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The challenges facing tree orchard production in the coming years will be largely

driven by changes in the climate affecting the sustainability of farming practices in

specific geographical regions. Identifying key traits that enable tree crops to

modify their growth to varying environmental conditions and taking advantage of

new crop improvement opportunities and technologies will ensure the tree crop

industry remains viable and profitable into the future. In this review article we 1)

outline climate and sustainability challenges relevant to horticultural tree crop

industries, 2) describe key tree crop traits targeted for improvement in

agroecosystem productivity and resilience to environmental change, and 3)

discuss existing and emerging genomic technologies that provide

opportunities for industries to future proof the next generation of orchards.
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Introduction

Climate change is one of the major challenges of the 21st century. The

Intergovernmental Panel on Climate Change (IPCC, 2023) predicts an increase in

average global temperatures between 1.4 and 4.4°C by the end of this century. Increased

global temperatures are predicted to have vast flow-on effects on global climate and local

weather systems leading to more extreme and unpredictable temperatures, as well as

increased extreme rainfall, drought, storm and fire events (IPCC, 2023). Many of these
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impacts are already being experienced around the world, with

NASA declaring July 2023 the hottest month on record fuelling

heat waves, wildfires, and floods across the Northern Hemisphere.

These changes will affect every tree crop industry and region to

varying degrees. Temperate tree crops are at particular risk due to

their high reliance on seasonal variations in temperature for

processes such as bud dormancy and flowering (Campoy et al.,

2011), and pollen development and fruit set (Irenaeus and Mitra,

2014), which all in turn impact yield. Subtropical tree crops are also

not immune to the effects of climate change with many reliant on

cold winter temperatures to induce flowering (Wilkie et al., 2008),

and temperature also significantly impacting pollen and fruit

development (Dinesh and Reddy, 2012).

Another challenge facing humanity this century is increasing

population size and demand for food. Taagepera and Nemčok

(2023) predict the global population to increase to a peak of 11.2

± 1.5 billion by the end of this century. Population increases during

the 20th century were offset by the Green Revolution, a doubling in

production of high-yielding varieties of several cereal crops (Khush,

1999). However, population growth since the 1990s has outstripped

the rate of growth in food production requiring new strategies to

increase cereal crop yield. Tree crops will require a more substantial

increase in yield and reliability of yield as the Green Revolution

gains in cereal crop productivity have not been implemented in tree

crops. Adding to this challenge, the effects of climate change on

yield are also uncertain, with changes in temperature, rainfall

patterns and CO2 levels likely to significantly influence crop

productivity (Aydinalp and Cresser, 2008).

One innovative change that is being implemented in some tree

crop industries, e.g. olives (Olea europaea) in Europe (Lo Bianco

et al., 2021), is the transition to higher density orchard plantings.

This transition requires the use of small trees with low shoot vigour

and, ideally, precocious flowering (i.e., flowering at a younger age).

This is often achieved through orchard management but can also be

achieved using varieties and/or rootstocks that confer these traits.

However, some tree crops like avocado (Persea americana) and

macadamia (Macadamia integrifolia, Macadamia tetraphylla, and

hybrids) lack available varieties or rootstocks with these traits, and

many horticultural industries have not made substantive use of

available varieties and/or rootstocks. Planting at higher densities

gives the potential for higher yield per land as seen in olive orchards

(Sobreiro et al., 2023), however, this may not be applicable to all tree

crops (Haque and Sakimin, 2022). The benefits of higher density

plantings are increased if trees flower and produce high yield at a

younger age as this improves the return on investment and allows

for faster turn-around of plantings and quicker introduction of

newer, improved varieties. Another advantage of higher density

plantings is that they are more amenable to implementation of

automation/robotics for crop management and harvest. This is

especially pertinent in countries with high wages and labour

scarcity (Rutledge and Taylor, 2023) that often cannot compete

on a cost level with countries with much lower wages. The use of

automation can dramatically reduce the ongoing costs associated

with crop management and harvest to make these industries remain

competitive on an international standing.
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Although responding to these challenges will require a multi-

pronged approach, it is imperative that genomic technologies are

harnessed to complement traditional breeding efforts to enhance

and accelerate the process. The advent of low-cost genome

sequencing and associated increase in high quality genome

assemblies and ability to re-sequence large-scale germplasm and

hybrid populations (Okemo et al., 2022) has dramatically advanced

the implementation of genomic approaches into breeding

programs. In particular, high-throughput sequencing enables the

use of genome-wide association studies (GWAS) and marker-

assisted selection (MAS) for high-throughput assessment of

breeding populations to identify preferred parental crosses and

filter progeny for traits of interest. However, as many tree crops are

highly heterozygous outcrossers (Miller and Gross, 2011),

traditional crossing and selection remains challenging as many

desirable traits can be lost during crossing. The ability to

genetically manipulate crops for trait improvement using newer

gene editing technologies such as CRISPR holds the promise of

genetically engineering traits without the need for genetically

modified (GM) cultivars (Hu and Gao, 2023). These technologies

allow for the genetic manipulation of individual genes while

maintaining other desirable traits, although, as we will discuss

later, many challenges remain. And while these approaches have

been extensively used in many cereal crops, their use in most tree

crops has been relatively unexplored and underutilised to date.

In this review we describe several key traits and genetic targets

(Figure 1) that are a focus for genetic improvement in tree crops in

response to the challenges raised above. First, we explore the

intensification of crop density through the modification of

different aspects of tree architecture, including branching number,

branching angle, and tree height. Next, we discuss bud dormancy in

deciduous trees and how changes in temperature due to climate

change may affect this important biological process. Following this

we consider early, or precocious, flowering to accelerate tree crop

breeding. And finally, we explore alternate bearing, a phenomenon

experienced in many tree crops that influences yield predictability.

While these traits are key targets for genetic improvement, there are

many other important traits that are being targeted for

improvement by breeding programs (see examples in Figure 2).

