(%,%), Ag = (E ' +0A") 1 and gg = etr{A"E Yoy 22:9 S 4 i

Proof. Matrix variate skew ¢ distribution is one of the distributions belonging to the matrix
variate SSMESN family in which 6 = 0, s(6,w) = 1 and k(f) = 0 with 0 ~ IGamma(s,5).
Hence, the posterior density in Proposition 2.1 becomes as follows

T (M]Y) o</ 001 Ag) 5 by (M AgT¥, T @ OA)®,, (6 + 63 (Y — MY'S~$X; Q)dH (6)
SH

= Ep |00 Ag] ? prn(M; g%, W @ 0A)D,, (6 + 073 (Y — M)'S 72X Q)]
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where H is the CDF of the distribution /Gamma(%, %) with the support Sy = [0, +00) and

272
09 = etr{%ﬂ}. The proof is completed by 7% = £7'Y, 7¥ 7 = 2y ¢y’
and 7Y = 2'Y Uy, D

Corollary 2.3. If Y ~ SNCpx,, (M, X, X), then
T(M|Y) X ¢pun(M; AT, I, @ A)Fo((Y — MYS 2\ 1,),

where T = X7V, A= (T + A™YH7L, and Fo(-;1,,) is the CDF of the n-variate standard
Cauchy distribution.

Proof. Since the distribution SNCpxp (M, 2, A) is in fact the distribution SSM ES Ny, (M, I,®
3,1,,X,0;(k,s),Q) with k(0) = 1 and s(f,w) = w™3 which w ~ IGamma(%, %), by Propo-
sition 2.1, the posterior density of M is

T(M|Y) X ¢pn(M; AT, I, A)/ D, (w2 (Y — M)S 2 I,) dG(w),
Sa

where G is the CDF of the distribution IGamma(},1) and S¢ is its support. Let fo(;15)
be the PDF of the n-variate standard Cauchy distribution. Since the multivariate Cauchy
distribution is a special case of the scale mixture of multivariate normal distributions, we
have

folz1,) = /S bn (2 0,0I,) dG(w),

where ¢, (;0,wl,,) is the PDF of the n-variate normal distribution N,,(0,wI, ). Hence, con-
sidering I(-) as the indicator function, we have

/S O, (w2 (Y — M)S 2X: 1) dG(w)

:/ O, (Y — M)'S 2 A;01,) dG(w)

/n [(z < (Y — MYS 3A)é,(2:0, wIn)dz] dG(w)

bn(2; O,wIn)dG(w)} dz
Sa

Therefore L
T(M|Y) X ¢ppsn(M; AT, I, ® A)FC((Y - M)'E72) In).

3. Some applications

The results obtained in the previous section can be used in many models. In this section, we
explain applications of the obtained results in the multivariate linear regression and stress-
strength models.

3.1. Multivariate linear regression models

One of the methods of parameter estimation in multivariate linear regression is the Bayesian
estimation method. There are many related researches, for example, Arashi, Iranmanesh,
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Norouzirad, and Salarzadeh Jenatabadi (2014) derived different posterior distributions for
the parameters of multivariate regression models with conjugate priors. In this regard, the
following corollary presents a different posterior density for the parameters in multivariate
linear regression models.

Corollary 3.1. Consider the p-dimensional vectors x1, ..., x, such that

2, Y SMN,(Bz, Sk, H), i=1,....n, (2)

where z; is a g-dimensional known vector and B is the p X ¢ unknown matrix of regression pa-
rameters. If B has the prior distribution as Npxq(Opxq, (ZZ')1QE), where Z = (21, ..., 2n)
s a ¢ X n known matriz and the p X p known matriz 2 is positive definite, then the posterior
density of B is given by

7(B|X, Z) oc/ etr{i(ngz—l —1,)XZ' (22" 'zX's"'},)2
SH 2]{(9)
X Gpxq(B:TyE "X Z(Z2Z')1,(Z22")! @ k(0)Ty)dH (6),
where X = (21, ..., %n)pxn and Iy = (X1 + k(0)E71) L.

