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Abstract

This paper reviews works on statistical damage modelling. Available literature shows
that this method is flexible for modelling under-reporting and over-reporting of income,
optimal replacement, accelerated test models, man-power analysis, rock compression, in-
ventory analysis, power distribution etc . Additive and multiplicative damage models are
discussed and additional literature on multivariate damage modelling are also provided.
Characterizations of various distributions are discussed.
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1. Introduction
The concept of damage model, introduced by the legend of Indian Statistics Prof. C. R. Rao
in Rao (1965), arose naturally in connection with the following problem in Biology. A bird
lays eggs in its nest at time epochs 0 < s1 < s2 < ... and a squirrel runs around and each
time, with the same probability, takes away an egg. For an individual who is unaware of
timings when eggs were laid or stolen, only a ‘damaged’ number of eggs remain in the nest at
any given point of time. It is of interest to compare the distribution of the actual number of
eggs laid with the distribution of the number of eggs found in the nest or to realize conditions
under which one distribution can be inferred from the other. A large number of research
papers have appeared during the last two decades on damage models, since the appearance
of the Rao–Rubin result in Rao (1965).
Damage models find use in the real life scenario. Generally people under report income for
getting exemption from tax. If Z is the actual income of a person and Y is the reported
income then Y is only a damaged part of Z. The problem is to set conclusion regarding Z
through knowledge of Y.
There are also instances of over reporting of income. To get benefits on insurance policies
people generally over report their income, since the benefits depends on their future earnings
over a specified time period.
In statistical terminology a random variable Z reduced to some other variable by some random
mechanism is called a damaged variable. The quantity Y=Z-X is the reduction in Z and is
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called the damaged component of Z in contrast to the undamaged part X. The random
mechanism that produces the damage is represented by the survival distribution defined as

s(x|z) = P (X = x|Z = z) (1)

The representation just described assumes that Z is the sum of two random variables and is
therefore termed as an additive damage model.
Another well studied model to represent such phenomena is the multiplicative damage model.
The reduction in Z can be assumed to materialize by a multiplicative model in the form X=RZ,
where the random variable R is defined on [0, 1].
The concept of damage models has been extended to higher dimensions. Instead of considering
a single random variable Z, a random vector Z = (Z1, Z2, ..., Zn) can be thought of as reduced
to another vector X = (X1, X2, ..., Xn). In such cases we have a multivariate damage model,
which obviously can be either additive or multiplicative.
Earlier researches in damage models were centered around a necessary and sufficient condi-
tion for the distribution of a random variable Z to be Poisson, when it is assumed that the
conditional distribution of X given Z has binomial distribution. This condition, viz.

P (X = x) = P (X = x|Y = 0) (2)

came to be later known in literature as the Rao-Rubin (R-R) condition. Shanbhag (1974)
provided a simple proof of this condition. Extensions of the R-R condition in various directions
were given by several researchers such as Van der Vaart (1972), Shanbhag and Clark (1972)
and Srivastava and Srivastava (1970). Possibilities of other distributions that suits to Z and
conditional distribution of X given Z and their corresponding characterizations based on a
different set up were proved in Patil and Seshadri (1964).
An alternative approach to analyze damage models is using the concept of regression. The
characterizations of Krishnaji (1974), Revankar, Hartley, Pagano et al. (1974) and Korwar
(1975) belong to this category. The possibility of characterizing the Pareto distribution
through a multiplicative model is explored in Krishnaji (1970). For other contributions in
this connection we refer to Srivastava (1971), Patil and Ratnaparkhi (1975), Srivastava and
Singh (1975) and Talwalker (1970).

