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Abstract

The spread of infectious diseases is generally described using mathematical models.
This paper discusses the spread of infectious diseases using a multi-state SVIRD model,
assuming that a continuous-time Markov chain (CTMC) occurs in a closed population and
is examined regularly. This article aims to generate transition probabilities and parameter
estimates using the maximum likelihood method. The multi-state SVIRD model assuming
CTMC uses a transition intensity and transition probability approach consisting of five
primary states: susceptible, vaccinated, infected, recovered, and deceased. The infected
state is divided into two: infected before and after being vaccinated. The result is an
estimator of transition intensity with sojourn time which is exponentially distributed
to produce a transition probability matrix. Then the algorithm for the CTMC SVIRD
model is given. The multi-state SVIRD model algorithm can be used directly if the
epidemic case is still in single-wave to determine the transition probability. In contrast,
for multi-wave cases, it is necessary to detect changepoints to determine wave boundaries
to make predictions more accurate. The main contributions of this study are using the
CTMC assumption, a stochastic model for determining the parameters of the differential
equation formed by the compartment model and adding vaccinated status to the model.
In addition, it also provides ways to overcome multi-wave epidemic cases so the prediction
results are more accurate.
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1. Introduction
The spread of infectious diseases attracts most people’s attention because health is essential
to life. Without health, people cannot carry out activities to fulfill their needs. Viruses,
bacteria, or fungi usually cause infectious diseases through direct or indirect contacts between
individuals. The spread of contagious diseases that cannot be controlled for a long time can
cause epidemics, and if they spread quickly to various regions of the world, they can become
a pandemic.
In epidemiology, mathematical modeling is essential for detecting the spread of infectious
diseases and making predictions. Models depict miniature objects, concepts, and scenar-
ios to determine real-world behavior and predict future events (Huppert and Katriel 2013).
Mathematical modeling is a model representation that uses mathematical equations.
A multi-state model has been developed by Andersson and Britton (2000) and Hougaard
(1999), which discusses modeling that consists of several states. Transitions between states
connect them, then Keiding (1991) uses a multi-state model in chronic disease modeling by
utilizing the role of different periods. In contrast, Klein and Moeschberger (2003) and Com-
menges (1999) describe how to overcome incomplete observations in a study. Jones (1994);
Zuhairoh, Rosadi, and Effendie (2021) discuss the multi-state modeling process using discrete-
time Markov assumptions, and Haberman and Pitacco (1999) describes how multi-state mod-
els are used in long-term care insurance. Haberman and Pitacco (1999), explains how to use
the maximum likelihood method to estimate transition intensity in a multi-state model, which
is then assessed to produce a transition intensity function. One of the assumptions usually
used to calculate the transition probability of a multi-state model is the Markov assumption.
Markov chains often represent stochastic processes in disease transmission (Hsieh, Chen, and
Chang 2002; Hubbard and Zhou 2011; Zhang, Lim, Maiti, Li, Choi, Bozoki, and Zhu 2019).
This underlies the researcher to apply the multi-state model with the Markov assumption on
the spread of infectious diseases. The multi-state model was previously more often used for
chronic disease modeling.
The multi-state model is not equivalent to the Markov model, but both have the concept of
state. Markov’s assumption states that future events only depend on current events. However,
the multi-state model relaxes this assumption by suggesting that other things influence future
events, but current events are still the main focus. The previous outcome of an event can
affect the future development of a naturally occurring event. The Markov chain describes this
stochastic process. Usually, the state space of the Markov chain is kept distinct. The ability
to transition to any state depends on the current state and time. This can be seen in infectious
disease modeling, where the number of people currently infected determines the probability
of a person being infected in the future. To anticipate future conditions, researchers know the
current situation where additional information about previous conditions is no longer needed.
The types of infectious disease modeling consist of deterministic, stochastic, and phenomeno-
logical models. Classical deterministic modeling has been widely used, including by Triampo,
Baowan, Tang, Nuttavut, and Doungchawee (2007); Köhler-Rieper, Röhl, and De Micheli
(2020), then a comparison between deterministic and stochastic was developed by Olabode,
Culp, Fisher, Tower, Hull-Nye, and Wang (2021); Allen and Burgin (2000) to interpret vari-
ous epidemic models. Meanwhile, the phenomenological model has been developed in previ-
ous studies using the logistic growth model and the expansion of the Richards curve model
Zuhairoh and Rosadi (2020, 2022a,b). Because there is a relationship between the multi-state
model and the Markov model, we try to use the continuous-time Markov assumption in the
multi-state model of the spread of infectious diseases, which consists of five states, namely
susceptible, vaccinated, infected, recovered, and deceased, known as SVIRD epidemic model.
This model is a type of stochastic model.
A stochastic process is a collection of random variables {Yw : w ∈ W} where each state Y is a
function of time w, i.e., number Yw is seen at any time w (Britton 2010). Set W represents the
number of times the system can be observed. Stochastic processes are mathematical models
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that depict how random variables change over time. When the set W is countable, the
stochastic process is a discrete-time process and when the set W equals [0, ∞), the stochastic
process is a continuous-time process.

Figure 1: Continuous-time stochastic process

Figure 1 illustrates a basic example of a continuous-time stochastic process. In this paper,
we use five states representing the spread of infectious diseases assuming a continuous-time
Markov chain, which describes the spread of a disease in which there is a vaccinated state so
the infected state will be divided into two, namely people infected without vaccination and
people infected after being vaccinated. Two things cause the probability of someone dropping
out of the model: recovery and death. In our model, there is no transition back to susceptible
after recovered.

Another important thing in the multi-state model is transition probability. The transition
probabilities can be calculated using the Kolmogorov forward and backward differential equa-
tions (Haberman and Pitacco 1999). A simultaneous differential equation solution is one
solution to get the transition probability, but it can also be obtained by a general formula
using the Jones (1994) matrix approximation. Transition probabilities are used to predict
infected cases in the next few days. Meanwhile, in the multi-state SVIRD model we devel-
oped, the transition probability obtained from the compartment model corresponds to the
transition between states. Also, it considers the sojourn time in each state.

Prediction results in epidemic models usually apply to single waves. As we know, epidemic
cases occur not only in single-wave but also multi-waves, so in this paper, we add a changepoint
detection method to overcome this. Therefore, before making predictions, it is necessary to
detect the epidemic wave that occurs as a basis for determining the initial limit for data
collection. The changepoint detection method is the binary segmentation (BS) method. BS
is a method that can be used to find numerous changepoints. At the beginning of the process,
the complete dataset is combed through to locate a single changepoint, typically using a
similar strategy to CUSUM (Eckley, Fearnhead, and Killick 2011).

The main contribution of this study is the use of multi-state models in modeling the spread of
infectious diseases with five states and a continuous-time Markov chain (CTMC) assumption.
The difference between this paper and previous research Zuhairoh et al. (2021) is that this
paper adds the vaccinated state in the model and adds predictions for the following few
periods. In addition, it also adds changepoint detection to detect multi-wave epidemic to
obtain more accurate prediction results.