In this review we also discuss existing and emerging genomic

technologies that can be utilised for accelerating genetic

improvement in tree crops. These rapid and precise genome-

enabled technologies first require an understanding of the genetic

basis of important traits in tree crops to inform marker assisted and

genomic selection models or genetic manipulation of the tree crops

through transgenics or gene editing.
Modification of crop density and
tree architecture

Due to their extended lifespan, trees are in constant need of

modifying their growth in response to the surrounding

environment (Cooke et al., 2012). Tree architecture is an excellent

example of this developmental plasticity, which is maintained via
fr
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regulation of axillary bud dormancy (Wang M. et al., 2019).

Following establishment, axillary buds are maintained in a

dormant state through a combination of various environmental

and endogenous signals acting to ensure dormancy breaks at an

appropriate time resulting in bud outgrowth and, if appropriate

signals persist, in shoot branch formation (Wang M. et al., 2019).

This high reliance of plant plasticity on environmental cues is

increasingly becoming an issue in the face of rapidly changing,

unreliable climatic conditions. Research focused on deciphering the

genetic and molecular components/mechanisms regulating traits

like shoot architecture and flowering is therefore critical to our

ability to mitigate the impact of climate change on tree growth and

productivity. Here, we will outline current knowledge of several key

genetic components in tree crops regulating three specific shoot

architecture traits: branching number, branching angle, and plant

height. For horticultural crops, trees with shorter or less branches,

and semi-dwarf phenotypes may be the ideal architecture allowing

for higher planting density and reduced mechanical intervention

like pruning (Scorza, 2005; Hollender and Dardick, 2015).

Shoot architecture has been a key target of domestication in

many crops, with reduced branch number being an important

component of the ideal shoot architecture (Figure 1A). In crops

such as maize (Zea mays spp. mays), a decrease in tiller number
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correlates with yield increases (Doebley et al., 1997). The wild

ancestor of maize (Zea mays spp. parviglumis) has an increased

axillary branching phenotype (Doebley et al., 1995) and the gene

controlling this trait was identified by Doebley et al. (1997) as

TEOSINTE BRANCHED1 (TB1) which belongs to the TEOSINTE

BRANCHED1, CYCLOIDEA, PROLIFERATING CELL FACTOR

(TCP) family of transcription factors. Since then, orthologs have

been identified and studied in fruit trees such as peach (Prunus

persica) where overexpression of PpTCP18, a TB1/BRANCHED1

(BRC1) ortholog, in Arabidopsis thaliana caused a decrease in

rosette branch numbers (Wang X. et al., 2023). Interestingly, in

Carrizo citrange (Citrus sinensis x Poncirus trifoliata) the BRC1

ortholog THORN IDENTITY1 (TI1) acts partially redundantly

with the BRC2 ortholog TI2 to control shoot branching alongside

thorn identity (Zhang et al., 2020).

Shoot branch angle is another important aspect affecting overall

shoot architecture which can lead to trees having an upright and

erect architecture, termed pillar or broomy, or a spread apart

architecture, termed weeping (Figure 1B). LAZY1 acts as a

negative regulator of the polar auxin transport (PAT) to decrease

the response to gravity, and loss-of-function mutations in rice

promote a branching phenotype that is more spread apart (Li

et al., 2007; Yoshihara and Iino, 2007). In apple (Malus
B
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FIGURE 1

Potential gene targets controlling agronomically important traits such as (A) branch number, (B) branch angle, (C) tree height, (D) bud dormancy,
(E) precocious flowering, and (F) regular bearing in tree crops. Species (grey box) with evidence of gene function or gene expression are indicated
after each gene name.
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domestica), the MdLAZY1A-W allele has a single nucleotide

substitution that changes the amino acid from leucine to proline

resulting in a dominant weeping phenotype (Dougherty et al.,

2023). In contrast, an in-frame stop codon mutation in LAZY1 in

silver birch (Betula pendula) leads to a recessive weeping phenotype

(Salojärvi et al., 2017). LAZY1 belongs to the IGT gene family

alongside another regulator of shoot branch angle, TILLER ANGLE

CONTROL1 (TAC1). Mutations in rice (Oryza sativa) OsTAC1

result in a more compact phenotype (Yu et al., 2007; Jiang et al.,

2012). The gene has since been identified in other species including

the fruit trees peach (Dardick et al., 2013), plum (Prunus domestica;

Hollender et al., 2018b), apple (Li et al., 2022), and sweet orange

(Citrus sinensis; Dutt et al., 2022). In peach, the likely cause of the

pillar phenotype in the ‘Italian pillar’ cultivar is an insertion causing

a premature stop codon in PpeTAC1 (Dardick et al., 2013).

Overexpression of PpeTAC1 in plum increased the branch angle,

while RNA interference (RNAi) of PdoTAC1 in plum reduced the

branch angle leading to a more upright architecture (Hollender

et al., 2018b). Similarly, sweet orange CsTAC1 knockout transgenic

lines displayed a more compact branch angle, and this was

associated with low auxin levels and upregulation of CsBRC1

expression, following a similar expression pattern to Arabidopsis

(Dutt et al., 2022). Another regulator of branching orientation

identified in peach is the WEEP gene, encoding a sterile alpha

motif (SAM) domain protein. The shoots on WEEP trees initially

grow upwards but, after reaching a certain height (20 cm), start

exhibiting a weeping phenotype (Hollender et al., 2018a). Grafting

of buds fromWEEP trees to wild-type rootstocks did not rescue the

weeping phenotype of the scion suggesting that there is no

requirement for a mobile or systemic signal for the weeping
Frontiers in Plant Science 04
phenotype. Transcriptomic analysis showed differential expression

of auxin-related genes like AUXIN/INDOLE-3-ACETIC ACID

(Aux/IAAs) and AUXIN RESPONSE FACTORs (ARFs) indicating

a role for auxin in the gravitropic response (Hollender et al., 2018a).

RNAi of the WEEP gene in plum resulted in a weeping phenotype

(Hollender et al., 2018a), showing conserved function of WEEP in a

closely related tree species.