1.1. Relationship with other models

The damage models has intimate relationship with two concepts rarefactions and geometric
compounding. Of these, the geometric compounding model has the following formulation.
Let X1, X2, ..., XN be independently and identically distributed random variables with a com-
mon distribution function F(x) and N be a random variable following geometric law

P (N = n) = p
n−1 ; n = 1, 2... (3)

independent of the X’s. If F*(x) is the distribution function of S*, defined by the equation

S∗ = X1 + X2 + ... + XN (4)

The point of interest in geometric compounding models is the relation between F*(x) and
F(x).
If

Sn = X1 + X2 + ... + Xn; n < ∞ (5)

The sequence S1, S2, ... form a renewal process with F(x) as the interval distribution function.
Each point Sn is erased with a probability q. Expanding the time scale by 1/q, we obtain
a point process S∗

n, n ≥ 1. This procedure is called rarefaction process, where the action of
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erasure is taken independently of the process (Sn) and also the decision on erasing distinct
points is made independently of one another. Considering F ∗(x) to be the interval distribution
corresponding to the process S∗

n, the relationship between F(x) and F ∗(x) is explored in
rarefaction problems.
With reference to the example cited in the introductory paragraph the assumptions on the
action of the squirrel imply that for a given (Z=z) the distribution of Y is binomial. If we
can conceive Z as the number of eggs laid in the interval (0,t) and S1 < S2 < ... < Sz the
actual time points when eggs were laid, Y is distributed as binomial implies that each Sn

has the same probability of being erased and that the actions of erasure are independent
of one another. In this context the damage model of Rao and Rubin finds the additional
assumption regarded to guarantee a Poisson distribution for Z. Thus a characterization of
a Poisson distribution for Z implies a characterization of a Poisson process in a rarefaction
process. Needless to say, therefore, that of the three models, the damage models supersedes
the others generally. In view of these reasons, we focus an attention on the damage models.
As mentioned in the opening section, a convenient classification of the damage models is
provided by distinguishing them as additive and multiplicative models. The additive model
was explained in literature in the form of two conditions which appeared in the same year,
viz. R-R and Patil-Seshadri (P-S) conditions.
In Section 2 the first two subsections are devoted for characterizations employing the R-R
condition and P-S condition. Another subsection explains the multiplicative model. Moving
on to Section 3, it explains the different areas in which damage models found applications.
And the general conclusion of the present review has been given in Section 4.

2. Characterizations and conditions
This section concentrates on explanation of the two conditions that paved the way to the
extensive study of additive damage model. And also explains the multiplicative damage
model and its famous relation with income distribution.

2.1. R-R condition

The characterization available in literature on damage models can be classified into different
directions. There are mainly two types of damage models, additive damage model and multi-
plicative damage model. The milestone literature in additive damage model was contributed
by Rao and Rubin (1964). A number of characterizations has been proposed in the mentioned
paper. They are

(i) Let the original variable be Z and damaged variable be Y = Z-X. If the conditional
distribution of X given Z follow binomial distribution then necessary and sufficient
condition for Z to follow Poisson distribution is P (X = x) = P (X = x|Y = 0) where Y
= Z-X.

(ii) The above theorem is also applicable for Y=1.

The statement P (X = x) = P (X = x|Y = 0) is termed as the R-R condition.
Talwalker (1970) extended the R-R conditions to the bivariate case to provide a characteriza-
tion of the double Poisson distribution. Another result in this connection is a characterization
of the multivariate negative binomial distribution proposed by Patil and Ratnaparkhi (1975).
There is an alternative approach to characterize distributions using the concept of linear
regression. Here instead of employing the R-R condition, Krishnaji (1974) has used the
regression approach, on the conditional expectation of X given (Y=y) which is equal to a
linear equation a + by.
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For various values of a and b, distributions such as Poisson, binomial, negative binomial,
logarithmic series and hypergeometric distributions can be obtained as the original distri-
butions. There have been attempts to extend this approach in the case of some continuous
distributions as well. Revankar et al. (1974) used this method to characterize the Pareto
distribution. For some extended results in the same area, we can refer to Korwar (1975).

