
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Gregory M. Lanza,
Washington University in St. Louis,
United States

REVIEWED BY

Mian Guo,
The Second Affiliated Hospital of Harbin
Medical University, China
Yuwei Zhang,
Tianjin Medical University Cancer Institute and
Hospital, China

*CORRESPONDENCE

Weihua Li

18804511716@163.com

Jihong Sun

sunjihong@zju.edu.cn

Fenhua Zhao

zhfenhua@163.com

†These authors have contributed
equally to this work and share
first authorship

RECEIVED 13 September 2023

ACCEPTED 02 January 2024
PUBLISHED 19 January 2024

CITATION

Yang Z, Dong H, Fu C, Zhang Z, Hong Y,
Shan K, Ma C, Chen X, Xu J, Pang Z, Hou M,
Zhang X, Zhu W, Liu L, Li W, Sun J and Zhao F
(2024) A nomogram based on CT
intratumoral and peritumoral radiomics
features preoperatively predicts poorly
differentiated invasive pulmonary
adenocarcinoma manifesting as subsolid or
solid lesions: a double-center study.
Front. Oncol. 14:1289555.
doi: 10.3389/fonc.2024.1289555

COPYRIGHT

© 2024 Yang, Dong, Fu, Zhang, Hong, Shan,
Ma, Chen, Xu, Pang, Hou, Zhang, Zhu, Liu, Li,
Sun and Zhao. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 19 January 2024

DOI 10.3389/fonc.2024.1289555
A nomogram based on CT
intratumoral and peritumoral
radiomics features preoperatively
predicts poorly differentiated
invasive pulmonary
adenocarcinoma manifesting as
subsolid or solid lesions:
a double-center study
Zebin Yang1†, Hao Dong2†, Chunlong Fu1†, Zening Zhang3,
Yao Hong4, Kangfei Shan1, Chijun Ma1, Xiaolu Chen1,
Jieping Xu1, Zhenzhu Pang1, Min Hou3, Xiaowei Zhang5,
Weihua Zhu1, Linjiang Liu6, Weihua Li6*, Jihong Sun3,4,7*

and Fenhua Zhao1*

1Department of Radiology, Affiliated Dongyang Hospital of Wenzhou Medical University,
Dongyang, China, 2Department of Radiology, Affiliated Xiaoshan Hospital of Wenzhou Medical
University, Hangzhou, China, 3Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang
University School of Medicine, Hangzhou, China, 4Department of Radiology, Fourth Affiliated Hospital,
College of Medicine, Zhejiang University, Yiwu, China, 5Department of Pathology, Affiliated Dongyang
Hospital of Wenzhou Medical University, Dongyang, China, 6Medical Imaging Department, Shenzhen
Second People’s Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center,
Shenzhen, China, 7Cancer Center, Zhejiang University, Hangzhou, China
Background: The novel International Association for the Study of Lung Cancer

(IASLC) grading system suggests that poorly differentiated invasive pulmonary

adenocarcinoma (IPA) has a worse prognosis. Therefore, prediction of poorly

differentiated IPA before treatment can provide an essential reference for

therapeutic modality and personalized follow-up strategy. This study intended

to train a nomogram based on CT intratumoral and peritumoral radiomics

features combined with clinical semantic features, which predicted poorly

differentiated IPA and was tested in independent data cohorts regarding

models’ generalization ability.

Methods: We retrospectively recruited 480 patients with IPA appearing as

subsolid or solid lesions, confirmed by surgical pathology from two medical

centers and collected their CT images and clinical information. Patients from the

first center (n =363) were randomly assigned to the development cohort (n =

254) and internal testing cohort (n = 109) in a 7:3 ratio; patients (n = 117) from the

second center served as the external testing cohort. Feature selection was

performed by univariate analysis, multivariate analysis, Spearman correlation

analysis, minimum redundancy maximum relevance, and least absolute

shrinkage and selection operator. The area under the receiver operating

characteristic curve (AUC) was calculated to evaluate the model performance.
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Results: The AUCs of the combined model based on intratumoral and

peritumoral radiomics signatures in internal testing cohort and external

testing cohort were 0.906 and 0.886, respectively. The AUCs of the

nomogram that integrated clinical semantic features and combined

radiomics signatures in internal testing cohort and external testing cohort

were 0.921 and 0.887, respectively. The Delong test showed that the AUCs of

the nomogram were significantly higher than that of the clinical semantic

model in both the internal testing cohort(0.921 vs 0.789, p< 0.05) and

external testing cohort(0.887 vs 0.829, p< 0.05).