Plant height is another key trait that influences overall shoot

architecture (Figure 1C). In the 1960s, a specific type of architecture

with short internodes and fewer axillary branches was observed in

the mutant apple McIntosh Wijcik (Fisher, 1969). Further research

identified a dominant 2-oxoglutarate-dependent dioxygenase

(DOX) gene, Columnar (Co) or MdDOX-Co, as the likely

candidate responsible for the mutant phenotype (Lapins, 1976;

Okada et al., 2016). Overexpression of MdDOX-Co in tobacco

(Nicotiana tabacum) resulted in a dwarfed phenotype with a

shorter main stem and internodes (Okada et al., 2020). This was

associated with decreased endogenous bioactive gibberellin (GA)

levels and exogenous application of GA was able to rescue the

dwarfed phenotype (Okada et al., 2020). Overexpressing MdDOX-

Co in Arabidopsis led to the discovery that it regulates 12-

hydroxylation of GA12, a precursor in the GA biosynthesis

pathway, to reduce active GA levels resulting in the dwarf

phenotype (Watanabe et al., 2021). Similar to the McIntosh

Wijcik mutant, the peach dw mutants have a dwarfing phenotype

associated with short internodes (Scorza, 1984). Mapping analysis

identified a GA receptor gene GIBBERELLIN INSENSITIVE

DWARF1c (GID1c) as the likely cause of the dw trait, and RNAi-

induced silencing of PpeGID1c in plum led to varying degrees of

dwarfing (Hollender et al., 2016). Rice breeding has for many years
B C
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FIGURE 2

Pictures of several traits targeted for improvement in various tree crop breeding programs. (A) Nutshell seal in almond; The nut on the left
demonstrates a variety with poor nutshell seal which increases risk of insect damage and diseases, while the nut on the right demonstrates a variety
with good nutshell seal. (B) Fruit blush in mango; Consumer preference for fruit blush differs between countries and is mainly dependent on the
main varieties available. In Australia a consistent red fruit blush (top) is preferred over inconsistent or no fruit blush (bottom). (C) Fruit characteristics
in apple; fruit characteristics such as fruit peel colour and fruit size are also dependent on consumer preference. (D) Shoot architecture in mango;
The tree on the right is a conventional mango tree with high vigour, while the tree on the left has low vigour with a small shoot architecture
preferable for high density plantings. (E) Flowering time in almond; Almond varieties can be early (left), mid (middle) or late (right) flowering
depending on their chill requirements during endodormancy, with ideal timing of flowering dependent on location and local climate.
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employed the use of the semidwarf (sd-1) allele, caused by a

defective GA biosynthetic gene GIBBERELLIN 20-OXIDASE

(GA20ox) to decrease overall size while increasing yield

(Spielmeyer et al., 2002). Multiple GA biosynthesis genes were

identified as differentially expressed between the ‘Williams’ banana

(Musa acuminata) 8818-1 wild-type cultivar and its dwarf

counterpart (Chen et al., 2016), and there are already cases of

successfully using GA20ox gene(s) as a target to produce dwarf fruit

varieties, such as via suppression of MpGA20ox1 in apple (Bulley

et al., 2005) and via CRISPR-based silencing of five MaGA20ox2

genes in banana (Shao et al., 2020). Ethylene is another plant

hormone that has been associated with plant height regulation.

Overexpression of the lemon (Citrus l imon) gene 1-

AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE 4

(CiACS4), involved in the ethylene biosynthesis pathway, in

tobacco and lemon resulted in dwarf plants (Chu et al., 2023).

CiACS4 was found to be directly upregulated by an ethylene

response factor, CiERF023, and the CiACS4 protein also

interacted with another ethylene response factor, CiERF3, to

directly regulate the GA biosynthesis genes CiGa20ox1/2.

Here, we have discussed three main routes to shoot architecture

manipulation: shoot branching numbers, branching angle, and/or

overall plant height. The genetic regulation of these traits shows

high levels of conservation between divergent plant species, thus

providing several potential targets for improving architecture in

other tree crops. Efforts to implement breeding and genomics-

enabled approaches to alter these traits will provide significant

inroads to achieving ideal tree architecture with maximised yield.
Regulation of bud dormancy in
deciduous trees

Deciduous trees that grow in temperate regions experience

fluctuating temperature and daylength due to annual seasonal

changes and have evolved to adapt to these environmental

conditions by modulating their annual cycle of active growth and

growth cessation. In deciduous trees, both terminal and axillary

buds (whether vegetative or reproductive) temporarily stop visible

growth during winter and only resume growth and flowering when

the season is favourable (Singh et al., 2017). Growth cessation, bud

set, cold acclimatisation and establishment of bud dormancy occur

in sequential order with some overlap (Singh et al., 2017) creating

difficulty not only in delineating where growth cessation ends and

dormancy starts, but also in differentiating phenotypes and genetic

mechanisms that are associated with these processes. In the state of

deepest dormancy commonly referred to as endodormancy

(Figure 1D; Lang et al., 1985), growth is repressed and cannot be

initiated by growth-promoting conditions until the buds

accumulate a certain number of hours of cold temperature known

as the chilling requirement. Although this is a gradual process

(Cooke et al., 2012), the transition to the ability of the plant to

resume growth in permissive conditions is often referred to as

ecodormancy (Lang et al., 1985). Release from dormancy is

followed by budbreak, primarily driven by accumulation of heat

(Alburquerque et al., 2008). Thus, dormancy is an important
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physiological and adaptive process that helps plant buds survive

harsh winter temperatures and is an important determinant of yield

in deciduous tree crops.