Proof. From (2) it follows that X ~ SMNy,x,(BZ,I, ® 3;k, H) and consequently X | 6 =
0o ~ Npxn(BZ,I, ® k(6y)X). By properties of the matrix variate normal distribution, we
know

XZ'(ZZ')7' ~ SMN,yy(B,(ZZ") ' @ ;k, H).

Because of B ~ Ny (0pxq, (ZZ')~! @ E), the proof is completed by using Proposition 2.1
with Y puy = XZ'(ZZ') ", Oy =(ZZ')"1, A=E and A =0. O

By using the posterior density of Corollary 3.1, it is obvious that the Bayes estimator of B
under the squared error loss function is

BBWS:/ Br(B|X, Z)dB.
RPXq

The following examples are some special cases of Corollary 3.1.
Example 3.1. If x; N,(Bz;,X) for i = 1,...,n, then
B|X,Z ~ Ny, MIX"'XZ' (27 ', (2Z") ' 2 1),
with II = (27! + 2711, Therefore, the Bayes estimator of the regression parameters is
BBayes =X XZ'(22")7".
Note that because the least squares estimator of B is Brg = XZ'(ZZ')~!, we have
Bpayes = I 'Bpg.

Example 3.2. If z; % T,(Bz;, 2, v) for i = 1,...,n, then Bpayes = Jpprq Br(B|X, Z)dB

with
1
m(B|X, Z) x Eq etr{%(m}z*l — 1)V ZX'S Y| ¢puy(B; TSV, (Z22) 7 @ 011y) |,

where 0 ~ IGamma(%,%), V = XZ'(ZZ')7! and Ty = (=71 +0271) 71,
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3.2. Stress-strength models

A common aspect of research on stress-strength models is the estimation of the reliability of
these models. According to this, the Bayesian estimation of stress-strength reliability of ellip-
tically contoured distributions and multivariate skew-normal distribution have been discussed
by Kotz, Lumelskii, and Pensky (2003) and Rezaei and Yousefzadeh (2022), respectively.
Obtaining Bayes estimators for the stress-strength reliability is another application of the
result of Proposition 2.1. In some stress-strength models, the reliability is considered as the
probability R = P(a’z + by + ¢ > 0) where ¢ € R? and y € RY are two independent random
vectors and a € RP, b € R?, and ¢ € R are known. Consider the stress-strength model
corresponding to the random vectors

x| (0,w) ~ ESN, (1, k(0)X1,s(0,w)A1,61), (3)
and
) | (H,w) ~ E‘S’NQ(:UQ’k(g)z%s(eaw)A?’éQ)? (4)

and denote its reliability by Rssyrrsn-

Suppose that two independent random samples x,...,x, and yq,...,¥y,, are from the dis-
tributions of & and vy, respectively. It is obvious that

X = (:El, ... ,acn) ~ SSMESNPXR(Ml,In ® X1, 1,,A1,07; (k,s),Q),
and
Y = (yl, - 7ym) ~ SSMESNqu(MQ,Im X EQ,Im,AQ,(sg; (k,s),Q),

where M1 =1, @u,, 61 = 011, Mo =1, @pu, and d3 = da1,,. Let X;; X; and §; fori = 1,2
are known and consider the prior distributions Npxp (0psxn, In®@A1) and Nysm (0gxm, Im®@As2)
for M and M, respectively. By Proposition 2.1, the posterior densities of M and Mo,
i.e. m(M1|X) and m(M|Y), have the form (1). Since p; = 1M1, and py = = Msl,,
the reliability Rssypsn is a function of My and Mo, i.e. Rgsypsy(M1, Ms). Therefore,
the Bayes estimator of Rggaypsny under the squared error loss function is obtained by

Rssyvmsn = /qu Rssvpsn (M, Ma)n(M 1| X)m(M2|Y )dModM ;. (5)

RpXn

The following examples present the Bayes estimator of the stress-strength reliability of some
multivariate distributions such as normal, skew t, and skew-normal-Cauchy.