This article is structured as follows. We present SVIRD and CTMC models in Sect. 2
that explains the epidemic’s evolution. The recursive findings are then presented, and an
algorithmic strategy for the random variable distribution is developed to reflect the number
of inspections that uncover an active epidemic phase. In Sect. 3, we present the outcomes
of our study in the form of transition probabilities derived from the CTMC SVIRD model
and estimates of the model’s parameters. Section 3 also gives the procedure of the CTMC
SVIRD model. Then, in Sect. 4, we applied the CTMC SVIRD model using simulation
data and the actual data of COVID-19 in Indonesia. The distinction between the CTMC
SVIRD compartment model and the multi-state CTMC SVIRD is the modeling between
state changes where the compartment model uses differential equations. In contrast, the
probability of transition is used for the multi-state.
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2. SVIRD epidemic models using continuous-time Markov chain

2.1. Multi-state model

If S is a finite state-space and represents states as natural numbers, then S = 1, 2, 3, . . . , N .
Then, if the direct transition set is denoted by T and T is a subset of pair set (k, l)

T ⊆ {(k, l)|k ̸= l; k, l ∈ S }, (1)

then pair (S , T ) is called a multi-state model.
Characteristic of a multi-state process is affected by the transition probabilities between state
k and l following this,

pkl(w, u) = Pr{Yu = l|Yw = k}. (2)

As a result, pkl(w, u) represents the probability that someone is in state k at time w, which
moves to state l at time u.
Furthermore, the strength of the transition can effect a multi-state process,

µkl = lim
h→0

pkl

h
, k ̸= l. (3)

Shows the transition intensity to the direct transfer of risk state, if known in advance in state
k. Both pkl and µkl depend on the history and processes owned.
If the present is known, the Markov process is a stochastic process of the past that does no
influence on the future. A Markov process is a stochastic model describing a sequence of
possible events in which the probability of each event depends only on the state attained in
the previous event.
Consider a continuous-time stochastic process {Yw; w ≥ 0}, with a finite (or denumerably
infinite) state-space S . We say that {Yw : w ≥ 0} is a CTMC if, for any n and each finite
set of time (0 ≤)w0 < · · · < wn−1 < wn < u and Markov property is satisfied Haberman and
Pitacco (1999): responding set of states k0, . . . , kn−1, kn, l in S with

Pr{Yw0 = k0 ∧ · · · ∧ Ywn−1 = kn−1 ∧ Ywn = kn ∧ Yu = l} > 0,

the following property (the so-called Markov)

Pr{Yu = l|Sw0 = k0 ∧ · · · ∧ Ywn = kn} = Pr{Yu = l|Ywn = kn}. (4)

2.2. Model of a continuous-time Markov chain

The fundamental difference with the discrete-time Markov chain model is that for continuous-
time there is an event where a person will settle in a particular state for an unknown time
before transitioning to the next state. Suppose {Yw : w ∈ W} is a random variable showing
the condition of the system at moment w ∈ W = [0, ∞). Random variable {Yw : w ∈ W} of
CTMC if each time series w0, w1, . . . , wn−1, wn, u, w with w0 < w1 < · · · < wn−1 < wn < u <
w, random variable {Yw : w ∈ W} satisfies the following equation:

P [Yw = l|Yu = k, Ywn = kn, . . . , Yw0 = k0] = P [Yw = l|Yu = k]
= pkl(w − u). (5)

As seen in the Equation 5, the continuous-time process satisfies the Markov property, which
asserts that the process at time w is exclusively dependent on the prior state at time u. But
unlike the discrete-time case, there is no smallest “next time” until the next transition, there
is a continuum of such possible times t. Similarly, we represent the likelihood that the process
will shift from state k at time u to state l at time w, to pkl(w − u). We also suppose that
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pkl(w − u) does not depend on w at any given time, implying that the process is time and
space homogenous

P [Yw = l|Yu = k] = P [Yw−u = l|Y0 = k] = pkl(w − u). (6)

Yu will remain in its present state for ∆w = w −u unit time before transitioning to Yw with a
transition probability of pkl(wu) = pkl(∆w). Sojourn time is the time required for a process
to transition from state k to state l. In general, for two consecutive states kn and kn+1,
a continuous-time process in state kn, at time wn will remain in state kn until wn+1 − wn,
at which point it will transition to kn+1. The intervention between kn and kn+1 is denoted
by Wn. Together with the homogeneous time, the stochastic process’s memoryless property
provides the sojourn time memoryless for CTMC. Consider the conditional probability that
Wn > u + w with Wn > u demonstrate this,

Pr(Wn > u + w|Wn > u),

for Wn > u, the process will stay in state kn every time wn +s when 0 ≤ s ≤ u, so Ywn+s = kn

for 0 ≤ s ≤ u. Also, for Wn > u + w, the process will stay in state kn every time wn + s when
0 ≤ s ≤ u + w, so Ywn+s = kn for 0 ≤ s ≤ u + w.
Using Markov’s property, the conditional probability can be written as follows

Pr(Wn > u + w|Wn > u) = Pr(Ywn+s = kn : u ≤ s ≤ u + w|Ywn+u = kn).

Because the random process is time homogeneous.

Pr(Wn > u + w|Wn > u) = Pr(Ywn+s = kn : 0 ≤ s ≤ w|Ywn = kn),

and also

Pr(Wn > u + w|Wn > u) = Pr(Ywn+s = kn : 0 ≤ s ≤ w) = Pr(Wn > w).

This shows that Wn has a memoryless distribution, which means that Wn is Exponentially
distributed. Suppose Pr(Wn > w) = Hn(w), we get

Hn(w) = e−λnw, (7)

where λn > 0 denotes the parameter’s value. Below is an illustration of cumulative distribu-
tion function Fn(w)

Fn(w) = 1 − e−λnw. (8)

2.3. SVIRD epidemic models

The SVIRD epidemic model has five states: susceptible, vaccinated, infected, recovered, and
deceased. This model has random variables S(w), V (w), I(w), R(w) and D(w) whose mean-
ings are explained in Table 1. An illustrative representation of the mathematical model can
be seen in Figure 2. Susceptible individuals are represented by S, and vaccinated individuals
are represented by V. Infected individuals are represented by I, divided into two states:
infected unvaccinated and infected vaccinated. Recovered individuals are represented by R.
Deceased individuals are represented by D. Here, we assume that the vaccine is effective in
severe cases, which means that deaths come from unvaccinated individuals. In addition, in
this model, it is assumed that there is immunity in individuals who have been infected with
the disease so there is no more transition out of the recovered state.
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Figure 2: SVIRD epidemic models

We can assume that one transition occurs per step by selecting a sufficiently small time step.
Only one of the following events can occur within time step w.

1. (s, v, is, iv, r) ∆w−−→ (s − 1, v + 1, is, iv, r) = p12,

2. (s, v, is, iv, r) ∆w−−→ (s − 1, v, is + 1, iv, r) = p13,

3. (s, v, is, iv, r) ∆w−−→ (s, v − 1, is, iv + 1, r) = p24,

4. (s, v, is, iv, r) ∆w−−→ (s, v, is − 1, iv, r + 1) = p35,

5. (s, v, is, iv, r) ∆w−−→ (s − 1, v, is − 1, iv, r) = p36,

6. (s, v, is, iv, r) ∆w−−→ (s − 1, v, is, iv − 1, r + 1) = p45,

7. (s, v, is, iv, r) ∆w−−→ (s, v, is, iv, r, d) = p11 = p22 = p33 = p44 = p55 = p66.