Chilling and heat requirements are specific to the plant species

and genotype, and reflect the long-term adaptation to specific

growing conditions in their native or cultivated regions

(Luedeling, 2012). For example, the specific phenology of the

almond (Prunus dulcis) cultivar ‘Nonpareil’ grown in South

Australia is depicted in Figure 3. Delayed budbreak and low

yields arising as a consequence of reduced winter chilling in the

warming climate are posing a global threat to agriculture and food

security (Luedeling, 2012; Atkinson et al., 2013). For this reason,

tree phenology has been a subject of extensive research, with

significant progress made in understanding the environmental,

physiological, genetic, epigenetic and hormonal regulation of

dormancy (Lloret et al., 2017; Beauvieux et al., 2018; Liu and

Sherif, 2019; Fadón et al., 2020; Pan et al., 2021; Yamane et al.,

2021; Yang Q. et al., 2021; Nilsson, 2022). Not only do we need in-

depth understanding of the molecular mechanisms regulating

dormancy, but also taking advantage of next generation molecular

techniques and translating these advancements to the orchard is

crucial for plant biologists to develop new and improved cultivars

better suited to the new climate dynamics.

In Rosaceous plants like almond, peach, plum, pear (Pyrus spp.)

and apple, DORMANCY ASSOCIATED MADS-BOX (DAMs)

transcription factors are central regulators of bud dormancy

during winter chilling (Figure 1D). DAMs were first identified in

a natural mutant peach cultivar evergrowing, which fails to enter

dormancy during winter (Bielenberg et al., 2008). Sequencing

revealed six genes that were either partially or fully deleted in the

mutant compared to wild-type peach and were termed as DAMs

(Bielenberg et al., 2008). Various studies in apple (Wu et al., 2017),

Japanese pear (Pyrus pyrifolia; Saito et al., 2013; Niu et al., 2016;

Tuan et al., 2017) and Japanese apricot (Prunus mume; Yamane

et al., 2019) have shown that overexpressing DAMs prolongs

dormancy in these trees, and silencing or mutagenesis prevents

dormancy in hybrid aspen (Populus tremula x P. tremuloides; Singh

et al., 2019) and apple (Moser et al., 2020; Wu et al., 2021). A recent

study by Falavigna et al. (2021) explored the gene regulatory

networks controlled by DAMs during the dormancy cycle in

apple in response to environmental cues and hormonal signalling

pathways. Transcriptomic studies in various other species including

WT-717 poplar hybrid, Japanese pear and raspberry (Rubus idaeus)

show that DAMs, as well as important genes involved in abscisic

acid (ABA) and GA synthesis and catabolism differentially

accumulate in buds transitioning from growth cessation through

the different stages of dormancy to growth resumption in spring

(Mazzitelli et al., 2007; Ruttink et al., 2007; Niu et al., 2016). ABA

has been shown to control dormancy by inhibiting genes involved

in cell proliferation and growth, and activating catabolism genes of

other hormones such as GAs (Yang Q. et al., 2023). However, the

exact signalling cascades by which DAMs trigger ABA and GA

pathways in response to environment are still obscure.

While DAMs play an important, conserved role in regulating

bud dormancy in many temperate crops, other genes are also likely

to play an important role in this process. For example, in apple the
frontiersin.org
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major quantitative trait locus (QTL) controlling bud dormancy

does not contain any DAM genes suggesting other gene(s) are

regulating bud dormancy in apple (Allard et al., 2016). The C-

REPEAT BINDING FACTOR1 (PpCBF1) gene has been shown to

play a role in bud dormancy when overexpressed in apple

(Wisniewski et al., 2015). While CBF and other genes likely play a

role in bud dormancy, the DAMs are clearly critical regulators of

the onset and release of bud dormancy in Rosaceae species. Delving

deeper into the downstream targets regulated by DAMs can reveal

new targets towards modifying bud dormancy according to the

geographical climates of orchard production.
Promoting earlier
flowering (Precocity)

A critical developmental time in the life cycle of a tree is the

vegetative to reproductive phase change, during which the tree attains

the ability to flower and produce seeds. When compared to an annual

plant, which can flower, produce seeds, and complete its life cycle

within one year, a woody perennial tree will often not reach

reproductive maturity for several years or even decades (Hackett,
Frontiers in Plant Science 06
1985). Following the first onset of flowering, trees flower annually in

response to environmental signals but commit only some of the

meristems to flowering, thereby maintaining the polycarpic growth

habit (Amasino, 2009). The delayed maturity, long life span, and

polycarpic growth of trees require a complex regulatory network to

regulate the timing of developmental transitions and synchronise

environmental signals with phenological events to ensure survival

and successful reproduction (Brunner et al., 2017). While flowering

gene homologs from woody perennials often show a conserved role in

regulation of flowering in model annuals such as Arabidopsis and

tobacco, functional studies in trees reveal shared and distinct

functional aspects, highlighting the diverse roles of paralogs (Hsu

et al., 2011; Sheng et al., 2022) and the pleiotropic effects of flowering

genes on growth (André et al., 2022; Sheng et al., 2023), organ identity

(Zhang et al., 2021), and phenology in trees (Ding and Nilsson, 2016).

Therefore, targeting specific genes to reduce the years to reproduction

in trees is a complex task that depends on the species in question.

However, the types of genes that could be targeted to accelerate

reproductive maturation are those regulating flowering time and

floral meristem identity (Figure 1E).

Members of the phosphatidylethanolamine–binding protein

(PEBP) family are crucial for floral transition. The divergence of
FIGURE 3

Phenology for the almond (Prunus dulcis) cultivar ‘Nonpareil’ grown in South Australia. The transition to flowering of new buds formed takes place in
September 30-40 days after flowering. Buds are very small at this stage; however, the green, scale-like structures are visible at the nodes. The bud
grows throughout summer. In the latter half of summer, buds are completely covered by layers of dark-brown scales. During the end of April and
beginning of May, all almond leaves senesce, which signals the start of endodormancy. Buds accumulate chilling during May, June, and July. Once
the chilling is complete, the bud enters ecodormancy. Ecodormant buds swell after some heat accumulation, then grow to develop flowers at the
beginning of August. The fertilised ovaries grow throughout spring and summer to develop into fruit nuts. Once nut growth is complete, the hull
starts to split in January. In February, the almond shell starts to desiccate, and the hull split widens indicating that the nuts are ready for harvest. The
entire process from bud formation to harvest takes about 1.5 years; therefore, between September and February, almond trees have young buds
from the current season and developing nuts from previous seasons’ buds.
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PEBP genes into FLOWERING LOCUS T (FT) (predominantly

activators of flowering) and TERMINAL FLOWER1 (TFL1)/

CENTRORADIALIS (CEN) (predominantly repressors of

flowering) (Wickland and Hanzawa, 2015) subgroups in

angiosperms was critical for the reproductive success of flowering

plants (Shalit et al., 2009; Karlgren et al., 2011). Further divergence

through gene duplication events, followed by neo- and sub-

functionalisation, gave rise to FT-like regulators implicated to

have broader functions in plant development and adaptation (Pin

and Nilsson, 2012). It is important to note that the specific functions

and regulatory mechanisms of FT in perennial fruit trees can vary

between different species and cultivars within the same species, but

FT has generally maintained its role as an inducer of flowering.