Conclusion: The nomogram based on CT intratumoral and peritumoral

radiomics signatures with clinical semantic features has the potential to

predict poorly differentiated IPA manifesting as subsolid or solid

lesions preoperatively.
KEYWORDS

pulmonary adenocarcinoma, computer tomography imaging, radiomics,
peritumoral, nomogram
1 Introduction

Lung cancer is the prominent reason for cancer-related death

globally (1). Non-small cell lung cancer (NSCLC) occupies

approximately 80%-85% of lung cancer cases, the most common

type of which is adenocarcinoma (2). Lung adenocarcinoma

comprises five frequent histological subtypes, which were

reported to indicate patients’ prognoses (3). In 2015, the WHO

divided patients into 3 prognostic groups based on the 5

pathological subtypes: low-grade pattern (lepidic predominance),

intermediate-grade pattern (acinar or papillary predominance), and

high-grade pattern (solid or micropapillary predominance) (4).

However, many scholars found some limitations to this

classification method. First, minor subtypes’ prognostic impact

has not been considered. For instance, cases with solid or

micropapillary components (even not dominant) usually have

poor prognoses (5). Moreover, a new complex glandular pattern

has been identified but not included in the grouping, which

correlates to high mitotic rates, tumor necrosis, and lymphatic

invasion (6). It is agreed that this novel pattern represents a

similar prognosi (7–9) to adenocarcinoma with solid or

micropapillary predominance.
esian information

ce interval; DCA,

umoral region; IP-

eritumoral region;

l volume; n-PDT,

of the peritumoral

square error.
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In 2020, the International Association for the Study of Lung

Cancer (IASLC) introduced a newly modified grading system (10)

combining dominant subtype and high-grade components. Tumors

with ≥20% high-grade patterns (solid, micropapillary, or complex

glandular patterns) are delineated as poorly differentiated tumors

(PDT). The novel grading system was adopted by the WHO

thoracic tumor classification (5th edition) in 2021 (11). Several

large-scale cohort studies have corroborated that the new

classification system bears substantial prognostic predictive power

(12–14). Besides, a recent study demonstrated that the 3-year

recurrence-free survival (RFS) rate of PDT is only 65.5%, while

the 3-year RFS of non-poorly differentiated tumor (n-PDT) is

88.3%-100% (12). Stage IA NSCLC can be treated with

segmentectomy (13), which helps minimize surgical trauma and

preserve more lung function. Yet, Xu et al. (14) reported that PDT is

a practical predictive index of mediastinal lymph node metastasis in

clinical stage I invasive pulmonary adenocarcinoma (IPA). Patients

with PDT may need more thorough radical surgery and mediastinal

lymph node dissection in the early stage. Although IPA can be

determined through needle biopsy or intraoperative frozen sections,

it is challenging to diagnose PDT, which requires complete

pathological tissue (10). This is crucial for thoracic surgeons, as it

may influence the choice of surgical approach. Therefore, there is an

urgent need to establish an accurate and generalizable model for

preoperative prediction of PDT to help IPA patients receive the

most appropriate treatment.

Radiomics is a non-invasive and reproducible approach that

quantifies copious objective high-dimensional quantitative data to

demonstrate tumor heterogeneity (15). PDT has a poor prognosis

and is predisposed to relapse and metastasis, probably attributed to

the peritumoral stroma, inflammation level, lymphatic infiltration,
frontiersin.org
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vascular infiltration, etc. (16–18). Nevertheless, the spatial

heterogeneity above is tough to be observed in CT images.

Rad iomics seems ab le to dec ipher the per i tumora l

microenvironment. Some studies have corroborated that

combining intralesional and perilesional radiomics features can

better discriminate between benign and malignant pulmonary

lesions (19) and predict tumor invasiveness (20). Moreover,

previous research has shown that radiomics can differentiate the

histological subtypes of lung adenocarcinoma (21). Recent studies

(22, 23) reported that radiomics could also forecast poorly

differentiated IPA in the novel IASLC classification. However,

they neglected essential peritumoral prediction or lacked external

testing with independent datasets. No radiomics research has

incorporated peritumoral data to predict PDT under the novel

IASLC classification with independent dataset testing. IPA

radiologically manifesting as pure ground-glass opacity is a group

of tumors with a very low risk of metastasis and recurrence,

resulting in an excellent prognosis (24–26). We aim to investigate

the nomogram’s potential to predict poorly differentiated IPA

manifesting as subsolid or solid lesions based on intratumoral

and peritumoral radiomics features combining clinical

semantic features.
2 Material and methods

2.1 Patient selection

This retrospective, double-center study waived patients’

informed consent, authorized by the hospital’s Ethics Committee.