Example 3.3. By considering k(0) = s(f,w) =1, A\; =0, A2 =0, and §; = d = 0 in (3) and
(4), the Bayes estimator of the stress-strength reliability corresponding to the multivariate
normal distributions, Ry, is obtained by (5) where

La’M, 1, + L6/ M1, + ¢
Rssmpsn (M, Ms) = Ry(M 1, M3) = (191< JaTa i vsh ),
and by Corollary 2.1,

M| X ~ prn(AlEfli, I,®Ay), and MylY ~ qum(Agzz_lx, I, ®A2)
with A; = (271 + A7) fori = 1,2.

Example 3.4. The reliability Rgsapsn in (5) becomes the stress-strength reliability of the
multivariate skew ¢ distributions (Rg7), which has been calculated by Rezaei and Yousefzadeh
(2022), if it is considered

61 = 0, k(ao) = 90, S(eo,wO) = 1, 91 ~ IG’amma(%, %1),
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and
02 = 0, k(0o) = 0o, s(0o,wo) =1, 02 ~ IGamma(*3, %),

in (3) and (4), respectively. Hence, the Bayes estimator of Rgr is
G = [ Rer(My, Ma)r(Mi| X)r(MafY)dMadMy,
where from Corollary 2.2,
T(MIX) o Eoy | oh, 1A} 12 6pn (M1 Ady 71, 1 © 61A4)0a (6, (X ~ M)'S; A
and
T(M[Y) o oy |63, /A%, % 0y (Mai A3, 72, T © 0283,) 81 (057 (Y.~ M) 2% Ms 1)

AélrlT’l—T1§’ }

with Aii = (E;1+0iAi_1)_1 fori=1,2, 7 = Efll, To = ZQ_IX, Qél = etr{ TN

A2 !/ _ Y/
and gf = etr{ 02”;922 T2 }
Example 3.5. The distribution of the random vectors & and y are SNC)p (1,31, A1) and

1

SNCy(ps, X2, A2), respectively, by considering §; = d2 = 0, k(fy) = 0y and s(fp, wp) = wy 2
in (3) and (4) when w ~ IGamma(3, ). From (5), the Bayes estimator of the stress-strength
reliability of these vectors (Rgy¢) is given by

A

RBaes _ /R /R . Rsnc(My, Ma)r(My | X)m(M|Y)dMad M, (6)
where by Corollary 2.3,

_1
T(M1|X) X dpxn(M1;A171, I, ® A1) Fo (X — M1)'S, 2 A5 1),

it
T(M3|Y) o ¢dgxm(Ma; AaTa, Iy @ Ao)Fo (Y — M2)' S, > Xo; Iy,

with 71 = Zfli, Ty = E;lz and A; = (Ei_l + Ai_l) for 1 = 1,2, and also by Rezaei and
Yousefzadeh (2022),

Rsno(My, M) =Rn(M7, M3) + -

1 [/00 cos ((%a’Mlln + %b,Mglm + c)u)
0 u

o
X eTu(alzlaer/EQb)( 7>|:21)\1 (au)+ 7>|:22)\2 (bu))du

/00 sin ((%a’Mlln + %b/Mg].m + c)u)
0 u

7u2 / / * *
——(a'31a+b'32b
X e 2 (a'S1a 2 )7’21’)\1 (au) T35, M0 (bu)du s

* ’ 1
where Tx 5 (t) = [5° T(MZ’) ¢1(z)dz with the PDF of the univariate standard normal

V1+220 A
distribution ¢1 and 7(2) = \/gfoz exp {%}dt'

4. A simulation study

In this section, a simulation study is presented to compare different Bayes estimators of Rgnc,
the stress-strength reliability of the multivariate skew normal-Cauchy distributions. Note here
that all relevant programs are written in the R software package and are performed by using
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a machine equipped with an Intel Core i5-3230M 2.60 GHz processor and 4 GB RAM. The
R codes can be obtained on request from the authors.