Table 1: Basic notation

Notation Description

S(w) Number of susceptible at time w
V (w) Number of vaccinated at time w
Is(w) Number of infected from the susceptible state at time

w
Iv(w) Number of infected from the vaccinated state at time

w
R(w) Number of recovered at time w
D(w) Number of deceased at time w

β Infection rate
η Vaccination rates
δ Efficacy rates
γ Recovery rate after vaccination
θ Recovery rate before vaccination
α Mortality rate

The path in the SVIRD models is defined as a G series of states with sojourn times.

G = ((s0, v0, is0, iv0, r0), W0, (s1, v1, is1, iv1, r1), W1, . . . , (sk, vk, isk, ivk, rk), Wk, (k, l, m, n, o)).
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This shows that the initial state of the system was (s0, v0, is0, iv0, r0). The system then
changed to (s1, v1, is1, iv1, r1) after W0 time units. The system remained in state (s1, v1,
is1, iv1, r1) for W1 units of time before transitioning to state (s2, v2, is2, iv2, r2), and so on.
The statistics result (vaccine efficacy) are often presented as a proportional decrease in disease
attack rate (Ar) between the unvaccinated (Au) and vaccinated (Av), or can be derived from
the vaccinated group’s relative risk (Rr). The basic formula is written as (Orenstein, Bernier,
Dondero, Hinman, Marks, Bart, and Sirotkin 1985):

Ve = Au − Av

Au
× 100%. (9)

2.4. Generator matrices
CTMC can be explained accurately by the probability of transition between states and the
average duration spent in each stage. The likelihood of a state changing creates an embedded
discrete-time Markov chain. The average time spent in each state is exponentially distributed
for time between events. We next show how to use a very small transition probability pkl(∆w)
to form an embedded CTMC and find the average time between events.
To begin, we derive generator matrix Q from transition rate qkl, which is a one-sided derivative
of the extremely small transition probability at w = 0. To calculate the transition rate, we
assume that probability pkl(∆w) is continuous and differentiated at ∆w ≥ 0. There are no
transitions in time period ∆w = 0 and subsequent periods

pkl(0) = 0, k ̸= l,

and
pkl(0) = 1, k = l,

to obtain the rate qkl where k ̸= l, can be calculated with

qkl = lim
∆w→0+

pkl(∆w) − pkl(0)
∆w

= lim
∆w→0+

pkl(∆w)
∆w

.

In this case, we have
∑N

l=0 pkl(∆w) = 1, so that the following equation is obtained

1 − pkk(∆w) =
N∑

l=0,l ̸=k

pkl(∆w).

Next we have,

qkk = lim
∆w→0+

pkk(∆w) − 1
∆w

= lim
∆w→0+

−
∑

l ̸=k pkl(∆w)
∆w

= −
N∑

l=0,l ̸=k

qkl.

The relationship between very small transition probability pkl and transition rate qkl can be
written as pkl(∆w) = qkl∆̇w + o(∆w) and pkk(∆w) − 1 = qkk∆̇w + o(∆w). Rate of qkl is used
to form the following generator matrix.

Q =



q00 q10 · · · qk0 · · · qN0
q01 q11 · · · qk1 · · · qN1
...

... . . . ... . . . ...
q0l q1l · · · qkl · · · qNl
...

... . . . ... . . . ...
q0N q1N · · · qkN · · · qNN


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The transition probability from state k to state l for the embedded DTMC is determined
using a matrix generator

qkl∑
k ̸=l

qkl

. (10)

The likelihood of transitioning from k to l is 0 in an integrated DTMC. In state k, the average
exponential interevent time is −1

qkk
, where qkk = λi denotes the exponential time distribution

rate for state k.

3. Results

3.1. Probabilities of transition in a CTMC SVIRD model
The following equation system can be used to express compartement models that are derived
from the assumptions such as variables, parameters, and model shown in Figure 2.

dS(w)
dw

= −βS(w)Is(w)
N

− ηS(w) + o(∆w),

dV (w)
dw

= − (1 − δ)βV (w)Iv(w)
N

+ ηS(w) + o(∆w),

dIs(w)
dw

= βS(w)Is(w)
N

− θIs(w) − αIs(w) + o(∆w),

dIv(w)
dw

= (1 − δ)βV (w)Iv(w)
N

− γIv(w) + o(∆w),

dR(w)
dw

= θIs(w) + γIv(w) + o(∆w),

dD(w)
dw

= αIs(w) + o(∆w).

The transition probability between states in Figure 2 is written as follows.

p12(∆w) = ηs∆w + o(∆w), (11)

p13(∆w) = βsis

N
∆w + o(∆w), (12)

p24(∆w) = (1 − δ)βviv

N
∆w + o(∆w), (13)

p35(∆w) = θis∆w + o(∆w), (14)
p36(∆w) = αis∆w + o(∆w), (15)
p45(∆w) = γiv∆w + o(∆w), (16)

pkk(∆w) = 1 −
(

βsis

N
+ (1 − δ)βviv

N
+ ηs + θis + αis + γiv

)
∆w + o(∆w). (17)

Equation (11) shows the probability of transition from susceptible to vaccinated, Equation
(12) shows the probability of transition from susceptible to infected unvaccinated, Equation
(13) shows the probability of transition from vaccinated to infected vaccinated, Equation (14)
shows the probability of transition from infected unvaccinated to recovered, Equation (15)
shows the probability of transition from infected unvaccinated to deceased, Equation (16)
shows the probability of transition from infected vaccinated to recovered, and the last Equa-
tion (17) shows the probability of transition settling in a given state where k = 1, 2, 3, 4, 5, 6.
The parameters used in Equation (11-17) will be estimated using the maximum likelihood
method which will be described in the next subsection. In the compartment model, parameter
values are usually derived based on differential equations that have been created based on the
epidemic model, whereas in this study, based on the transition intensity with exponentially
distributed sojourn time.
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The transition probability from the CTMC SVIRD epidemic model written as(
p(s,v,is,iv ,r)→(s+k,v+l,is+m,iv+n,r+o)(∆w)

)
is given as follows

p(∆w) =



ηs∆w + o(∆w), (k, l, m, n, o) = (−1, 1, 0, 0, 0)
β
N sis∆w + o(∆w), (k, l, m, n, o) = (−1, 0, 1, 0, 0)
(1−δ)

N βviv∆w + o(∆w), (k, l, m, n, o) = (0, −1, 0, 1, 0)
θis∆w + o(∆w), (k, l, m, n, o) = (0, 0, −1, 0, 1)
αis∆w + o(∆w), (k, l, m, n, o) = (0, 0, −1, 0, 0)
γiv∆w + o(∆w), (k, l, m, n, o) = (0, 0, 0, −1, 1)
1 −

(
ηs + βsis

N + (1−δ)βviv

N + θis+
αis + γiv) ∆w + o(∆w), (k, l, m, n, o) = (0, 0, 0, 0, 0)
o(∆w) otherwise.

(18)

The CTMC SVIRD epidemic model is the probability of transition from state (s, v, is, iv, r)
to state (s + k, v + l, is + m, iv + n, r + o), which is denoted by Equation (18). Using Equation
(18) the number of groups S, V, I, R, and D may be computed at any given moment, with
the initial values provided first.