Data were collected from two medical centers in China. Patients

with stage I-III IPA manifesting as subsolid or solid lesions who

underwent thoracic surgical resection were encompassed (specific

exclusion criteria are shown in Supplementary A1). Eventually, 480

eligible patients (male 188, female 292) with IPA were included,

aged 19-83 (mean age 63.4±9.9 years). 363 patients (142 male; 63.5

± 9.8 years) from Center 1 (August 2019 to July 2022) were

randomly divided into development cohort (n = 254; 106 male;

63.8 ± 9.6 years) and internal testing cohort (n = 109; 73 male; 62.2

± 10.0 years) in a 7:3 ratio. And patients (n = 117; 71 male; 63.3 ±
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10.4 years) from Center 2 (August 2019 to May 2022) were adopted

as the independent external testing cohort. The study cohort flow

diagram is shown in Figure 1. Histopathological evaluation, CT

scan (Supplementary Table 1), and CT semantic features

incorporated are exhibited in Supplementary A2.
2.2 Tumoral and peritumoral
area segmentation

First, all lung CT DICOM images were imported into the open-

source software ITK-SNAP (version 4.8; www.itksnap.org).

Radiologists (Y.Z.B and D.H) with 10 years of experience in

pulmonary imaging diagnosis from the two centers manually

outlined the region of interest (ROI) layer by layer along the

inner edge of the tumor until the whole tumor was covered. The

results were fused and saved into 3D images, defined as

intratumoral volume (ITV). The process above was scrutinized by

an experienced chief radiologist (Z.F.H) with 20 years of experience

in pulmonary imaging diagnosis. Any disagreement was settled

through discussion. Large vessels, bronchi, cavities and spiculations

were excluded from the ROI. None of the 3 radiologists was

informed of the patient’s clinicopathological information.

Subsequent l y , an au tomat i c s egmenta t i on program

(Supplementary A3) was applied to expand 5 mm outward to

form the peri-ROI, defined as peritumoral volume (PTV). Large

vessels and extrapleural normal tissue were ruled out from the peri-

ROI (Figure 2). In our experiments, we utilized the Python

programming language for data preprocessing and model

implementation. All code was developed and tested under

Python 3.7.7.
2.3 Consistency and
repeatability evaluation

Three months later, two radiologists (Y.Z.B and D.H) randomly

selected images of 40 patients from the development cohort. They

segmented tumors and extracted features using an identical method

but were unaware of each other’s segmentation process. The
FIGURE 1

Flowchart of patient selection.
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accuracy of 40 volumns from two segmentors was evaluated by

calculating the Dice similarity coefficient. The intraclass correlation

coefficient (ICC) was determined to appraise the reproducibility of

tumor segmentation and feature extraction. ICC > 0.8 indicated

excellent consistency and was included in the following research.
2.4 Radiomics features extraction,
selection, and model construction

Radiomics features were retrieved using open-source

PyRadiomics (V2.1.0). Image pre-processing, data-balancing,

feature extraction (Supplementary Table 2), and screening are

shown in Supplementary A4. Intratumoral radiomics signature (I-

RS) and peritumoral radiomics signature (P-RS) models were

constructed by retrieving and screening optimal features from

ITV and PTV, respectively. Eventually, I-RS and P-RS were

integrated to establish a combined radiomics model (IP-RS) via

stepwise multivariate logistic regression based on the Akaike

information criteria (AIC). AIC aims to minimize the number of

parameters in a model while ensuring good fit, allowing the model

to better adapt to new data and enhance generalization capability.

In this study, we will select the model with the lowest AIC value as

the approximate optimal model under the identical conditions.
2.5 Clinical CT semantic features screening
and nomogram plotting

Univariate analysis was executed to probe the linkage between

clinical CT semantic features and tumor differentiation grade.

Variables with statistical differences (p < 0.05) were incorporated
Frontiers in Oncology 04
into the multivariate logistic regression to construct the clinical CT

semantic model (C-C). Selected clinical CT semantic features were

integrated with the combined radiomics model to plot a nomogram.
2.6 Statistical analysis

Statistical analysis were performed with R4.1.2 software. A t-test

and Pearsonc2 test or Fisher’s exact test were conducted to inspect the
significance of clinical and CT semantic features. Receiver operator

characteristic (ROC) curves were drawn. The area under the curve

(AUC) and relevant indicators (accuracy, specificity, sensitivity,

positive predictive value, and negative predictive value) were

determined to comprehensively evaluate the predictive performance

of each model. The DeLong test was carried out to statistically

compare the differences in AUC between the nomogram and other

models. AIC), Bayesian information criterion (BIC), and Root mean

square error (RMSE) were adopted to assess the model goodness offit

and prediction performance. The Hosmer-Lemeshow test evaluated

the calibration capability of the nomogram, which was visualized

using the calibration curve. Moreover, we performed a decision curve

analysis (DCA) to clarify the practicability and clinical usefulness.

Two-sided p < 0.05 was referred to as statistical significance.
3 Results

3.1 Baseline characteristics and clinical CT
semantic model construction

The baseline characteristics of the patients are shown in Table 1.