2.2. P-S condition

Almost at the same time the R-R condition was developed, another group of statisticians
independently proved a characterization for the linear exponential family of distributions
in the same context of damage models and have same ideology of R-R condition, which is
explained in Patil and Seshadri (1964). It was based on the form of the conditional distribution
of X given X+Y. It leads to further investigations in the same direction, forming a class of
theorems in the framework of P-S conditions. They are
Let X and Y be independent discrete random variable and s(x|x + y) = P (X = x|X + Y =
x + y). Then the condition

s(x + y|x + y)s(0|y)
s(x|x + y)s(y|y) = h(x + y)

h(x)h(y) (6)

where h(.) is a non-negative function is satisfied if and only if X and Y belongs to the linear
exponential family having a common exponential parameter.
ie.

P (X = x) = f(x) = f(0)h(x)eax (7)

and
P (Y = y) = g(y) = g(0)k(y)eay (8)

where
k(y) = h(y)s(0|y)

s(y|y) , a > 0 (9)

The equation (6) is called P-S condition. By using this condition, it immediately follow some
characterizations which is fairly explained as Theorems 1, 2 and 3 and as corollaries of the
same in Patil and Seshadri (1964).

2.3. Multiplicative damage model

Another major category of damage model is multiplicative damage model. This model is
basically classified into univariate and bivariate multiplicative damage models. Univari-
ate mulitiplicative damage model is defined as, X = RZ, where value of R is defined on
[0,1]. It means, the reduction in Z is represented by X (damaged variable), as R is a frac-
tional value. The bivariate multiplicative damage model is obtained through the relation-
ship (Y1, Y2) = (RX1, RX2). Here (Y1, Y2) represents the bivariate multiplicative damaged
variable. Multiplicative damage model is most commonly used, due to its mathematical
tractability.
The univariate multiplicative damage model discussed in Krishnaji (1970) has been extended
to the bivariate setup by Veenus and Nair (1994). They have obtained characterization results
for the bivariate Pareto distribution with survival functions

P (X1 > x1, X2 > x2) = (x1
β

)−λ1(x2
β

)−λ2

where x1, x2 > β, λ1, λ2 > 0, β > 0.
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and

P (X1 > x1, X2 > x2) = (x1
β

)−λ1(x2
β

)−λ2(max(x1, x2)
β

)λ12

where x1, x2 > β, λ1, λ2 > 0, β > 0, using different set of conditions.

3. Areas of application
Damage models have wide applications in the context of science and technology. In fact,
in general, whenever a random decrease is suggested in a random variable, damage models
become meaningful. We point out below several areas of study where damage models provide
factual representation.

3.1. Optimal replacement of machines

The concept of additive damage model was used by Taylor (1975) in optimal replacement of
machines by considering cumulative damage failure model and established that damages are
exponentially distributed with shocks occurring to the system according to Poisson process.
A discrete time formulation for the problem and sufficient condition for optimality of a gen-
eralized control control limit rule was given in Waldmann (1983) and this was extensively
studied in Posner and Zuckerman (1986) as semi-Markov shock model.

3.2. Inventory analysis

Xekalaki (1983) points out the relevance of damage models in inventory analysis by treating
Z as the time demand for an item during a unit time interval and X as the item units to
stock during the same time interval. She obtained a characterization of the Yule distribution
in this context.

3.3. Rare event reporting

As is well known, for fear of litigation and other complications that might follow the occurrence
of an accident, many of the accidents that occur are not reported. Thus the number of
accidents reported usually fall short of those actually materialized. Since the frequency of
accidents are generally assumed to follow Poisson pattern which is proved in Nicholson and
Wong (1993), the problem lead to characterization of the Poisson distribution, through the
damage model, which is in need to expand further.

3.4. Accelerated test models

Damage models also find application in accelerated test models. As in Durham and Padgett
(1997) they assumed a discretized cumulative damage model for the failure of a general system
under an increasing tensile load, Padgett (1998) and Owen and Padgett (1998) studied about
multiplicative damage model with Birnbaum-Saunders type models for system strength, while
Onar and Padgett (2000a) took a similar approach by studying inverse Gaussian distribution.
This work was extended in Onar and Padgett (2000b) by considering a continuous damage
model based on a Gaussian process, rather than using the discretized model.