3.2. Parameter estimation for CTMC SVIRD model

According to the time-continuous SVIRD model with transition probability in Equation (18),
it is possible to estimate parameters η, β, δ, θ, α and γ by the maximum likelihood method.
This process contains a total of n transitions. At any point in time, all observations occur
inside time interval (w0, w), where w ≥ wn, and there is no transition between time intervals
(wn, w). The likelihood function is

L(η, β, δ, θ, α, γ) =
n−1∏
i=0

(
λsie

−λsi Wi

) (
psi,si+1

) (
e−λsn

(
t−

∑n−1
i=0 Wi

))
, (19)

where λsie
−λsi Wi is the probability of sojourn time Wi in state si, psi→si+1 is the probability

of transition from state si to si+1 and e−λsn

(
w−

∑n−1
i=0 Wi

)
is the probability that no additional

transitions occur after time sn up to time w. We observe that
∑n−1

i=0 Wi = wk. Let w − wn =
Wn, so

e−λsn

(
w−

∑n−1
i=0 Wi

)
= e−λsn (Wn).

As a result, Equation (19) may be written as follows.

L(η, β, δ, θ, α, γ) = e−λsn (Wn)
n−1∏
i=0

(
λsie

−λsi Wi

) (
psi,si+1

)
, (20)

for the time-continuous SVIRD model, there are five types of transitions that can occur,
namely the transition between (s, v, is, iv, r) and (s − 1, v + 1, is, iv, r) (susceptible to vacci-
nated), (s, v, is, iv, r) to (s−1, v, is+1, iv, r) (susceptible to infected unvaccinated), (s, v, is, iv, r)
to (s, v−1, is, iv+1, r) (vaccinated to infected vaccinated), (s, v, is, iv, r) to (s, v, is−1, iv, r+1)
(infected unvaccinated to recovered), (s, v, is, iv, r) to (s, v, is −1, iv, r) (infected unvaccinated
to deceased), and (s, v, is, iv, r) to (s, v, is, iv − 1, r + 1)(infected vaccinated to recovered).
Suppose (wη1 , wη2 , . . . , wηa) is the set of times when there is a transition from (s, v, is, iv, r)
to (s − 1, v + 1, is, iv, r), (wβ1 , wβ2 , . . . , wβb

) is the set of times when there is a transition from
(s, v, is, iv, r) to (s − 1, v, is + 1, iv, r), (wδ1 , wδ2 , . . . , wδc) is the set of times when there is a
transition from (s, v, is, iv, r) to (s, v−1, is, iv+1, r), (wθ1 , wθ2 , . . . , wθd

) is the set of times when
there is a transition from (s, v, is, iv, r) to (s, v, is −1, iv, r+1), (wα1 , wα2 , . . . , wαe) is the set of
times when there is a transition from (s, v, is, iv, r) to (s, v, is−1, iv, r), and (wγ1 , wγ2 , . . . , wγf

)
is the set of times when there is a transition from (s, v, is, iv, r) to (s, v, is, iv − 1, r + 1).
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This means that the first transition from (s, v, is, iv, r) to (s − 1, v + 1, is, iv, r), occurs at wηa ,
the first transition from (s, v, is, iv, r) to (s−1, v, is +1, iv, r) occurs at wβb

, the first transition
from (s, v, is, iv, r) to (s, v −1, is, iv +1, r) occurs at wδc , the first transition from (s, v, is, iv, r)
to (s, v, is−1, iv, r+1) occurs at wθd

, the first transition from (s, v, is, iv, r) to (s, v, is−1, iv, r)
occurs at wαe , and the first transition from (s, v, is, iv, r) to (s, v, is, iv − 1, r + 1) occurs at
wγf

. There are a transitions from susceptible to vaccinated, b transitions from susceptible to
infected unvaccinated, c transitions from vaccinated to infected vaccinated, d transitions from
infected unvaccinated to recovered, e transitions from infected unvaccinated to deceased, and
f transitions from infected vaccinated to recovered. There is a total of n transitions in the
system from state s0 to state sn.
Transition probability from (s, v, is, iv, r) to (s − 1, v + 1, is, iv, r) (susceptible to vaccinated
vaccinated) is calculated using matrix Q

p12 = ηs

ηs + (1 − δ)βviv

N
+ γiv

. (21)

Transition probability from (s, v, is, iv, r) to (s − 1, v, is + 1, iv, r) (susceptible to infected
non-vaccinated) is

p13 =

βsis

N
βsis

N
+ θis + αis

. (22)

Transition probability from (s, v, is, iv, r) to (s, v − 1, is, iv + 1, r) (vaccinated to infected
vaccinated) is

p24 =

(1 − δ)βviv

N

ηs + (1 − δ)βviv

N
+ γiv

. (23)

Transition probability from (s, v, is, iv, r) to (s, v, is − 1, iv, r + 1) (infected non-vaccinated to
recovered) is

p35 = θis

βsis

N
+ θis

. (24)

Transition probability from (s, v, is, iv, r) to (s, v, is − 1, iv, r) (infected non-vaccinated to
deceased) is

p36 = αis

βsis

N
+ αis

. (25)

Transition probability from (s, v, is, iv, r) ke (s, v, is, iv − 1, r + 1) (infected vaccinated to
recovered) is

p45 = γiv

ηs + (1 − δ)βviv

N
+ γiv

. (26)

After obtaining the equation of each transition probability between states, the next step is to
form the likelihood function then to look for the logarithm of the likelihood function and the
partial derivative of the logarithm of the likelihood function for each parameter used. The
detailed description can be found in "Appendix 1".
Maximum likelihood estimate η̂ is the value of η such that

∂ log L(η, β, δ, θ, γ, α)
∂η

= 0.

Therefore, we have
η̂ = a

n∑
i=0

[S(wi)Wi]
, (27)
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in the same way the value of parameter β is obtained as follows.

β̂ = b
n∑

i=0

[
S(wi)Is(wi)Wi

N

] , (28)

in the same way the value of the parameter δ is obtained as follows.

δ̂ = c
n∑

i=0

[
V (wi)Iv(wi)Wi

N

] , (29)

in the same way the value of the parameter θ is obtained as follows.

θ̂ = d
n∑

i=0
[Is(wi)Wi]

, (30)

in the same way the value of the parameter α is obtained as follows.

α̂ = e
n∑

i=0
[Iv(wi)Wi]

, (31)

in the same way the value of the parameter γ is obtained as follows.

γ̂ = f
n∑

i=0
[Is(wi)Wi]

. (32)

3.3. The algorithm for CTMC SVIRD models

Using real data, parameter values can be determined based on Equation (27-32), while using
simulation data, the likelihood function can be determined using the program. The algorithm
of the CTMC SVIRD epidemic model is as follows.

1. Initialize the values of η, β, δ, θ, α, γ, the total population of N , and the duration of the
wend outbreak .

2. Determine the number of individuals in each state S(k), V (k), Is(k), Iv(k), R(k), D(k)
and w(k).

3. Determine the value of each transition probability between states.

4. Plot times w(k) against the number of infections at each time, I(k).

The detailed algorithm can be found in algorithm 1.
In this paper, we use R software and Matlab to assist in simulating and predicting the COVID-
19 data in Indonesia. We use an algorithm based on the COVID-19 data in Indonesia to
illustrate an example of the CTMC SVIRD epidemic model where the source code can be
seen at https://github.com/fzuhairoh/Multi-state-SVIRD-model.git

https://github.com/fzuhairoh/Multi-state-SVIRD-model.git
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Algorithm 1 CTMC SVIRD Epidemic Model
INITIALISE:
The values of η, β, δ, θ, α, γ, the total population of N , and the duration of the wend out-
break.
Set k = 1, Is(1) = number of infected on the first day,

S(1) = N − Is(1),
V (1) = Iv(1) = R(1) = D(1) = w(1) = 0,
I(k) = Is(k) + Iv(k).