In the development cohort, univariate analysis illustrated statistical
FIGURE 2

Tumoral and peritumoral area segmentation. (A) Computerized tomography (CT) image of a subsolid lesion pathologically confirmed as invasive lung
adenocarcinoma. (B) The region of interest of the tumor is manually outlined layer by layer along the inner edge of the tumor. (C) The constructed
3D model of the intratumoral volume in ITK-SNAP. (D) The image showing the peritumoral region based on auto-dilating segmentation program,
large blood vessels around the tumor are all excluded. (E) The constructed 3D model of the peritumoral volume in ITK-SNAP.
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differences (p < 0.05) in age, long diameter, pleural retraction,

shape, density, spiculation, lobulation, bronchial obstruction, etc.

Multivariate logistic regression analysis denoted that long diameter

(OR: 1.126, 95% CI 1.073-1.183, p < 0.001, cut-off=19.5mm) and

density (OR: 36.695, 95% CI 11.093-121.383, p < 0.001) were

independent predictors of PDT (Table 2). A C-C model was

generated using the two predictors. AUC values were 0.789(95%

CI, 0.757-0.822) and 0.829(95% CI, 0.801-0.855) in internal testing

cohort and external testing cohort, respectively. Additional detailed

results are shown in Table 3.
3.2 Radiomics features extraction and
consistency analysis

Here 1045 features were extracted from ITV and PTV,

respectively. Dice similarity coefficient of 40 volumns from two

segmentors was 0.796 ± 0.071. The consistency analysis manifested

940 (89.9%) features in ITV and 964 (92.2%) features in PTV with

ICC> 0.8. The features above were used for further analysis.
3.3 Radiomics model construction
and evaluation

After removing features with poor repeatability, the Spearman

correlation coefficient was calculated, and redundant features with

a correlation > 0.8 were removed. Features were ranked by

minimum redundancy maximum relevance (mRMR), and the

top 100 non-redundant features were selected. The optimal

features were determined using the least absolute shrinkage and

selection operator (Lasso) method with five-fold cross-validation.

Finally, the five optimal features (original_firstorder_

Med i an , wave l e t -HLL_g l cm_Idmn , o r i g ina l_g l s zm_

SizeZoneNonUniformityNormalized, original_glrlm_LongRun

HighGrayLevelEmphasis , wavelet-LLL_glcm_Maximum

Probability) were extracted from the ITV region. Ten optimal

features(log-sigma-1-0-mm-3D_firstorder_Median, log-sigma-5-

0-mm-3D_glcm_Imc1, log-sigma-5-0-mm-3D_glcm_Difference

Average, wavelet-LHL_firstorder_Median, log-sigma-5-0-mm-

3D_glcm_DifferenceEntropy, wavelet-LLL_firstorder_90Percentile,

wavelet-LHL_firstorder_Mean, log-sigma-3-0-mm-3D_glcm_

Imc1, log-sigma-1-0-mm-3D_glcm_Imc1, log-sigma-5-0-mm-

3D_glrlm_ShortRunHighGrayLevelEmphasis) were extracted

from PTV region. I-RS and P-RS models were constructed based

on the best features screened by ITV and PTV (Figure 3). A

combined radiomics model (IP-RS) was constructed based on

intratumoral and peritumoral signatures. The correlation matrix

of features in IP-RS model were exhibited in Supplementary

Figure 1. The radiomics score (Rad-score) was calculated

according to the weight coefficient of the model. All model

feature weighting coefficients, intraclass correlation coefficient and

the formula for calculating the radiomics score were shown in

Supplementary Table 3. Substantial differences were observed in

Rad-score between PDT and n-PDT groups via waterfall and violin

plots (p < 0.01) (Figure 4). The AUCs of I-RS, P-RS, and IP-RS
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models in internal testing cohort were 0.838 (95% CI, 0.806-0.867),

0.858 (95% CI, 0.828-0.886), 0.906 (95% CI, 0.884-0.926),

respectively. The AUC value of the IP-RS model was higher than

that of the I-RS model. The DeLong test showed that there was no

statistically significant difference between the AUCs of the IP-RS

model and the I-RS model (0.906 vs 0.838, p=0.165). AUCs in the

external testing cohort were 0.893 (95% CI, 0.871-0.913), 0.850

(95% CI, 0.821-0.876), and 0.886 (95% CI, 0.864-0.907),

correspondingly (Table 3). The ROC curves were exhibited in

Supplementary Figure 2.
3.4 Nomogram construction, internal
testing, and external testing

To construct a clinically applicable predictive model, the two

independent predictors of the C-C model were merged with the

combined radiomics model (IP-RS) in internal testing cohort to

construct a nomogram (Figure 5A). The AUCs of the nomogram in

internal testing cohort and external testing cohort were 0.921 (95%

CI, 0.899-0.939) and 0.887 (95% CI, 0.866-0.909), respectively. ROC

curves of the nomogram and other models are displayed in Figure 6.