In this simulation study, we focus on comparing the Bayes estimations of the stress-strength
reliability corresponding to the random vectors

0 45 15 —-04 -1
x~SNCs | =11 |,3 = 1.5 3.0 2.3 S A = 1 ,
2 —-04 23 4.5 -1
and
2 20 —-0.5 -0.8 0.3
y~SNCs | py=1 -1 |,3=1] —-05 22 —-03 [,A=] —03 ,
-1 -0.8 —-0.3 1.8 -0.3

with @ = b = (0.25,0.5, —0.25)" and ¢ = 1 which equals to 0.82164.

We have taken the prior distributions N3y, (03xn, In @ A1) and N3xm(03xm, Im @ Asg) to
obtain the Bayes estimations of Rgy¢, where

e Prior-1: A; = I3 and Ay = Ig;

2.73 —-0.66 —1.59 1.66 1.66 1.42

e Prior-2: A; =| —0.66 2.73 1.35 ,and Ay = 1.66 3.55 1.66 |;
—-1.59 135 273 142 1.66 2.81
1.66 1.66 1.42 2.73 —-0.66 —-1.59

e Prior-3: A;=| 166 355 166 |,and Ay=| —0.66 2.73 1.35
1.42 1.66 2.81 —-1.59 135 2.73

As can be seen in (6) the Bayes estimators of Rgyc have not closed forms; hence we use
Markov Chain Monte Carlo integration to calculate them. For generating random samples
from the posterior densities m(M1]|X) and 7(M32|Y ), we employ the independence sampler,
a special case of the Metropolis-Hastings sampler, as follows; see Tierney (1994) for more.

Algorithm 1. Perform the following steps to generate random sample from the posterior
density 7(M|Y") of Corollary 2.3:

o Step 1: Generate the initial matrix Mo from Npxn(Opxn, I @ A).
o Step 2: Calculate the matrices 7 = 27'Y, ¥, = (7' + A~ and M, = 3,7
o Step 3: Generate M, and U from Npy,, (M4, I,®3%,) and Uniform(0, 1), respectively.

o Step 4: If
W(MW‘Y)qprn(MO;ngIn@zg)

U < ,
W(MOIY)prXn(Mﬂ’; ngIn ® zg)

accept M, and consider it as a random sample of 7(M|Y"); otherwise, set M, as M
and repeat steps 3 and 4.

For monitoring convergence of the algorithm 1, we use the Gelman-Rubin diagnostic which
is a method to check the convergence of a Metropolis-Hastings chain, see Gelman and Rubin
(1992). For this method, we run 10 independent chains with different initial values and
discard the first 20% of generated samples as the burn-in step in each chain. Table 1 contains
the Gelman-Rubin statistic for different posterior densities (M 1|X) and 7(M3|Y). These
values are close to 1 that indicate the convergence of Algorithm 1 for each posterior density.

Bias and mean squared error (MSE) of different Bayes estimations of Rgxy¢ for varying sample
sizes are presented in Table 2. It can be observed that for any pair (n,m), the absolute value
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Table 1: The Gelman-Rubin statistic of different posterior densities

‘ ‘ Prior-1 Prior-2 Prior-3 ‘
m(M4]X) | 0.9897789 0.9897852 0.9898353
m(M,|Y) | 0.9897716 0.9898104 0.9897663

Table 2: The results of simulation for different Bayes estimations of Rgy¢

(n,m) Prior-1 Prior-2 Prior-3
’ Bias MSE Bias MSE Bias MSE

(10,10) | -0.076379 0.007716 | -0.063564 0.010236 | 0.022696 0.001999
(10,15) | -0.041828 0.004289 | -0.075475 0.010454 | 0.030584 0.002575
(10,20) | -0.053089 0.004330 | -0.065466 0.007348 | 0.017873 0.001680
(15,10) | -0.044426 0.004964 | -0.073285 0.008810 | 0.011459 0.002159
(15,15) | -0.049522 0.004271 | -0.057152 0.007266 | 0.034053 0.003166
(15,20) | -0.048657 0.003523 | -0.067342 0.007193 | 0.005173 0.002467
(20,10) | -0.039217 0.004371 | -0.044141 0.007374 | 0.025004 0.001743
(20,15) | -0.032857 0.002021 | -0.066391 0.007225 | 0.013092 0.001603
(20,20) | -0.042048 0.002895 | -0.061840 0.006779 | 0.001927 0.001908

of bias and MSE of the Bayes estimation obtained by Prior-3 are lower than that of other
Bayes estimations. Hence, Prior-3 introduces considerably more prior information for Rgnc.
Also, as the sample sizes increase, the MSE of all Bayes estimations decreases.