3.5. Martin- boundary connection

In Rao, Rao, and Shanbhag (2002) we can observe that it concerns certain results leading
to the connection with random walk, branching process and damage models. The Martin
boundary in the environment of non-negative matrices with inherent extreme point methods
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is linked to damage models. And then in Raje, Sadeghi, and Rateick (2008), a damage
mechanics based fatigue model to study the process of subsurface initiated spalling in bearing
contacts were used which employs three parameter Weibull distribution.

3.6. Geomaterial compression
Rock is a natural engineering material, which contains a large number of internal defects (for
instance, cracks, joints, voids...etc). These defects are the typical manifestations of damage.
Therefore, damage-based constitutive models accord with the characteristics of rock. The
existing rock damage models can be classified into several types such as, the elastic–plastic
damage model, the mesoscopic damage model and the dynamic damage model. However,
these models are usually complicated and inconvenient to use. For a convenient application,
it is sought to establish a simple damage constitutive model to reflect the stress–strain relation
of sandstone. Applications of statistical constitutive damage model in the context of different
geomaterials are given below.

Compression of rocks
In the last one decade several papers have appeared in the context of application of sta-
tistical damage constitutive models. Most of the papers deals with the behavior of rocks
during compression and the damage happening to the same during that compression.It is
seen that Weibull distribution is used to describe strength of the rock during compression.
The compression may be uniaxial, biaxial or triaxial.
The preliminary paper appeared in 2010 ie. Cao, Zhao, Li, and Zhang (2010). By using a
statistical damage-based approach, the characteristics of strain softening and hardening under
the influence of voids and volume changes are investigated which uses triaxial compression
method and Weibull distribution to describe the strength of mesoscopic elements, which is
associated with macroscopic parameters. The work has been followed in Deng and Gu (2011),
with statistical mesoscopic strength theory based on maximum entropy distribution. In the
same year another idea which seeks to devise non-conventional approaches to fracture and
damage by means of discrete damage models accounting for the essential microscale property
of a material or structural system was introduced in Rinaldi (2011).
The constitutive damage models in this overview are established from physically-based defini-
tions of the damage parameter(s) that stem from a pervasive (bottom-up) statistical rationale
aided by a vast arsenal of modeling tools (e.g. descriptive and inductive statistics, fractal the-
ory, computer graphics, numerical methods). Later in Tian, Wang, Li, and Xu (2014), the
Lade-Duncan (L-D) criterion is introduced as a new measure of rock micro-unit strength,
which can reasonably consider the influence of intermediate principal stress on rock strength.
Assuming that the micro-unit strength obeys the Weibull distribution, combined with the L-D
failure criterion, a new statistical damage constitutive model for brittle rocks is established.
The model can simulate the stress-strain relation of full process of rock failure well. Another
paper which deals with the same area is Zhao, Xie, and Meng (2014).
By taking into consideration the effects of damage under a dynamic load on the dynamic
loading strength of the rock, the continuous damage theory and the statistical strength theory
were introduced into the development of the simplified overstress constitutive formula for the
stress model. Hence, a damage-based constitutive formula for an overstress model, which can
be appropriately applied to the analysis of full dynamic stress–strain curves was developed.
By using the simplified damage-based constitutive formula for an overstress model, the actual
measured curves are fitted, indicating that the fitted curves and those actually measured are
in good agreement.
But Zhao, Zhang, Cao, and Zhao (2016) studied a challenging problem in involving the
concept of damage model into the constitutive laws of rocks as the definition of the damage
variable can used to characterize the mechanical behavior of rocks-sandstone. Results show
that the developed constitutive law for quasi-brittle rocks with damage tolerance principle
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can be used to predict the post-peak behavior including the strain-softening behavior and
the immobile residual strength with acceptable accuracy. Regarding the mechanical response
of strain softening rock, especially in brittle failure under moderate confining pressure is
explained in Zhao, Shi, Zhao, and Li (2017). Accordingly, a modified damage mechanical
model with conventional triaxial compression was established. Then, the evolution equation
of the damage variable was formulated based on the well-known Weibull distribution.
Laterly in Xu and Yang (2017) constitutive fracture damage model for fissured rock mass is
established based on the deformation characteristics of microcracks under compression. By
employing the basic theory of damage mechanics in Zhang, Wan, Wang, Ma, Zhang, and
Cheng (2017), they established a statistical damage constitutive model for rocks under the
PSBSS (Plane-Strain Biaxial Stress State). The constitutive model of rocks subjected to cyclic
stress–temperature was proposed in Zhou, Xia, Zhao, Mei, and Zhou (2017) and model for
cemented sand considering the residual strength and initial compaction phase was discussed
in Tan, Yuan, Shi, Zhou, and Li (2018). The triaxial compression results are based on Weibull
distribution in both. The damage created on rocks due to continuous action of high level of
water and temperature were studied and a new statistical damage constitutive model based
on Weibull distribution theory and Mohr- Coulomb strength criterion is established on Jiang,
Jiang, Zhang, and Yang (2022).