Specific performance indicators of each model are shown in Table 3.

The Delong test showed that the AUC of the nomogram was

significantly higher than that of the C-C model in both the

internal testing cohort(0.921 vs 0.789, p< 0.05) and external testing

cohort(0.887 vs 0.829, p< 0.05). Although there was no statistically

significant difference in AUC between the nomogram and I-RS

(0.921 vs 0.838, p= 0.085), P-RS(0.921 vs 0.858, p= 0.182) and IP-

RS(0.921 vs 0.906, p= 0.404) models in the internal testing cohort,

the AIC and BIC values (Table 4) of the nomogram were the lowest,

indicating that the nomogram bore the best goodness offit. A smaller

RMSE value denotes that the nomogram has the closest predictions

to the actual scenarios, i.e., the model’s prediction is more accurate

(Table 4). Therefore, combined with AUC, AIC, BIC, and RMSE, the

nomogram showed the best fitting and prediction accuracy. The

Hosmer-Lemeshow test and calibration curve indicated good

calibration ability of the nomogram (Figure 5B). The DCA

(Figures 5C, D) showed that the nomogram and radiomics models

had higher clinical nets benefit than the C-C model.
4 Discussion

In this two-center study, we trained a nomogram using

intratumoral and peritumoral radiomics features combined with

clinical CT semantic features. This nomogram obtained favorable

outcomes in both the internal testing cohort and the independent

external testing cohort, reflecting the model’s excellent predictive

capacity for PDT before surgery. The nomogram presented the

highest AUC and the lowest AIC, BIC, and RMSE in internal testing

cohort. This substantiated that the combined model exhibited

higher predictive power and superior goodness of fit versus the

radiomics or clinical semantic models alone. The high net profit of

the DCA also underpinned the clinical application value of

the nomogram.
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TABLE 1 Baseline characteristics in three cohorts.

Variable

Development
Cohort
(N=254) p value

Internal Testing
Cohort (N=109)

p value

External testing
Cohort (N=117)

p value

PDT
(N=69)

n-PDT
(N=185)

PDT
(N=30)

n-PDT
(N=79)

PDT
(N=31)

n-PDT
(N=86)

Age(year) 61.8±9.4 64.5±9.6 0.046* 64.2±10.9 62.2±10.0 0.366 65.1±9.8 62.7±10.5 0.273

Gender

Male 33 (31.1) 73 (39.5)
0.229

14 (46.7) 59 (74.7)
0.005*

14 (45.2) 57 (66.3)
0.039*

Female 36 (52.2) 112 (60.5) 16 (53.3) 20 (25.3) 17 (54.8) 29 (33.7)

Pulmonary emphysema

No 60 (87.0) 13 (7.0)
0.129

25 (83.3) 77 (97.5)
0.024*

24 (77.4) 82 (95.3)
0.010*

Yes 9 (13.0) 172(93.0) 5 (16.7) 2 (2.5) 7 (22.6) 4 (4.7)

Smoking history

No 45 (65.2) 137 (74.1)
0.165

21 (70.0) 69 (87.3)
0.033*

17 (54.8) 66 (76.7)
0.021*

Yes 24 (34.8) 48 (25.9) 9 (30.0) 10 (12.3) 14 (45.2) 20 (23.3)

Location

Left upper lobe 21 (30.4) 54 (29.2)

0.732

9 (30.0) 22 (27.8)

0.917

6 (19.4) 23 (26.7)

0.945

Left lower lobe 11 (15.9) 27 (14.6) 4 (13.3) 10 (12.7) 6 (19.4) 14 (16.3)

Right upper lobe 22 (31.9) 71 (38.4) 10 (33.3) 21 (26.6) 11 (35.5) 28 (32.6)

Right middle lobe 6 (8.7) 18 (9.7) 3 (10) 10 (12.7) 3 (9.7) 7 (8.1)

Right lower lobe 9 (13.0) 15 (8.1) 4 (13.3) 16 (20.3) 5 (16.1) 14 (16.3)

Density

Part solid nodule 43 (62.3) 180 (97.3)
< 0.001**

15 (50) 76 (96.2)
< 0.001**

14 (45.2) 75 (87.2)
< 0.001**

Solid nodule 26 (37.7) 5 (2.7) 15 (50) 3 (3.8) 17 (54.8) 11 (12.8)

Long diameter
(mm)

23.2±9.2 16.0±6.2 < 0.001** 22.0±8.6 16.5±6.3 0.039* 22.6±9.4 16.1±6.0 < 0.001**

Pleural retraction

No 15 (21.7) 85 (45.9)
< 0.001**

11 (36.7) 37 (46.8)
0.340

9 (29.0) 49 (57.0)
0.008*

Yes 54 (78.3) 100 (54.1) 19 (63.3) 42 (53.2) 22 (71.0) 37 (43.0)