Early flowering can be induced in Arabidopsis by overexpressing FT

orthologs from many diverse tree crops such as avocado (Ziv et al.,

2014), mango (Mangifera indica; Fan et al., 2020), apple (Kotoda

et al., 2010), kiwifruit (Actinidia chinensis; Voogd et al., 2017), and

litchi (Litchi chinensis; Ding et al., 2015); while constitutive ectopic

expression of FT promotes early flowering in tree crops such as

apple (Kotoda et al., 2010), trifoliate orange (Poncirus trifoliata;

Endo et al., 2005), and kiwifruit (Voogd et al., 2017). However, in

some instances, overexpression of FT causes in vitro and abnormal

flowering such as that observed in apple (Kotoda et al., 2010) and

kiwifruit (Voogd et al., 2017; Moss et al., 2018). More recently, it

was shown that FT chimeric proteins induce floral precocity

without detrimental effects in citrus (Sinn et al., 2021) and

kiwifruit (Herath et al., 2023) species, suggesting that this

approach may be universally applicable for woody perennial crops.

The concept of grafting on rootstocks engineered to

overproduce FT to accelerate flowering of the scion has been

explored as means of flowering control in horticultural and

agricultural practices. However, the movement of FT and its

ability to promote flowering in trees is still under debate (Putterill

and Varkonyi-Gasic, 2016), with reports of movement across the

graft union without precocity observed in juvenile apple, trifoliate

orange, hybrid aspen or WT-717 poplar hybrid scions (Zhang et al.,

2010; Wenzel et al., 2013; Freiman et al., 2015; Miskolczi et al., 2019;

Wu et al., 2022), while precocious flowering was observed in

Carrizo citrange (Soares et al., 2020) and Jatropha curcas scions

(Ye et al., 2014). In various Jatropha spp., the distance between the

graft union and bud is important for floral induction and increasing

this distance can lead to a lower frequency of flowering (Tang et al.,

2022). Therefore, grafting approaches may be dependent on many

variables including the plant species, plant/scion size, as well as the

FT gene and its regulatory promoter.

Plant viral vectors have also been used to either express FT for

virus-induced flowering or silence TFL1 via virus-induced gene

silencing (VIGS), and these approaches have induced early

flowering in apple, Japanese pear, European pear (Pyrus

communis), and Vitis spp. (Sasaki et al., 2011; Yamagishi et al.,

2014; Velázquez et al., 2016; Yamagishi et al., 2016; Maeda et al.,

2020). RNA silencing of TFL1/CEN has also induced early flowering

in apple (Kotoda et al., 2006), WT-717 poplar hybrid (Mohamed

et al., 2010) and European pear (Freiman et al., 2012). Recently,

CRISPR/Cas9-mediated mutagenesis of one or two CEN genes

induced fast flowering in several kiwifruit species (Varkonyi‐Gasic
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et al., 2019; Varkonyi-Gasic et al., 2021; Herath et al., 2023) and

editing of TFL1 induced early flowering in apple and European pear

(Charrier et al., 2019). However, editing of a blueberry (Vaccinium

corymbosum) CEN gene did not result in precocious flowering

(Omori et al., 2021), suggesting that some TFL1/CEN genes

perform different roles. Indeed, mutagenesis of a kiwifruit

BROTHER OF FT AND TFL1 (BFT) prevented the establishment

of dormancy without affecting flowering (Herath et al., 2022), and

in Carrizo citrange loss of CsCEN resulted in the conversion of

axillary meristems to thorns, while ectopic CsCEN expression

converted thorns to axillary meristems (Zhang et al., 2021).

Floral meristem identity genes perform as key outputs of FT-

mediated floral transition or FT-independent flowering pathways.

They include MADS-box proteins such as APETALA1 (AP1)

and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1

(SOC1), necessary to initiate and maintain reproductive

development, and LEAFY (LFY) acting as a pioneer transcription

factor reprogramming vegetative meristematic cells into an

inflorescence (Jin et al., 2021; Lai et al., 2021). LFY homologs from

trees, including peach, litchi and mango, can induce flowering when

overexpressed in annual models (An et al., 2012; Ding et al., 2018;

Wang Y. et al., 2022). Ectopic overexpression of LFY also promoted

flowering in Carrizo citrange (Peña et al., 2001), yet there were some

inconsistencies in floral induction between various Populus hybrids

that displayed altered flower development as well as sexual

differentiation (Weigel and Nilsson, 1995; Rottmann et al., 2000).

MADS-box genes have been important targets for selection during

crop domestication and improvement as they play pivotal roles in

every aspect of plant reproductive development, controlling flowering

time, inflorescence architecture, determination offloral meristem and

floral organ identity, and seed development (Schilling et al., 2018).

The ability of AP1 homologs to induce flowering in a range of woody

perennials, e.g. Carrizo citrange, silver birch and apple (Peña et al.,

2001; Elo et al., 2007; Flachowsky et al., 2007), has been adopted for

rapid cycle breeding approaches in apple and European pear

(Flachowsky et al., 2011; Tomes et al., 2023). However, functional

studies in hybrid aspen revealed that, like FT, homologs of MADS-

box genes controlling the regulation of flowering time in annual

plants have a role in control of vegetative phenology in trees (Azeez

et al., 2014; Ding and Nilsson, 2016).