Damage modelling in effects of cyclic drying and wetting conditions

Major work in this context is Kegang and Yuanying (2016). It studied the effects of cyclic
drying and wetting conditions on the mechanical properties of rock-sandstone based on the
damage constitutive theory of a continuous medium, utilizing characteristic parameters and
extreme conditions indicated by a stress-strain curve. And also by considering the nonlinear
relationships of the rock’s mechanical parameters of drying-wetting cycles, a constitutive
model for rock considering drying-wetting effect as proposed with uniaxial compression in
the same paper. Similarly in Chen, He, Qin, Li, and Gong (2019) they propose a new
statistical constitutive model using symmetric normal distribution. The damage variable was
established using the equivalent strain principle and symmetric normal distribution, where
damaging variable was defined by the elastic modulus under various dry-wet cycles.

Mechanical characteristics of saturated porous media

Gao, Xie, Xie, He, Li, Wang, and Luo (2017) deals with the void volume changes and fluid
pressure of saturated porous media. A new constitutive model was developed to describe
the mechanical characteristics of saturated porous media in geomaterials. On the basis of
the Weibull distribution for rock-sandstone micro-strength, the damage variable was defined
and a semi-analytical permeability variation model was established with triaxial compression.
This work was continued in Wang, Song, Zhao, Liu, Liu, and Lai (2018) as a new damage
model, which can reflect the residual deviatoric stress was established. Triaxial test results
of sandstone were employed to evaluate the reasonability of the damage model established in
this paper.

Energy analysis of the deformation and failure process of sandstone

Wen, Tang, Ma, and Liu (2019) is the first paper appeared in this context. Energy analysis of
the deformation and failure process of sandstone with the damage variable D was redefined in
light of energy dissipation and then, the damage evolution analysis was conducted based on
triaxial tests. An improved rock damage constitutive model was further obtained in another
expression to reflect the energy change law. Subsequently, the relationship between D and
the deformation or failure process of rocks was analyzed on account of the damage evolution
equation formularized by fitting to a logistic function, which can measure the influence of
energy dissipation on the propagation of micro-defects. Later in 2019 establishment of damage
statistical constitutive model of loaded rock and method for determining its parameters under
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freeze-thaw condition are discussed in Fang, Jiang, and Luo (2019).