Shape

Round or oval 8 (11.6) 44 (23.8)
0.032*

4 (13.3) 21 (26.6)
0.142

2 (6.5) 30 (34.9)
0.005*

Irregular 61 (88.4) 141 (76.2) 26 (86.7) 58 (73.4) 29 (93.5) 56 (65.1)

Vacuole sign

No 43 (62.3) 115 (62.2)
0.982

16 (53.3) 59 (74.7)
0.032*

29 (93.5) 70 (81.4)
0.188

Yes 26 (37.7) 70 (37.8) 14 (46.7) 20 (25.3) 2 (6.5) 16 (18.6)

Spicule sign

No 8 (11.6) 84 (45.4)
< 0.001**

2 (6.7) 39 (49.4)
< 0.001**

11 (35.5) 43 (50.0)
0.165

Yes 61 (88.4) 101 (54.6) 28 (93.3) 40 (50.6) 20 (64.5) 43 (50.0)

Lobulation sign

No 10 (14.5) 56 (30.3)
0.011*

3 (10.0) 37 (46.8)
0.001**

1 (3.2) 53 (61.6)
< 0.001**

Yes 59 (85.5) 129 (69.7) 27 (90.0) 42 (53.2) 30 (96.8) 33 (38.4)

(Continued)
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Univariate and multivariate analyses of semantic features of

clinical CT revealed that long diameter and density were PDT’s final

independent predictors. This aligns with the general understanding

that poorer tumor differentiation represents stronger invasiveness,

faster growth, and thus larger tumor size, consistent with the results

of many studies (22, 23). Moreover, this underlies the guideline’s

stratification on lung cancer patients’ prognoses (27). Several

confirmatory studies of the novel IASLC grading system found

that pure solid tumors were mostly PDT (12, 28, 29). Fujikawa et al.

(12) reported that density was still an effective predictor of PDT
Frontiers in Oncology 07
after excluding confounders and bias, which agrees with our

findings. Larger solid tumors were defined as PDT, simple

common sense. Accurate screening of PDT is challenging since

doctors often encounter small solid or large subsolid tumors in

clinical scenarios, underpinned by an AUC of 0.789 of the C-C

model in internal testing cohort. Therefore, we focused on exploring

the potential of radiomics to generate better and more generalizable

models by combining clinical information.

The six radiomics features in the final model comprised two

first-order statistical features and four texture features, including
TABLE 1 Continued

Variable

Development
Cohort
(N=254) p value

Internal Testing
Cohort (N=109)

p value

External testing
Cohort (N=117)

p value

PDT
(N=69)

n-PDT
(N=185)

PDT
(N=30)

n-PDT
(N=79)

PDT
(N=31)

n-PDT
(N=86)

Bronchial obstruction

No 19 (27.5) 98 (53.0)
< 0.001**

3 (10.0) 49 (62.0)
< 0.001**

9 (29.0) 47 (54.7)
0.014*

Yes 50 (72.5) 87 (47.0) 27 (90.0) 30 (38.0) 22 (71.0) 39 (45.3)

Air bronchial sign

No 49 (71.0) 119 (64.3)
0.316

25 (83.3) 51 (64.6)
0.057

21 (67.7) 43 (50.0)
0.089

Yes 20 (29.0) 66 (35.7) 5 (16.7) 28 (35.4) 10 (32.3) 43 (50.0)
fro
Data of age and long diameter are represented as mean ± standard deviation; other data are number of patients, with percentage in parentheses; PDT, Poorly Differentiated Tumor; n-PDT, non-
Poorly Differentiated Tumor; *, Significant at p<0.05; **, Significant at p<0.005.
TABLE 3 Prediction performance of the five models in the Internal Testing Cohor and External Testing Cohort.

Model AUC (95%CI) Accuracy Specificity Sensitivity PPV NPV

Internal Testing Cohort

C-C 0.789(0.757-0.822) 0.771 0.875 0.568 0.700 0.797

I-RS 0.838(0.806-0.867) 0.807 0.903 0.622 0.767 0.823

P-RS 0.858(0.828-0.886) 0.826 0.917 0.649 0.800 0.835

IP-RS 0.906(0.884-0.926) 0.826 0.955 0.623 0.900 0.797

Nomogram 0.921(0.899-0.939) 0.853 0.943 0.684 0.867 0.848

External Testing Cohort

C-C 0.829(0.801-0.855) 0.795 0.878 0.600 0.677 0.837

I-RS 0.893(0.871-0.913) 0.855 0.906 0.719 0.742 0.895

P-RS 0.850(0.821-0.876) 0.803 0.944 0.587 0.871 0.779

IP-RS 0.886(0.864-0.907) 0.821 0.922 0.625 0.806 0.826

Nomogram 0.887(0.866-0.909) 0.846 0.914 0.686 0.774 0.872
ntie
PPV, Positive predictive values; NPV, Negative predictive values; AUC, Area under the receiver operating characteristics curve; CI, Confidence interval. I-RS, radiomics signature of the
intratumoral region; P-RS, radiomics signature of the peritumoral region; IP-RS, combined radiomics signature of the intratumoral region and peritumoral region; C-C, clinical CT
semantic signature.
TABLE 2 Multivariate Logistic regression analysis results.