This section has highlighted several key genes and gene families

that offer valuable tools for shaping and improving developmental

and reproductive traits in crops. Their manipulation through

targeted breeding approaches can contribute to the accelerated

development of new crop varieties with enhanced characteristics

(as demonstrated in Figure 4), ultimately benefiting horticultural

food production.
Managing alternate bearing for more
consistent yields

Alternate bearing, also known as biennial bearing, is a

significant issue faced by the horticultural industry and has been

reported to affect mango, cranberry (Vaccinium macrocarpon),

avocado, olive, apple, European pear, plum, apricot (Prunus
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armeniaca), coffee (Coffea arabica), Citrus spp., litchi and nut

producing trees (Monselise and Goldschmidt, 1982). Alternate

bearing is initiated by an abnormally heavy fruit load one year,

decreasing the ability of the tree to undergo floral initiation and

resulting in a light fruit load the following season. This pattern of

alternating high then low crop production years can differ in

intensity between cultivars within a species, and can also be

strongly influenced by environmental factors (Monselise and

Goldschmidt, 1982). These inconsistent patterns of bearing and

yield have major implications for growers and for responding to the

need for reliable food sources into the future.

Studies have demonstrated that fruit load affects flowering the

following season by repressing the expression of genes involved in

floral initiation (Figure 1F). FT, AP1 and LFY are shown to be

highly expressed in the absence of fruit and have minimal to no

expression in the presence of a heavy crop load in avocado (Ziv

et al., 2014), mango (Nakagawa et al., 2012; Das et al., 2019), and

‘Moncada’ mandarin (Citrus clementina x Kara mandarin (C.

unshiu x C. nobilis); Muñoz-Fambuena et al., 2011). In avocado,

expression of floral initiation genes was suppressed in shoots with

high fruit load, and the transition from vegetative to reproductive

structure was completely repressed with young leaves appearing

instead (Ziv et al., 2014). In Citrus spp., CiFT2 expression is

downregulated in trees with high fruit load by CcMADS19, an

ortholog of the floral repressor FLOWERING LOCUS C (FLC),

while in trees with a low fruit load, low CcMADS19 expression

results in an increase in CiFT2 expression (Agustı ́ et al., 2020).
Expression of CcMADS19 itself was shown to be correlated with

epigenetic changes (Agustı ́ et al., 2020). Fluctuations in activity of

SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes

have also been observed in response to fruit load in mandarin

(Citrus reticulata; Shalom et al., 2012), mango (Sharma et al., 2020),

and apple (Guitton et al., 2016).

Studies in ‘Murcott’ mandarin (Citrus reticulata x C. sinensis)

and olive have shown the possible involvement of auxin (IAA) in

alternate bearing, with auxin transmitting a heavy-fruit-load signal

to the shoot apical meristem to repress floral initiation, and thus

playing a role in determining whether vegetative or floral

development proceeds (Haim et al., 2021). Peaks in transcript

levels of IAA transporter genes were also associated with the

induction of the flowering-inhibition signal (Haim et al., 2021). It
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has been shown that auxin induces the biosynthesis of GA during

fruit set in tomato (Solanum lycopersicum; de Jong et al., 2009; Hu

et al., 2018) and woodland strawberry (Fragaria vesca; Liao et al.,

2018), and GA has been widely shown to promote vegetative growth

and inhibit flower formation in tree crops. Heavy fruit load

increases GA levels in ‘Satsuma’ mandarin (Citrus unshiu) leaves

(Koshita et al., 1999), and fruit load affects the expression patterns

of GA metabolism genes in mango (Nakagawa et al., 2012; Sharma

et al., 2020). Exogenous application of GA also leads to a significant

increase in TFL1 expression in apple (Haberman et al., 2016) and

reduced FT expression in ‘Orri’ mandarin (Citrus reticulata x C.

temple; Goldberg-Moeller et al., 2013), apple (Elsysy and Hirst,

2019), and mango (Krishna et al., 2017). Therefore, in fruit trees,

auxin likely plays a role in mediating fruit-load inhibition of

flowering by increasing GA levels to regulate expression of both

floral promoter and repressor genes.

Another important factor regulating alternate bearing is

resource availability, in particular, carbohydrate levels.

Competition for carbohydrates between developing fruit and

nearby apical buds leads to depletion of carbon levels and

reduced cellular activity in vegetative meristems, blocking the

onset of floral development and potentially inducing bud

dormancy (Tarancón et al., 2017; Martıń-Fontecha et al., 2018).

Tree starch content is significantly depleted by a heavy crop load

resulting in fewer flowers and a lower crop load the following year

(Nakagawa et al., 2012). Sugars are increasingly recognised as

important signalling molecules (Fichtner and Lunn, 2021) with

several sugar signalling pathways associated with bud outgrowth. In

mandarin, buds on branches with high fruit-load showed induction

of the trehalose metabolism enzymes, TREHALOSE PHOSPHATE

PHOSPHATASE (TPP) and TREHALOSE PHOSPHATE

SYNTHASE (TPS), which play a role in flowering in model

species (van Dijken et al., 2004), suggesting a possible role for

trehalose and/or its biosynthetic pathway in the transition to

flowering (Shalom et al., 2012). The promotion or repression of

flowering may be regulated by changes in sugar signalling which

reflects changes in resource availability i.e., when many fruit are

present, buds are deprived of photoassimilates, preventing flower

bud formation.