5. Real data analysis

In this section, we consider Chemical Reaction Data in Box and Youle (1955) and obtain
different Bayes estimations for the regression parameters. These data consist of the results of
a planned experiment involving a chemical reaction that are given in Table 3. The dependent
variables are the percentage of unchanged starting material (x1), the percentage converted
to the desired product (z2) and the percentage of unwanted by-product (x3) and also the
independent variables are the temperature (z1), the concentration (z2) and the time (z3).

Let X = (x1,...,219) and Z = zll zllg . Consider the regression of (x1,x2,x3) on
(21, 22, 2z3) in the multivariate normal distribution case. The least squares estimation of the
regression parameters
Bfro P11 P2 b3
B = (Bij) = B P21 P22 [23
B30 P31 P32 P33
is
332.11098 —1.54596 —1.42455 —2.23736
Big= XZ'(zZ) ' = —26.03526  0.40455  0.29299  1.03380
—164.07894 0.91392  0.89947  1.15348

To test overall regression, we must consider the hypothesis that none of (z1, 22, 23) predict
any of (x1,x9,x3). For this purpose, we consider Wilks’ A and calculate it as

X X' — BrsZX/|
A= = 0. 1 4.
IXX’— 19:%:%’| 0.0331576

Here, the corresponding lower critical value is Ag 53315 = 0.309. Since A < Ag 53315, We
reject the hypothesis and hence at least one of (z1, 22, z3) predicts z’s. For more information
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Table 3: Chemical reaction data

Experiment Dependent variables | Independent variables
Number ' = (z1,x2,73) z' = (21, 22, 23)
1 x| = (41.5,45.9,11.2) z} = (162,23, 3)
2 xh = (33.8, 53.3,11.2) z4H = (162,23,8)
3 xh = (27.7,57.5,12.7) z4 = (162,30,5)
4 x) = (21.7,58.8,16.0) zy = (162,30, 38)
5 xt = (19.9,60.6,16.2) zt = (172,25,5)
6 i = (15.0,58.0, 22.6) z = (172, 25,8)
7 xf = (12.2,58.6,24.5) zh = (172,30,5)
8 xf = (4.3,52.4, 380) 28—(172 30,8)
9 x5 = (19.3,56.9,21.3) = (167,27.5,6.5)
10 x}, = (6.4, 55.4,30.8) z10 (177,27.5,6.5)
11 ), = (37.6,46.9,14.7) zu (157,27.5,6.5)
12 ), = (18.0,57.3,22.2) z12 = (167,32.5,6.5)
13 a:’13 = (26.3,55.0,18.3) z13 = (167,22.5,6.5)
14 w14 = (9.9,58.9,28.0) z14 = (167,27.5,9.5)
15 :v15 = (25.0,50.3,22.1) z15 = (167,27.5,3.5)
16 @ho = (14.1,61.1,23.0) | 2 = (177,20,6.5)
17 m17 = (15.2,62.9,20.7) z17 = (177 20,6.5)
18 :1:18 = (15.9,60.0,22.1) 218 = (160, 34,7.5)
19 xh9 = (19.6,60.6,19.3) zhy = (160, 34,7.5)

about Wilks’ A, see Rencher (2002). To determine whether each of the predictors z1, z2, and
z3 contributes to the model, we must consider the hypothesis that (x1, z2,23) do not depend
on z, for r = 1,2, 3. For this purpose, we use Pillai’s test statistic which is calculated as

VO =tr (X X' - Bys2,X) (BrsZX' - B1s2,X))),

where BTLS is the least squares estimation of the regression parameters without considering
. . . AT . .