ITERATE:
while I(k) > 0 and w(k) < wend do

Let a = ηS(k), b = βS(k)Is(k)
N

, c = (1 − δ)βV (k)Iv(k)
N

,
d = θIs(k), e = αIs(k), and f = γIv(k).

Calculate p12 = a

a + c + f
; p13 = b

b + d + e
; p24 = c

a + c + f
;

p35 = d

b + d
; p36 = e

b + e
; p45 = f

a + c + f
.

Selects two random numbers u1 and u2 from a uniform distribution of (0, 1).

if 0 < u1 ≤ p12 then,
S(k + 1) = S(k) − 1; V (k + 1) = V (k) + 1; Iv(k + 1) = Iv(k); R(k + 1) = R(k);

else if p12 < u1 ≤ p24 then
S(k + 1) = S(k); V (k + 1) = V (k) − 1; Iv(k + 1) = Iv(k) + 1; R(k + 1) = R(k);

else p24 < u1 ≤ 1
S(k + 1) = S(k); V (k + 1) = V (k); Iv(k + 1) = Iv(k) − 1; R(k + 1) = R(k) + 1.

end if

if 0 < u1 < p13 then,
S(k + 1) = S(k) − 1; Is(k + 1) = Is(k) + 1; R(k + 1) = R(k);

else p13 < u1 ≤ 1
S(k + 1) = S(k); Is(k + 1) = Is(k) − 1; R(k + 1) = R(k) + 1.

end if

if 0 < u1 ≤ p13 then,
S(k + 1) = S(k) − 1; Is(k + 1) = I(k) + 1; D(k + 1) = D(k);

else p13 < u1 ≤ 1,
S(k + 1) = S(k); Is(k + 1) = Is(k) − 1; D(k + 1) = D(k) + 1.

end if
Utilize the following method to determine the timing of the next event u2 as
w(k + 1) = w(k) − ln(u2)

a + c + f
− ln(u2)

b + d
− ln(u2)

b + e
.

end while

OUTPUT:
Plot times w(k) against the number of infections at each time, I(k).
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4. Application

4.1. Application of CTMC SVIRD model using data simulation

We use the previously mentioned algorithm to simulate a CTMC SVIRD model. In this case,
we use data on the COVID-19 cases in Indonesia with a population of 2,000,000 people with
initial conditions, there were 38,694 people who had been vaccinated, 17,261 people who were
infected without vaccination, 8,860 people who were infected after being vaccinated, 8,577
people who recovered, and 82 people who died. According to COVID-19 data in Indonesia
on 7 February 2022. In this example, the vaccination rate (η) is 0.676, the infected rate (β)
is 0.443, the efficacy rates (δ) is 0.120, the recovery rate after vaccination (γ) is 0.780, the
recovery rate before vaccination (θ) is 0.250, and mortality rate (α) is 0.021.
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Figure 3: Simulation of a CTMC SVIRD model with different values of infected rate (β)
parameters
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Figure 4: Simulation of the CTMC SVIRD model with varying vaccination rate (η) parameter
values

Figure 3 depicts a simulation in which β is varied while the other parameters remain constant.
The parameter β has values of 0.1, 0.3, 0.5, and 0.9. Figure 3 demonstrates that the growth
in the number of infected individuals is proportional to the infection rate. Several studies
have revealed that someone who has been infected with COVID-19 but has not yet shown any
clinical signs and symptoms is known to infect others. The more often this occurs, the more
difficult the control the spread of the disease, the higher the transmission rate of COVID-19.
Figure 3 also shows the greater the value of β, the faster the infected cases will reach the
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peak.
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Figure 5: Simulation of a CTMC SVIRD model with varying vaccination efficacy in preventing
illness (δ) parameters

Figure 4 depicts a simulation in which η is varied while the remaining parameters remain
constant. The parameter η has values of 0.3, 0.5, 0.7, and 0.9. As illustrated in Figure
4, the higher the vaccination rate, the lower the probability of infection among vaccinated
individuals, and the faster the cumulative peaks. Vaccination aims to make a person’s immune
system able to recognize and quickly fight bacteria or viruses that cause infection. The goal to
be achieved with the provision of the COVID-19 vaccine is to reduce morbidity and mortality
due to this virus. Although not 100% able to protect a person from being infected with
COVID-19, this vaccine can reduce the possibility of severe symptoms and complications due
to COVID-19. In addition, the COVID-19 vaccination aims to promote the formation of herd
immunity. This is important because some people cannot be vaccinated for specific reasons.
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Figure 6: Simulation of a CTMC SVIRD model with varying parameters for the recovery rate
after vaccination (γ)

Figure 5 depicts a simulation in which δ is varied while all other parameters remain constant.
The parameter δ has values of 0.1, 0.5, 0.7, and 0.9. Figure 5 indicates that the increase in
the value of δ has little effect on the infection curve. As we know, there is a low probability
of vaccinated people to be infected with COVID-19. According to the Center for Disease
Control and Prevention (CDC), even if a person becomes infected with COVID-19 after
being vaccinated, it has been known that vaccination can reduce the severy of symptoms and
time of infection. In addition, the infected vaccinated person is less likely to be treated or at
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a lower risk of death compared to those infected unvaccinated.
Figure 6 depicts a simulation in which γ is varied while the other parameters remain constant.
The parameter γ has values of 0.1, 0.3, 0.5, and 0.9. Figure 6 indicates that if the rate
of recovery increases, the epidemic will stop more quickly. As for the infected curve, the
parameter γ has a negative correlation with the slope of the infected curve.
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Figure 7: Simulation of a CTMC SVIRD model with varying parameters for mortality rate
(α)
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Figure 8: Simulation of a CTMC SVIRD model with varying pre-vaccination recovery rate
(θ) parameters

Patients are said to have recovered when they have finished undergoing isolation. The criteria
for patients to have completed isolation vary, depending on the cases. For asymptomatic cases,
patients are said to have recovered after completing ten days of isolation. Patients with mild
symptoms are declared to have recovered if they have no longer shown fever and respiratory
problems and if they have completed ten days of isolation three days of isolation without
symptoms. COVID-19 patients with severe symptoms may get a positive test result from
the real-time-reverse transcription-polymerase chain reaction (RT-PCR) even though they
have recovered. This is because the patient with severe symptoms still has the body of the
Coronavirus in his/her body, but the virus is no longer dangerous.
Figure 7 depicts a simulation in which α is varied while the other parameters remain constant.
The parameter α has values of 0.1, 0.5, 0.7, and 0.9. Figure 7 shows that if there is an increase
in the number of mortality due to COVID-19 disease, it causes the infection curve to become
more sloping as well as Figure 8 which shows the same thing, namely if there is an increase
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in the recovery rate of patients without vaccination, it also causes a decrease in the infection
curve. This is because both recovered and deceased states are an absorption state, which
means that if someone enters that state, he/she will not transition to another state.

4.2. Application of CTMC SVIRD model using COVID-19 data

Due to data limitations, in the application using actual data, we simplify the model into six
states as shown in Figure 2 with the following explanation.