By improving our understanding of the molecular regulation of

alternate bearing we can continue to develop and optimise targeted
FIGURE 4

A schematic diagram representing fast breeding of tree crops using early flowering (EF) transgenic lines to introduce a high value trait (HVT). Half of
the progeny is EF, with half of those also carrying the HVT gene(s). Non-transgenic lines are selected after a desired number of breeding cycles.
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tree management strategies, such as plant growth regulator

application, nutritional management and regulating carbohydrate

depletion, to ensure the consistent promotion of flowering and fruit

development. Additionally, the significant variation in susceptibility

to alternate bearing observed between cultivars offers potential

targets for genetic manipulation to reduce alternate bearing and

the need for often time-consuming tree management strategies.
Fast-forwarding technologies towards
precision tree crop production

Plant breeding has been transformed in recent years through

the advent of rapid and precise genome-enabled breeding

technologies. These cutting-edge methods have enabled breeding

programs to accelerate genetic gain using techniques that accelerate

the development of superior crop varieties (Table 1). In the

following section we examine the spectrum of genome-enabled

plant breeding methods. First, we delve into purely genomic

techniques, such as MAS and genomic selection (GS). Both

methods use the power of molecular markers and genomic data

to identify and select plants with desirable traits more efficiently. By

doing so, they can dramatically shorten breeding cycles and reduce

the size of resource-intensive progeny trials. Moving beyond MAS

and GS, we explore how advances in functional genomics and

computational biology enable plant scientists to unravel the

complex web of genetic interactions governing plant traits.

Greater understanding of gene regulatory networks provides

precise information into which genes are best to target for genetic

modification, allowing molecular breeders to fine-tune desirable

traits with precision. Finally, we review genetic manipulation in

plants, evaluating the potential for transgenic and gene editing

approaches to precisely modify traits in elite crop varieties. Most of

these technologies are reliant on, or aided by, a sound

understanding of the genetic basis of traits of interest, such as

described in the previous sections.
Genomics approaches

The improvement of horticultural tree crops has been

modernised with the advent of high-throughput genomic

technologies, i.e., high-throughput microarray genotyping and

next generation sequencing, which have played pivotal roles in

enhancing the precision, speed, and efficiency of tree breeding

programs. These technologies and new selection methods have

enabled tree breeders to accelerate genetic gain and the

development of superior tree varieties with desirable trait

combinations. High-throughput genotyping methods assay

thousands of genetic markers simultaneously at a relatively

modest cost and when analysed in segregating or reference

populations have enabled the identification of key genetic variants

associated with traits of interest, such as disease resistance, fruit

quality, and plant architecture, among others (Peng et al., 2020;
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Wang L. et al., 2022; Huang M. et al., 2023; Srivastav et al., 2023).

Comprehensive knowledge of the genetic basis of multiple

agronomically important traits has allowed breeders to make

informed decisions on the selection of parent trees for crossing in

breeding programs, generating new hybrid varieties with improved

trait combinations.

In tree species characterised by a long juvenile phase, traditional

breeding methods can be slow and labour intensive. The use of

MAS, which employs genetic markers closely associated with traits

of interest, has emerged as a game-changer in this context. MAS

allows breeders to screen large populations during the seedling stage

and select those with the potential to exhibit the desired traits at

maturity. For example, in citrus a hybrid population of ‘Kiyomi’ and

‘Murcott’ tangors segregating for male sterility and polyembryony

was used to develop and validate markers tightly linked to both

traits to be used for MAS in breeding programs (Montalt et al.,

2023). In macadamia, the identification of markers tightly linked to

nut quality characteristics could be used to screen for elite progeny

potentially reducing the selection process by seven years in the

breeding program (O’Connor et al., 2019). And examples in

Rosaceae fruit trees include screening apricot seedlings for

markers associated with plum pox resistance (Zuriaga et al., 2018;

Polo-Oltra et al., 2020), apple seedlings for markers associated with

fruit quality and disease resistance (Chagné et al., 2019; Petiteau

et al., 2023), and peach seedlings for markers linked with fruit

colour (Adami et al., 2013) increasing the efficiency of these

breeding programs. This approach significantly reduces the time

required for traditional phenotypic evaluation which for many traits

can be cumbersome, thus accelerating the breeding cycle in tree

crops. Moreover, MAS has the added benefit of eliminating

individuals without specific alleles, streamlining the selection

process and conserving resources by focusing only on candidates

with the highest potential for success.

GS is another analysis method that relies on an alternative

approach based on analysis of all QTL effects, regardless of their

significance, which may improve tree breeding by increasing the

accuracy and efficiency of variety selection. It enables breeders to

focus their efforts on candidates with the highest genetic potential,

resulting in more targeted and successful breeding outcomes.

Unlike traditional breeding methods that rely on the phenotypic

evaluation of individual trees, GS leverages comprehensive genomic

data to predict the breeding value of trees based on their genetic

makeup. GS has been applied with great success in cereal and

livestock breeding (Xu et al., 2021) but is still in its infancy for

horticultural trees. For example, a recent study in apple determined

the genetic architecture of 30 important traits and set out a strategy

to implement GS in apple breeding programs to improve selection

strategies (Jung et al., 2022). Another example from macadamia

demonstrated that using GS models could increase genetic gain for

yield, which is more than double that achieved from traditional

breeding (O’Connor et al., 2021). Consequently, GS has the

potential to enable breeders to accurately estimate the

performance of trees before they reach maturity, allowing for

early identification of top-performing individuals.
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TABLE 1 Selected examples of the use of different genomics approaches for trait improvement in several tree crops.

Almond Apple Citrus Mango

Genomic
selection (GS)

Unknown 6 fruit quality traits in 1200
individuals from 6 parental
cultivars (Kumar et al., 2012)
2 productivity and 8 fruit quality
traits in 977 individuals from 24
parental cultivars (Muranty et al.,
2015)
9 fruit quality traits and
resistance to apple scab in 172
accessions (McClure et al., 2018)
30 quantitative traits related to
phenology, productivity, fruit
size, outer fruit, inner fruit and
vigour in 269 accessions (Jung
et al., 2022)

17 fruit quality traits in 111 citrus varieties
(Minamikawa et al., 2017)
Fruit weight, sugar content and acid content in
1935 individuals from 106 parental cultivars
(Imai et al., 2019)

Trunk
circumference, fruit
blush colour and
intensity in 108
mango accessions
(Wilkinson
et al., 2022)

Marker assisted
selection (MAS)