Chemical corrosion of rocks

Regarding mechanical properties of rock, a coupled chemical-mechanical condition was dis-
cussed in Lin, Gao, Zhou, Gao, and Guo (2019a). An improved statistical damage constitutive
model was established using the Drucker-Prager (D-P) strength criterion and two-parameter
Weibull distribution. The damage variable correction coefficient and chemical damage vari-
able which was determined by porosity were also considered in the model. Moreover, a series
of conventional triaxial compressive tests were carried out to investigate the mechanical prop-
erties of sandstone specimens under the effect of chemical corrosion. A continuum damage
mechanics model which demonstrates corrosion fatigue crack initiation prediction is discussed
in Yang, Fan, and Li (2022).
In the same year Lin, Zhou, Gao, and Li (2019b) has done another work regarding damage
evolution and behavior of constitutive model of sandstone. Here sandstone is subjected to
chemical corrosion using uniaxial compression tests . The statistical damage constitutive
model was built by combining the compaction coefficient and the chemical damage variable
is proposed to describe the damage evolution of sandstones treated with chemical corrosion.

Progressive growth of damage in rock

Regarding phenomenological modelling of rocks based on the influence of damage initiation
a new idea has been proposed in Zhao, Zhou, and Zhang (2019). The model addresses the
progressive growth of damage that leads to the strength weakening on a macroscopic scale.
Considering dramatic difference between uniaxial compression and tension strengths for rocks,
the admitted Mises–Schleiche D–P strength criterion is adopted to characterize the damage
initiation. On this basis, a two-parameter Weibull-type probability function is used to define
the strength distribution of representative volume elements, followed by the use of damage
variable for addressing the accumulated probability of failure. As a continuation, in Liu, Dan,
Jia, and Zhu (2020) a statistical damage constitutive model of granite at high-temperature,
which considering the damage threshold, residual stress and thermal damage is established to
describe the stress–strain relationship of high-temperature granite. In this model, the same
D–P criterion is used as the failure criterion and the Weibull distribution is introduced to
describe the strength distribution of rock elements. The results of theoretical analysis are
found to agree closely with the triaxial compression experiment of high temperature granite.
The uniaxial compression-mechanical properties of rock under osmotic pressure was elabo-
rated in Song, Wang, Wang, Xiao, and Yang (2022). A new damage constitutive model and
theoretical curves of stress-strain response of limestone before its failure has been discussed.

Joint shear deformation

The first paper in 2020 regarding statistical damage model in joint shear deformation is Xie,
Lin, Wang, Chen, Xiong, Zhao, and Du (2020). The phase of initial damage is determined
on the assumption that, the joint shear failure results in damage evolution, according to
the typical joint shear curve and the three-parameter Weibull distribution. Then a statistical
damage evolution model for the whole joint shearing process is introduced to make this model
to be capable of describing the residual phase of rock joints.
The next paper published immediately is Zhou, Karakus, Xu, and Shen (2020) which dealt
with a new damage model accounting the effect of joint orientation for the jointed rock mass
using the Weibull distribution by incorporating the Jaeger’s and modified Hoek-Brown failure
criteria. Therefore, it improves the prediction of rock mass response significantly. Thus, the
proposed model can be used to simulate anisotropic rock mass behavior accurately.
In Chen (2020), by assuming that the rock material is able to be divided into the elastic
part satisfying the Hooke’s law and damaged part where rock strength follows lognormal
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distribution, he determined a damage variable and establishes a damage constitutive model
which effectively reflects the residual strength in the of rock failure.
The most recent paper appeared in this context is Ma, Gutierrez, and Hou (2020) which
explained a coupled plasticity applied damage constitutive model to describe the mechanical
behavior of shales that spans the prepeak, peak and postpeak regions. Concept on damaged
part of geomaterials, which possesses residual shear strength is introduced in the proposed
model. A thermodynamic conjugate force is presented accounting, the residual shear strength
of the damaged part.

3.7. Manpower analysis

In spite of efforts by government and other agencies the true size of labour force available
in a region is never known exactly. However, it is possible to have statistics of the observed
labour input in a variety of investigations. Thus Z stands for the real labour input and X,
the observed labour input. This is explained well in Amirthalingam (2016).