Variable B SE Wald p value OR 95%CI

Long Diameter 0.119 0.025 22.714 < 0.001** 1.126 1.073~1.183

Density 3.603 0.610 34.837 < 0.001** 36.695 11.093~121.383

Constant -4.885 0.645 57.421 < 0.001** 0.008 –
B, beta; SE, standard error; OR, odds ratio; CI, confidence interval; **, Significant at p<0.005.
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two Gray Level Co-occurrence Matrixes (GLCM), one Gray Level

Run Length Matrix (GLRLM), and one Gray Level Size Zone Matrix

(GLSZM). First-order statistical features represent the voxel

intensity distribution within the image area defined by the mask,

which is highly correlated with our model and may denote more

significant tumoral heterogeneity. Yang et al. illustrated that first-

order statistical features were the most substantial predictors of
Frontiers in Oncology 08
tumor serosal invasion (30). Another study also revealed that first-

order statistical features could predict the differentiation degree of

IPA (22). GLCM is the nomogram’s predominant texture,

representing the heterogeneity between images by calculating the

speed and amplitude of the variations of two pixels in different

intervals and directions. PDT is more invasive and contains more

hypoxia-induced necrosis, leading to more significant tumor
B

C D

A

FIGURE 3

The optimal features were obtained using the Least absolute shrinkage and selection operator regression method with 5-fold cross-validation.
(A) vertical dashed line indicates the best model fitted when lambda=0.085, and five optimal features of the intratumoral region; (B) vertical dashed
line indicates the best model fitted when lambda=0.068, and ten optimal features of the peritumoral region; (C) Five optimal features of intratumoral
radiomics model and corresponding weight coefficients (the weight coefficients value of the X-axis represents the importance of the featurs);
(D) Ten optimal features of peritumoral radiomics model and corresponding weight coefficients.
B C

D E F

A

FIGURE 4

Waterfall plots and violin plots of the Rad-score in three cohorts. Waterfall plots of the Rad-score distribution for patients in development cohort
(A), internal testing cohort (B) and external testing cohort (C). Violin plots of the Rad-score between PDT and n-PDT patients in development cohort
(D), internal testing cohort (E) and external testing cohort (F). P-values between with PDT and n-PDT are placed in top of each image (D–F).
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heterogeneity quantified by CT texture analysis (31). Li et al. (23)

reported that texture features like GLCM performed well in

predicting the differentiation degree of IPA, congruous with

our results.

There are few related radiomics studies since the IASLC grading

system has merely been applied in clinical practice for a short time.

Li et al. (23) established radiomics and quantitative semantic

models using low-dose computed tomography (LDCT) to predict

PDT, with AUCs of 0.921 and 0.923 in the training set, respectively.
Frontiers in Oncology 09
Yang et al. (22) devised a nomogram model based on CT-based

radiomics combined with clinical and radiological features to

predict novel IASLC classifications with an AUC of 0.915 in the

development cohort and 0.838 in testing cohort. Significant AUC

reduction indicates an unstable model with potential overfitting.

Nevertheless, their study has an apparent shortcoming: omitting the

predictive effect of peritumoral information or external testing of

independent data cohorts. This raises questions about the

generalization ability of their models. Since Lambin et al.
B

C D

A

FIGURE 5

Composition, calibration and clinical applicability of the nomogram. (A) The individualized nomogram was generated by merging Rad-score and two
traditional CT semantic features. (B) Calibration curves indicated good calibration ability of the nomogram in internal testing cohort and external
testing cohort. Hosmer-Lemeshow test was applied in two cohorts (p= 0.516 in internal testing cohort; p=0.193 in external testing cohort).
(C, D) DCAs of the prediction models in internal testing cohort (C) and external testing cohort (D). The Y-axis represents the net benefit, and the x-
axis shows the threshold probability. The DCA indicate that the nomogram and IP-RS model provide higher net benefits than C-C model in
predicting the poorly differentiated invasive adenocarcinoma in the majority of areas. IP-RS, combined radiomics signatures of the intratumoral
region and peritumoral region; C-C, clinical CT semantic signature; DCA, decision curve analysis.
BA

FIGURE 6

ROC curves of five models in two cohorts. (A) ROC curves of five models in internal testing cohort; (B) ROC curves of five models in external testing
cohort. ROC, receiver operating characteristic; I-RS, radiomics signature of the intratumoral region; P-RS, radiomics signature of the peritumoral
region; IP-RS, combined radiomics signature of the intratumoral region and peritumoral region; C-C, clinical CT semantic signature.
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proposed the concept of radiomics (32), model generalization has

been a focus for research improvement. Recently, multi-center data

and the introduction of independent external testing cohorts have

been emphasized, which can fix models’ poor generalization

capability to some extent (33). Our nomogram in the internal

testing cohort exhibited excellent performance(AUC = 0.921),

similar to the results reported in the two aforementioned articles.