1. The three vaccinated states are combined into one, with the vaccinated state contain-
ing individuals who have been vaccinated with at least the first and second doses, in
accordance with the type of vaccine used in Indonesia, namely Sinovac, Sinopharm,
Pfizer/BioNTech, Moderna, and AstraZeneca/Oxford.

2. The infected state items are divided into two: infected before vaccination and infected
after vaccination.

3. The four recovered states are merged into one, which is the transition goal from the
infected unvaccinated to infected vaccinated states.

4. The used data begin with the presence of individuals who have received at least the
first and second doses of vaccination.

5. If it is still a single-wave epidemic, it is possible to estimate the parameters and deter-
mine the transition probability directly. However, if it is a multi-wave epidemic, it is
necessary to detect changepoints to assess each wave boundary that appears to obtain
better prediction results. The changepoint detection method used in this paper is a
binary segmentation method whose algorithm can be seen in algorithm 2.

The binary segmentation method algorithm developed by Eckley et al. (2011) is as follows.

Algorithm 2 Binary Segmentation (BS) Method.
INPUT:
A set of data of the form, (x1, x2, . . . , xn).
A test statistic Λ(·) dependent on the data.
An estimator of changepoint position τ̂(·).
A rejection threshold C.

INITIALISE:
Let C = ∅, and S = {[1, n]}.

ITERATE:
while S ̸= ∅ do

Choose an element of S; denote this element as [s, t].
if Λ(xs:t) < C then,

remove [s, t] from S.
else if Λ(xs:t) ≥ C then

remove [s, t] from S;
calculate r = τ̂(xs:t) + s − 1, and add r to C;
If r ̸= s add [s, r] to S;
If r ̸= t − 1 add [r + 1, t] to S.

end if
end while

OUTPUT:
the set of changepoints recorded C.
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Figure 9: Changepoint detection for COVID-19 data in Indonesia

The data used were data on the COVID-19 cases in Indonesia starting from January 28,
2021, to February 28, 2022. Then changepoint detection was carried out using the binary
segmentation method to determine the wave boundary, as shown in Figure 9. The wave used
was the last, starting on February 7, 2022.

Figure 10: Comparison of the curves of COVID-19 infection cases with actual data

Table 2: Prediction results for COVID-19 cases in Indonesia using CTMC SVIRD

Date Actual Data Short-term Prediction

2022/03/1 24,728 46,781
2022/03/2 40,920 41,623
2022/03/3 37,259 36,616
2022/03/4 26,347 31,906
2022/03/5 30,156 27,582
2022/03/6 24,867 23,687
2022/03/7 21,380 20,231
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Table 2 shows that the prediction results using CTMC SVIRD had a mean absolute percentage
error value (MAPE) of 18.91%. This means that the prediction results were categorized as a
good prediction because it fell in the range of 10 % - 20%.

5. Conclusion
A multi-state model that assumes CTMC can model both chronic and infectious disease. This
multi-state CTMC model differs from the classical compartment model in that, according to
the CTMC assumption, the transition probabilities must be used to define the relationship
between states when a multi-state model is employed. This article employs five conditions:
susceptible, vaccinated, infected, recovered, and deceased. The infected state is divided into
infected vaccinated and unvaccinated. Then the equation to calculate the transition proba-
bility and estimate the parameters of the CTMC SVIRD model is given. Finally, the working
procedure of the CTMC SVIRD model is given, which is equipped with a changepoint detec-
tion method to get accurate prediction results for multi-wave epidemic cases. The short-term
prediction results were categorized as a good prediction with MAPE of 18.91%.
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Appendix 1
The likelihood function is transformed into

n−1∏
i=0

(
λsi e−λsi

Wi
) (

psi→si+1

)
= wηa∏

p=wη1

(
ηS(p) + βS(p)Is(p)

N
+ (1 − δ)βV (p)Iv(p)

N
+ θIs(p) + αIs(p) + γIv(p)

)

exp
(

−
(

ηS(p) + βS(p)Is(p)
N

+ (1 − δ)βV (p)Iv(p)
N

+ θIs(p) + αIs(p) + γIv(p)
)

Wp

)
 ηS(p)

ηS(p) + βS(p)Is(p)
N

+ (1 − δ)βV (p)Iv(p)
N

+ θIs(p) + αIs(p) + γIv(p)


 ×

 wβb∏
q=wβ1

(
ηS(q) + βS(q)Is(q)

N
+ (1 − δ)βV (q)Iv(q)

N
+ θIs(q) + αIs(q) + γIv(q)

)

exp
(

−
(

ηS(q) + βS(q)Is(q)
N

+ (1 − δ)βV (q)Iv(q)
N

+ θIs(q) + αIs(q) + γIv(q)
)

Wq

)
 βS(q)Is(q)

N

ηS(q) + βS(q)Is(q)
N

+ (1 − δ)βV (q)Iv(q)
N

+ θIs(q) + αIs(q) + γIv(q)


 ×

 wδc∏
r=wδ1

(
ηS(r) + βS(r)Is(r)

N
+ (1 − δ)βV (r)Iv(r)

N
+ θIs(r) + αIs(r) + γIv(r)

)



88 Multi-state SVIRD Model

exp
(

−
(

ηS(r) + βS(r)Is(r)
N

+ (1 − δ)βV (r)Iv(r)
N

+ θIs(r) + αIs(r) + γIv(r)
)

Wr

)
 (1 − δ)βV (r)Iv(r)

N

ηS(r) + βS(r)Is(r)
N

+ (1 − δ)βV (r)Iv(r)
N

+ θIs(r) + αIs(r) + γIv(r)


 ×

 wθd∏
x=wθ1

(
ηS(x) + βS(x)Is(x)

N
+ (1 − δ)βV (x)Iv(x)

N
+ θIs(x) + αIs(x) + γIv(x)

)

exp
(

−
(

ηS(x) + βS(x)Is(t)
N

+ (1 − δ)βV (x)Iv(x)
N

+ θIs(x) + αIs(x) + γIv(x)
)

Wx

)
 θIs(x)

ηS(x) + βS(x)Is(x)
N

+ (1 − δ)βV (x)Iv(x)
N

+ θIs(x) + αIs(x) + γIv(x)


 ×

 wαe∏
y=wα1

(
ηS(y) + βS(y)Is(y)

N
+ (1 − δ)βV (y)Iv(y)

N
+ θIs(y) + αIs(y) + γIv(y)

)

exp
(

−
(

ηS(y) + βS(y)Is(y)
N

+ (1 − δ)βV (y)Iv(y)
N

+ θIs(y) + αIs(y) + γIv(y)
)

Wy

)
 αIs(y)

ηS(y) + βS(y)Is(y)
N

+ (1 − δ)βV (y)Iv(y)
N

+ θIs(y) + αIs(y) + γIv(y)


 ×

 zγf∏
z=wγ1

(
ηS(z) + βS(z)Is(z)

N
+ (1 − δ)βV (z)Iv(z)

N
+ θIs(z) + αIs(z) + γIv(z)

)

exp
(

−
(

ηS(z) + βS(z)Is(z)
N

+ (1 − δ)βV (z)Iv(z)
N

+ θIs(z) + αIs(z) + γIv(z)
)

Wz

)
 γIv(z)

ηS(z) + βS(z)Is(z)
N

+ (1 − δ)βV (z)Iv(z)
N

+ θIs(z) + αIs(z) + γIv(z)