2z, in the model and Z, contains the rows of Z corresponding to B g. For more information

about Pillai’s test statistic, see Rencher (2002). Table 4 contains the values of Pillai’s test

statistic, their approximate F-statistics, and the related p-values. Based on the obtained

results, it can be concluded that z;, zo, and z3 are significant predictors for x’s.

Table 4: The obtained results for Pillai’s test statistics

‘ Variable ‘ Test statistic ‘ Approx. F-statistic ‘ df ‘ p-value
21 0.9536407 89.140 (3,13) | 6.364 x 1079
22 0.8881265 34.401 (3,13) | 1.894 x 1076
23 0.7639332 14.023 (3,13) 0.0002279

Hence, by considering B, the fitted model is

i 332.11098 — 1.54596(z1) — 1.42455(22) — 2.23736(23)
el = 215 | =] —26.03526 4 0.40455(z1) + 0.29299(22) + 1.03380(23)
ALS —164.07894 + 0.91392(21) + 0.89947(29) + 1.15348(23)

Assume the prior distributions N3yx4(03x4,(ZZ')"! ® E1) and N3x4(03x4,(ZZ')"! @ Es)
with
9 1.5 0.5 2.25 0.05 —-0.25
== 1.5 6.25 0.25 and =y = 0.05 225 —=0.25 |,
0.5 0.25 9 —0.25 —-0.25 2.25
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for B. From Example 3.1,

) ) ) 50.93274 —0.09489 —0.09204 —0.05708
Bpayes—1 = (5?.‘”/“’3‘1) —ILS'Bg=| 2922740 0.00049 —0.01894 0.13893 |,
21.08979  0.03507  0.04355  0.06247

and

31.22191 —0.03787 —0.03720 0.00107
Bpayes—2 = (B]"°7%) = TL,S ' Brs = | 2746278 —0.00687 —0.01644 0.08360 |,
24.01381  0.00142  0.00409  0.03963

where
| do 99.29620 —28.56863 —59.02813
=1 12(%—@)(%—@/: —28.56863 22.24801  5.78395 |,
o=l —59.02813  5.78395  45.27140

is the sample covariance matrix of the dependent variables,

5.16859 —1.07754 —2.95790
=S '+8) "= —1.07754 3.50550 —1.67304 |,
—2.95790 —1.67304 4.38077

and
1.74444 —0.41109 -0.76121

My, = (S7'+ 2,7 = | —0.41109 1.62515 —0.66010
—0.76121 —0.66010  1.58611

To examine the significance of B Bayes—1 and B Bayes—2, We use the following algorithm for
obtaining bootstrap confidence intervals for their elements. See Efron and Tibshirani (1994)
for more information about the bootstrapping methods.

Algorithm 2. Suppose that BBayes = (BAZ]) with ¢ = 1,2,3 and j = 0,1,2,3, is a Bayes
estimation for B and z} = (1, 2;)' fori =1,...,19.

 Step 1: Generate x; from Np(BBayeszzka S) fori=1,...,19.

o Step 2: Obtain the Bayes estimation BS) = (B(l)) based on x7,...,x]g.

ayes iJ

o Step 3: Repeat the above steps as much as T repetition until get the parametric boot-
(1) (1 £ (T) A(T
strap sample B, .o = (,Bi(j)), - BBayes = (61-8- )).

e Step 4: Obtain a 100(1 — )% percentile bootstrap confidence interval for Bij by
PPN -1 AL ~1—< . :
( 2 Bij 2), where 52 and Bij * are respectively § and 1 — § percentiles of the para-

1) 5(T)

metric bootstrap sample Bij yees

Note that falling each element of B Bayes Within its obtained confidence interval indicates its
significance.

The bootstrap 95% confidence intervals (considering 7' = 5000) for the elements of B Bayes—1
and Bpgyes—2 are presented in Tables 5 and 6.