3.8. Loading sequence effect

The relationship between rainflow counting matrix, sequence transition matrix and original
loading sequence which are derived from rainflow counting sequence and transition sequence
is described in Zhu, Zhang, and Ding (2022). A new modified fatigue damage model based on
linear damage rule has been proposed. The damage model explaining the stress rate- depen-
dent progressiveness of ultra high molecular weight polyethylene fiber composite laminates
under impact loading is described in Mansoori and Zakeri (2022).

3.9. Predicting tensile behavior

Exponential damage evolution equation is used in forming damage model for damaged fiber
and matrix/yarn it is modeled by the stiffness degradation method and a new progressive
damage model for the three-dimensional woven carbon/carbon composites is developed at
fiber-matrix level elaborated in Wei, Shi, Li, and Tang (2022).

3.10. Overhead power distribution

To evaluate the effectiveness of grid reliability enhancements a damage modeling framework
for the overhead power distribution system under budgetary constraints is proposed in Hughes,
Zhang, Bagtzoglou, Wanik, Pensado, Yuan, and Zhang (2021). Monte Carlo simulation is used
to consider various uncertainties of the power distribution system.

3.11. Multiplicative damage model in the context of Income distribution

This method was first used by Krishnaji (1970) in connection with under-reporting of in-
come. Under this framework, it has been established that the distribution of observed income
suitably truncated and coincides with the true distribution if and only if the distribution
is of the Pareto form and a variable having a linear regression on true income has a linear
regression on observed income. From this idea Dimaki and Xekalaki (1990) established two
characterizations. Characterization of Pareto as income distribution has thrown light to the
World Economy. To date, economists have mostly used Pareto Type I distribution to model
the upper tail of income and wealth distribution. It is a parametric distribution, with an
attractive property that can be easily linked to economic theory, but the same have some
disadvantages too. This is explained well in Charpentier and Flachaire (2019). But these
disadvantages have been already identified by Dimaki and Xekalaki (1990) as multiplicative
damage models. They are described in the next two subsections. The methodology of the
size distribution of income deals with the distribution of income among individuals. A careful
examination of the frequency distribution of income shows that it is very much skewed, since
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a large proportion of income goes to a small proportion of individuals. An earlier investiga-
tion in the analysis of income was centred on finding a suitable model for the distribution
of income. Accordingly a number of distributions such as normal, Pareto, lognormal and
Gamma where proposed by several researchers. A detailed discussion of the various models,
their relevance and utility are available in Kakwani (1986).

Characterization in the context of under-reporting of income
It is widely believed that, the tail index estimation of Pareto I model based on surveys is
biased upward, because these data are subject to topcoding, censoring and under-reporting
of the rich. Regarding under-reporting of income, the Theorem 2.1, 2.2 and their correspond-
ing corollaries in Dimaki and Xekalaki (1990), they have established results leading to the
characterizations of Pareto, Yule and F distributions.

Characterization in the context of over-reporting of income
From the study of Dimaki and Xekalaki (1990) it was found that, the tail index can be biased
downward and the upper tail might just as easily be over-estimated for tail index estimation
of Pareto I model. Regarding over-reporting of income, Lemma 3.1, Theorem 3.1 and 2.2 and
also their corresponding corollaries in Dimaki and Xekalaki (1990), have established results
leading to the characterization of Pareto distribution.
The continued interest shown by researchers in identifying different probability distributions
to represent the original and ruined output resulted in further areas of application and new
results under simplified conditions are reported above.

4. Conclusion
In this review, we have discussed various results on damage models in the additive and
multiplicative setup under a unified approach. In doing so, we have been able to identify
the prominent discrete distributions suitable as potential models in varying situations. The
discussions mainly relate to univariate models and slightly in bivariate cases. It is possible
to have a natural generalization of most of these results to higher dimensions. However, this
area has not been explored in detail.
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