It can then be simplified into the following equation.

n−1∏
i=0

(
λsie

−λsi Wi

) (
psi→si+1

)
= wηa∏

p=wη1

ηS(p) exp
(

−
(

ηS(p) + βS(p)Is(p)
N

)
Wp

)

exp
(

−
((1 − δ)βV (p)Iv(p)

N
+ θIs(p) + αIs(p) + γIv(p)

)
Wp

)]
× wβb∏

q=wβ1

βS(q)Is(q)
N

exp
(

−
(

ηS(q) + βS(q)Is(q)
N

)
Wq

)

exp
(

−
((1 − δ)βV (q)Iv(q)

N
+ θIs(q) + αIs(q) + γIv(q)

)
Wq

)]
× wδc∏

r=w1−δ1

(1 − δ)βS(r)Iv(r)
N

exp
(

−
(

ηS(r) + βS(r)Is(r)
N

)
Wr

)

exp
(

−
((1 − δ)βV (r)Iv(r)

N
+ θIs(r) + αIs(r) + γIv(r)

)
Wr

)]
× wθd∏

x=wθ1

θIs(x) exp
(

−
(

ηS(x) + βS(x)Is(x)
N

)
Wx

)
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exp
(

−
((1 − δ)βV (x)Iv(x)

N
+ θIs(x) + αIs(x) + γIv(x)

)
Wx

)]
× wαe∏

y=wα1

αIs(y) exp
(

−
(

ηS(y) + βS(y)Is(y)
N

)
Wy

)

exp
(

−
((1 − δ)βV (y)Iv(y)

N
+ θIs(y) + αIs(y) + γIv(y)

)
Wy

)]
× wγf∏

z=wγ1

γIv(z) exp
(

−
(

ηS(z) + βS(z)Is(z)
N

)
Wz

)

exp
(

−
((1 − δ)βV (z)Iv(z)

N
+ θIs(z) + αIs(z) + γIv(z)

)
Wz

)]
The likelihood function is denoted by the following.

L(η, β, δ, θ, α, γ) =

exp
(

−
(

ηS(wn) + βS(wn)Is(wn)
N

+ (1 − δ)βV (wn)Iv(wn)
N

+ θIs(wn) + αIs(wn) + αIv(wn)
)

Wn

)
wηa∏

p=wη1

[
ηS(p) exp

(
−

(
ηS(p) + βS(p)Is(p)

N
+ (1 − δ)βV (p)Iv(p)

N
+ θIs(p) + αIs(p) + γIv(p)

)
Wp

)]
×

wβb∏
q=wβ1

[
βS(q)Is(q)

N

exp
(

−
(

ηS(q) + βS(q)Is(q)
N

+ (1 − δ)βV (q)Iv(q)
N

+ θIs(q) + αIs(q) + γIv(q)
)

Wq

)]
×

wδc∏
x=wδ1

[
(1 − δ)βV (x)Iv(x)

N

exp
(

−
(

ηS(x) + βS(x)Is(x)
N

− (1 − δ)βV (x)Iv(x)
N

+ θIs(x) + αIs(x) + γIv(x)
)

Wr

)]
×

wθd∏
x=wθ1

[
θIs(x) exp

(
−

(
ηS(x) + βS(x)Is(x)

N
+ (1 − δ)βV (x)Iv(x)

N
+ θIs(x) + γIs(x) + γIs(x)

)
Wx

)]
×

wαe∏
y=wα1

[
αIs(y) exp

(
−

(
ηS(y) + βS(y)Is(y)

N
+ (1 − δ)βV (y)Iv(y)

N
+ θIs(y) + αIs(y) + γIv(y)

)
Wy

)]
×

wγf∏
z=wγ1

[
γIv(z) exp

(
−

(
ηS(z) + βS(z)Is(z)

N
+ (1 − δ)βV (z)Iv(z)

N
+ θIs(z) + αIs(z) + γIv(z)

)
Wz

)]
We have obtained the logarithm of the likelihood function

log L(η, β, δ, θ, α, γ) =

−
(

ηS(wn) + βS(wn)Is(wn)
N

+ (1 − δ)βV (wn)Is(wn)
N

+ θIs(wn) + αIs(wn) + γIv(wn)
)

Wn+

wηa∑
p=wη1

[
log (ηS(p)) −

(
ηS(p) + βS(p)Is(p)

N
+ (1 − δ)βV (p)Iv(p)

N
+ θIs(p) + αIs(p) + γIv(p)

)
Wp

]
+

wβb∑
q=wβ1

[
log

(
βS(q)Is(q)

N

)
−

(
ηS(q) + βS(q)Is(q)

N
+ (1 − δ)βV (q)Iv(q)

N
+ θIs(q) + αIs(q) + γIv(q)

)
Wq

]
+

wδc∑
r=wδ1

[
log

(
(1 − δ)βS(r)Is(r)

N

)
−

(
ηS(r) + βS(r)Is(r)

N
+ (1 − δ)βV (r)Iv(r)

N
+ θIs(r) + αIs(r) + γIv(r)

)
Wr

]
+
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wθd∑
x=wθ1

[
log (θIs(x)) −

(
ηS(x) + βS(x)Is(x)

N
+ (1 − δ)βV (x)Iv(x)

N
+ θIs(x) + αIs(x) + γIv(x)

)
Wx

]
+

wαe∑
y=wα1

[
log (αIs(y)) −

(
ηS(y) + βS(y)Is(y)

N
+ (1 − δ)βV (y)Iv(y)

N
+ θIs(y) + αIs(y) + γIv(y)

)
Wy

]
+

wγf∑
z=wγ1

[
log (γIs(z)) −

(
ηS(z) + βS(z)Is(z)

N
+ (1 − δ)βV (z)Iv(z)

N
+ θIs(z) + αIs(z) + γIv(z)

)
Wz

]
Using the partial derivative of the logarithm of the likelihood function with respect to η, we

obtain

∂ log L(η, β, δ, θ, α, γ)
∂η

= − S(wn)Wn +
wηa∑

p=wη1

[
1
η

− (S(p)) Wp

]
−

wβb∑
q=wβ1

[S(q)Wq]−

wδc∑
r=wδ1

[S(r)Wr] −
wθd∑

x=wθ1

[S(x)Wx] −
wαe∑

y=wα1

[S(y)Wy] −
wγf∑

z=wγ1

[S(z)Wz]

= − S(wn)Wn +
wηa∑

p=wη1

(
1
η

)
−

 wηa∑
p=wη1

[S(p)Wp] +
wβb∑

q=wβ1

[S(q)Wq]+

wδc∑
r=wδ1

[S(r)Wr] +
wθd∑

x=wθ1

[S(x)Wx] +
wαe∑

y=wα1

[S(y)Wy] +
wγf∑

z=wγ1

[S(z)Wz]


= − S(wn)Wn +

wηa∑
p=wη1

(
1
η

)
−

n−1∑
i=0

[S(i)Wi]

=a

η
−

n∑
i=0

[S(i)Wi]

Using the partial derivative of the logarithm of the likelihood function with respect to β, we
obtain

∂ log L(η, β, δ, θ, α, γ)
∂β

= −
[

S(wn)Is(wn)
N

]
Wn +

wβb∑
q=wβ1

[
1
β

−
(

S(q)Is(q)
N

)
Wq

]
−

wηa∑
p=wη1

[(
S(p)Is(p)