The results of Table 5 show that among the elements of B Bayes—15 Bﬁayes_l and Bl%ayes_l are

not significant, while the results of Table 6 show the significance of all elements of B pgyes—2-
Therefore, the fitted models are as follows:

jBayes—1 —0.09204(z2) — 0.05708(23)
CAcBayes—l _ jQBayesfl — 29.22740 + 0.00049(21) — 0.01894(2’2) + 0.13893(23)
»Bayes—1 21.08979 + 0.03507(z1) + 0.04355(22) + 0.06247(z3)

3
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Table 5: The bootstrap confidence intervals of B Bayes—1'S elements

. . Confidence interval .
Element | Estimation 0.025 percentile 0.975 percentile Explanation
phaves=1 1 50.93274 24.02470 45.34254 Not significant
Gaves—1 1929 99740 11.90661 40.36312 Significant
pRaves=1 | 91.08979 18.54900 47.23474 Significant
ppeves=1 1 _0.09489 -0.07655 0.03598 Not significant
pRaves=1 | 0.00049 -0.09020 0.06050 Significant
gpaves= 1 0.03507 -0.08981 0.06268 Significant
oeves= 1 10.09204 -0.10725 0.05836 Significant
Gaves=l L 10.01894 -0.12630 0.09132 Significant
plaves=1 | 0.04355 -0.12706 0.10032 Significant
jhaves=1 1 .0.05708 -0.14867 0.23455 Significant
Baves= 1 0.13893 -0.19981 0.32302 Significant
Gaves=l o 0.06247 -0.22406 0.30187 Significant

Table 6: The bootstrap confidence intervals of B Bayes—2'S elements

. . Confidence interval )
Element | Estimation 0.025 percentile  0.975 percentile Explanation
Leves=2 13122191 19.82957 31.25661 Significant
pRaves=2 | 97 46278 17.69807 33.14585 Significant
BEes=2 | 9401381 19.74956 34.28943 Significant
pBaves=2 | _.03787 -0.04425 0.01648 Significant
BPeves=2 1 0.00687 -0.05500 0.02735 Significant
pRaves=2 1 0.00142 -0.05218 0.02614 Significant
plaves=2 1 _0,03720 -0.06016 0.02834 Significant
plaves=2 | _0.01644 -0.07536 0.04321 Significant
plwves=2 | 0.00409 -0.07124 0.04358 Significant
pRaves=2 1 0.00107 -0.06942 0.13907 Significant
B2 | 0.08360 -0.09388 0.18981 Significant
GRaves=2 1 (.03963 -0.09804 0.16986 Significant
s 31.22191 — 0.03787(21) — 0.03720(22) + 0.00107(z3)
ghaves=2 — | gBayes=2 | — | 9746278 — 0.00687(21) — 0.01644(22) + 0.08360(23)
glaves=2 24.01381 4 0.00142(21) + 0.00409(22) + 0.03963(23)

To check the distribution of the residuals, we use Royston’s multivariate normality test;
see Royston (1983) for further information. The results of Royston’s tests, which are presented
in Table 7, show the multivariate normality of the residuals of the fitted models.

Conclusion

In this paper, to obtain a Bayes estimator for the mean matrix of the matrix variate SSMESN
distributions, we presented a posterior density by considering a matrix variate normal dis-
tribution as its prior. As applications of the results, we used the obtained posterior density
for estimating in the multivariate linear regression and the stress-strength models. Finally,
different Bayes estimations of the stress-strength reliability of the multivariate skew normal-
Cauchy distributions were compared by a simulation study, and the Bayes estimations of
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Table 7: The results of Royston’s tests

’ Model \Test statistic\ p-value ‘

2L’ 1.192189 0.5718729
gBaves—1 2.334849 0.2095501
gPBaves=2 2.206623 0.2177015

the regression parameters for Chemical Reaction Data were obtained. Here, we focused on
obtaining a Bayes estimator for the mean matrix of the matrix variate SSMESN distributions
when the matrix variate normal distribution was considered as prior and other parameters
of this family of matrix variate distributions were known. In this way, obtaining Bayes esti-
mators for the mean matrix by considering other priors for it, obtaining Bayes estimators for
other parameters, using other methods to estimate parameters of this family of distributions,
comparing the Bayesian estimators of the parameters with other types of their estimators and
applying artificial intelligence algorithms in this regard can be considered as future works.
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