The nomogram in the independent external testing cohort still

achieved an AUC of 0.887, indicating that our model performs well

and possesses good generalization ability. Additionally, the DeLong

test revealed that the predictive performance of nomogram were

significantly better than the C-C model in internal testing cohort

and external testing cohort (both p < 0.05). Thus, the nomogram

can assist thoracic surgeons to better judge the differentiation

degree of IPA before operation, compared to traditional clinical

semantic model.

In recent years, increasing attention has been directed to the

peritumoral microenvironment (18, 34). Shimada et al. (17) found

that peritumoral lymphovascular invasion could better reflect

hematogenous metastasis as an essential predictor of prognosis

and distant metastasis. Beig et al. (23)demonstrated that massive

tumor-infiltrating lymphocytes and tumor-associated macrophages

resided around IPA, predominantly showing smooth texture on CT

images. Additionally, he pointed out that texture features within 5

mm around the tumor performed best in predicting benign and

malignant solid pulmonary nodules. Our definition of peritumoral

area is mainly based on their results, consistent withWu et al.’s

definition (35). In internal testing cohort, we integrated peritumoral

radiomic features into the I-RS model to construct the IP-RS model,

which increased the AUC value from 0.838 to 0.906. However,

DeLong’s test showed no statistically significant difference between

the two (p = 0.165). We speculate that there may be several reasons

for these findings: Firstly, the heterogeneity of peritumoral radiomic

features between different differentiations of IPAs may not be as

distinct as that observed between benign and malignant tumors.

Secondly, our definition of a peritumoral range of 5mm may be

insufficient, as varying peritumoral ranges could potentially

influence the model’s performance (19, 36). Lastly, our

peritumoral dilation is based on 2D, and it may lead to the loss of

valuable information compared to 3D dilation. In addition, we

noted that the AUCs for the IP-RS model in the internal testing

cohort and external testing cohort were 0.858 and 0.850,
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respectively, with the values being nearly identical. Khorrami

et al. (37) showed that peritumoral radiomic features were less

affected by the scanner parameters compared to intratumoral

features. They suggested that peritumoral features were more

stable than intratumoral features in differentiating IPA from

granuloma. Therefore, the additive effect of peritumoral radiomics

on intratumoral radiomics may be limited, but peritumoral

radiomics has the potential to enhance the stability of the

combined model. The nomogram incorporating peritumoral

radiomic features did not show a significant decrease in AUC in

an independent external testing cohort. This indirectly reflects this

aspect, which greatly contributes to improving the model’s

generalization capability.

There are several shortcomings in this study. To begin with, as a

retrospective study, this study bears inevitable potential selection

bias. Prospective, high-quality, multi-center studies are required to

corroborate this nomogram and promote clinical application.

Second, CT image acquisition was not uniform for patients from

the two centers. We lacked the application of methods like ComBat

to harmonize the dual-center data. We will harmonize the multi-

center data in subsequent research, contributing to the reliability

and reproducibility of experimental results. However, all images are

pre-processed, e.g., resampling and normalization before feature

extraction. The nomogram worked well in independent external

testing cohort, indicating that our model has good generalization

ability. Last, the peritumoral range was only defined as 5 mm, which

could be one reason why peritumoral radiomics didn’t show

significantly additive effect to intratumoral radiomics. In the

future, we will delve into varying ranges to characterize

peritumoral data to better assess their role in predicting the

differentiation degree of IPA.
5 Conclusions

We substantiated that the nomogram based on intratumoral

and peritumoral radiomics features and clinical CT semantic

features could effectively determine the differentiation degree of

IPA manifesting as subsolid or solid lesions. The nomogram can

serve as a non-invasive, repeatable personalized tool for

preoperative assessment of IPA differentiation degree.
TABLE 4 Performance and goodness-of-fit evaluation of models.

models AIC BIC RMSE DeLong Test (compared with Nomogram)

C-C -122.984 -117.601 0.559 0.028*

I-RS -170.433 -165.051 0.449 0.085

P-RS -156.499 -151.116 0.479 0.182

IP-RS -179.641 -174.236 0.432 0.404

Nomogram -180.822 -175.439 0.421 /
AIC, Akaike information criterion; BIC, Bayesian information criterion; RMSE, Root mean square error; *, Significant at p<0.05.
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