N

)
Wp

]
−

wδc∑
r=wδ1

[(
S(r)Is(r)

N

)
Wr

]
−

wθd∑
x=wθ1

[(
S(x)Is(x)

N

)
Wx

]
−

wαe∑
y=wα1

[(
S(y)Is(y)

N

)
Wy

]
−

wγf∑
z=wγ1

[(
S(z)Is(z)

N

)
Wz

]

= −
[

S(wn)Is(wn)
N

]
Wn +

wβb∑
p=wβ1

(
1
β

)
−

 wηa∑
p=wη1

[(
S(p)Is(p)

N

)
Wp

]
+

wβb∑
q=wβ1

[(
S(q)Is(q)

N

)
Wq

]
+

wδc∑
r=wδ1

[(
S(r)Is(r)

N

)
Wr

]
+

wθd∑
x=wθ1

[(
S(x)Is(x)

N

)
Wx

]
+

wαe∑
y=wα1

[(
S(y)Is(y)

N

)
Wy

]
+

wγf∑
z=wγ1

[(
S(z)Is(z)

N

)
Wz

]
= −

[
S(wn)Is(wn)

N

]
Wn +

wβa∑
p=wβ1

(
1
β

)
−

n−1∑
i=0

[(
S(q)Is(q)

N

)
Wq

]
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= b

β
−

n∑
i=0

[(
S(q)Is(q)

N

)
Wq

]

Using the partial derivative of the logarithm of the likelihood function with respect to δ, we
obtain

∂ log L(η, β, δ, θ, α, γ)
∂δ

= −
[

(1 − δ)βV (wn)Iv(wn)
N

]
Wn +

wδc∑
r=wδ1

[
1
δ

−
(

(1 − δ)βV (r)Iv(r)
N

)
Wr

]
−

wηa∑
p=wη1

[(
(1 − δ)βV (p)Iv(p)

N

)
Wp

]
−

wβb∑
q=wβ1

[(
(1 − δ)βV (q)Iv(q)

N

)
Wq

]
−

wθd∑
x=wθ1

[(
(1 − δ)βV (x)Iv(x)

N

)
Wx

]
−

wαe∑
y=wα1

[(
(1 − δ)βV (y)Iv(y)

N

)
Wy

]
−

wγf∑
z=wγ1

[(
(1 − δ)βV (z)Iv(z)

N

)
Wz

]

= −
[

(1 − δ)βV (wn)Iv(wn)
N

]
Wn +

wδc∑
p=wδ1

(
1
β

)
−

 wηa∑
p=wη1

[(
(1 − δ)βV (p)Iv(p)

N

)
Wp

]
+

wβb∑
p=wβ1

[(
(1 − δ)βV (q)Iv(q)

N

)
Wq

]
wδc∑

r=wδ1

[(
(1 − δ)βV (r)Iv(r)

N

)
Wr

]
+

wθd∑
x=wθ1

[(
(1 − δ)βV (x)Iv(x)

N

)
Wx

]

+
wαe∑

y=wα1

[(
(1 − δ)βV (y)Iv(y)

N

)
Wy

]
+

wγf∑
z=wγ1

[(
(1 − δ)βV (z)Iv(z)

N

)
Wz

]
= −

[
(1 − δ)βV (wn)Iv(wn)

N

]
Wn +

wδc∑
r=wδ1

(1
δ

)
−

n−1∑
i=0

[(
(1 − δ)βV (r)Iv(r)

N

)
Wr

]

= c

δ
−

n∑
i=0

[(
(1 − δ)βV (r)Iv(r)

N

)
Wr

]

Using the partial derivative of the logarithm of the likelihood function with respect to θ, we
obtain

∂ log L(η, β, δ, θ, α, γ)
∂θ

= − Is(wn)Wn +
wθd∑

x=wθ1

[1
θ

− (Is(x)) Wx

]
−

wηa∑
p=wη1

[Is(p)Wp]−

wβb∑
q=wβ1

[Is(q)Wq] −
wδc∑

r=wδ1

[Is(r)Wr] −
wαe∑

y=wα1

[Is(y)Wy] −
wγf∑

z=wγ1

[Is(z)Wz]

= − Is(wn)Wn +
wθd∑

x=wθ1

(1
θ

)
−

 wηa∑
p=wη1

[Is(p)Wp] +
wβb∑

q=wβ1

[Is(q)Wq]+

wδc∑
r=wδ1

[Is(r)Wr] +
wθd∑

x=wθ1

[Is(x)Wx] +
wαe∑

y=wα1

[Is(y)Wy] +
wγf∑

z=wγ1

[Is(z)Wz]


= − Is(wn)Wn +

wθd∑
x=wθ1

(1
θ

)
−

n−1∑
i=0

[Is(i)Wi]

=d

θ
−

n∑
i=0

[Is(i)Wi]

Using the partial derivative of the logarithm of the likelihood function with respect to α, we
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obtain

∂ log L(η, β, δ, θ, α, γ)
∂α

= − Is(wn)Wn +
wαe∑

y=wα1

[ 1
α

− (Is(y)) Wy

]
−

wηa∑
p=wη1

[Is(p)Wp]−

wβb∑
q=wβ1

[Is(q)Wq] −
wδc∑

r=wδ1

[Is(r)Wr] −
wθe∑

x=wθ1

[Is(x)Wx] −
wγf∑

z=wγ1

[Is(z)Wz]

= − Is(wn)Wn +
wαe∑

x=wα1

( 1
α

)
−

 wηa∑
p=wη1

[Is(p)Wp] +
wβb∑

q=wβ1

[Is(q)Wq]+

wδc∑
r=wδ1

[Is(r)Wr] +
wθd∑

x=wθ1

[Is(x)Wx] +
wαe∑

y=wα1

[Is(y)Wy] +
wγf∑

z=wγ1

[Is(z)Wz]


= − Is(wn)Wn +

wαe∑
x=wα1

( 1
α

)
−

n−1∑
i=0

[Is(i)Wi]

= e

α
−

n∑
i=0

[Is(i)Wi]

Using the partial derivative of the logarithm of the likelihood function with respect to γ, we
obtain

∂ log L(η, β, δ, θ, α, γ)
∂γ

= − Iv(wn)Wn +
wγf∑

z=wγ1

[
1
γ

− (Iv(z)) Wz

]
−

wηa∑
p=wη1

[Iv(p)Wp]−

wβb∑
q=wβ1

[Iv(q)Wq] −
wδc∑

r=wδ1

[Iv(r)Wr] −
wθe∑

x=wθ1

[Iv(x)Wx] −
wαd∑

y=wα1

[Iv(y)Wy]

= − Iv(wn)Wn +
wγf∑

x=wγ1

(
1
γ

)
−

 wηa∑
p=wη1

[Iv(p)Wp] +
wβb∑

q=wβ1

[Iv(q)Wq]+

wδc∑
r=wδ1

[Iv(r)Wr] +
wθd∑

x=wθ1

[Iv(x)Wx] +
wαe∑

y=wα1

[Iv(y)Wy] +
wγf∑

z=wγ1

[Iv(z)Wz]


= − Iv(wn)Wn +

wγe∑
z=wγ1

(
1
γ

)
−

n−1∑
i=0

[Iv(i)Wi]

=f

γ
−

n∑
i=0

[Iv(i)Wi]
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