Self-compatibility, leafing date, shell
hardness, double kernel, productivity,
blooming date, kernel weight, in-shell
weight and kernel taste in ‘R1000’
and ‘Desmayo Largueta’ (Sánchez-
Pérez et al., 2007)
Resistance to root-knot nematodes in
‘Alnem’ and ‘Lauranne’ (Duval et al.,
2018)
Shell hardness in 'Nonpareil' and
'Lauranne' (Goonetilleke et al., 2018)
and 264 almond accessions (Sideli et
al., 2023).
Kernel taste in 134 sweet kernel
cultivars and 10 bitter kernel
individuals (Lotti et al., 2023)

Scab, fire blight and powdery
mildew resistance, fruit firmness,
skin colour, flavour intensity and
acidity in 207 accessions (Chagné
et al., 2019)
Resistance to apple root ring rot
in ‘Jonathan’ and ‘Golden
Delicious’ (Shen et al., 2019)

Disease resistance in trifoliate orange (Peng
et al., 2020)
HLB tolerance in ‘Argentina’ and ‘Flying
Dragon’ trifoliate orange and ‘Sanford’ and
‘Succari’ sweet orange (Huang M. et al., 2023)
Male sterility and polyembryony in ‘Kiyomi’
and ‘Murcott’ mandarin (Montalt et al., 2023)

Fruit weight in
‘Tommy Atkins’ x
‘Kensington Pride’
hybrids (Bally
et al., 2021)
Anthracnose
resistance in 143
mango varieties
(Felipe et al., 2022)
Fruit colour and
firmness in
‘Amrapali’/
’Sensation’ hybrids
(Srivastav
et al., 2023)

Transformation
(overexpression)

Unknown Precocious flowering in ‘Pinova’
by overexpressing MdFT1
(Tränkner et al., 2010)
Reduced anthocyanin
biosynthesis and red flesh colour
in ‘Ballerina’ by overexpressing
MdHB1 (Jiang et al., 2017)
Increased drought tolerance in
‘Royal Gala’ by overexpressing
MdDof54 (Chen et al., 2020)
Delayed fruit ripening and
increased fruit firmness in ‘Royal
Gala’ fruit by overexpressing
ERF4 and TPL4 (Hu et al., 2020)
Reduced fruit firmness in
‘Golden Delicious’ fruit by
overexpressing MdACS3a (Hu
et al., 2022a)
Increased resistance to osmotic
stress and increased shoot and
root growth in wild apple (Malus
sieversii) by overexpressing Msi-
miR156ab (Feng et al., 2023)

Precocious flowering in Carrizo citrange by
overexpressing AtLFY or
AtAP1 (Peña et al., 2001)
Increased carotenoid production and orange
fruit colour in Hongkong kumquat by
overexpressing CsPSY
(Zhang et al., 2009)
Enhanced salt stress tolerance in trifoliate
orange by overexpressing AhBADH (Fu et al.,
2011)
Loss of thorns in Carrizo citrange by
overexpressing CsCEN (Zhang et al., 2021)
Enhanced tolerance to salt, oxidative stress,
alkaline pH, drought and two pests in
‘Pramalini’ lime (Citrus aurantifolia) by
overexpressing PRpnp (Singh et al., 2023)
Enhanced resistance to CYVCV in ‘Eureka’
lemon by overexpressing CIRPS9-2 (Zeng
et al., 2023)

Unknown

Transformation
(RNAi)

Unknown Precocious flowering by silencing
MdTFL1 in ‘Pinova’ (Flachowsky
et al., 2012) and ‘Orin’ (Kotoda
et al., 2006)
Reduced drought tolerance in
‘Royal Gala’ by silencing
MdDof54 (Chen et al., 2020)
Increased drought tolerance,
scion growth and photosynthesis
in GL3 (‘Royal Gala’ progeny) by
silencing six MdGH3 genes

Partial loss of thorns in Carrizo citrange by
silencing TI1 (Zhang et al., 2020)

Unknown

(Continued)
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TABLE 1 Continued

Almond Apple Citrus Mango

(Jiang et al., 2022)
Browning resistance in ‘Golden
Delicious’, ‘Granny Smith’ and
‘Fuji’ by silencing POO (https://
osfruits.com/science/biotech-
information/)

VIGR Bleaching in ‘Nonpareil’ using ALSV
to silence PDS (Kawai et al., 2016)

Precocious flowering in apple
seedlings using ALSV to silence
MdTFL (Sasaki et al., 2011)
Precocious flowering in ‘Fuji’,
‘Orin’ and ‘Golden Delicious’
using ALSV to overexpress AtFT
(Yamagishi et al., 2011)
Induced fruit ripening in ‘Golden
Delicious’ fruit using TRV to
silence MdERF2 (Li et al., 2016)
Precocious flowering in ‘Ourin’
using ASLR to overexpress AtFT
and silence MdTFL1-1
(Yamagishi et al., 2016)
Increased anthocyanin
biosynthesis and red flesh colour
in ‘Granny Smith’ using TRV to
silence MdHB1 and/or
MdMYB10 (Jiang et al., 2017)
Increased ring rot resistance in
‘Fuji’ fruit using TRV to silence
MdCNGC2 (Zhou et al., 2020)
Induced fruit ripening and
reduced fruit firmness in ‘Gala’
fruit using TRV to silence ERF4,
TPL4 (Hu et al., 2020) or JAZ
(Hu et al., 2022b)
Reduced fruit firmness using
TRV to silence MdHDA19 in
‘Gala’ fruit and increased fruit
firmness using TRV to silence
MdACS3a in ‘Golden Delicious’
fruit (Hu et al., 2022a)
Reduced ring rot resistance in
‘Granny Smith’ using TRV to
silence MdMAPKKK1 or
MdBSK1 (Wang N. et al., 2022)

Shorter height in Citrus excelsa and ‘Mexican’
lime using CLBV to silence actin (Agüero
et al., 2014)
Increased production of limonoids in ‘Guangxi
Shatian You’ pummelo (Citrus grandis) using
TRV to silence CiOSC (Wang et al., 2017)
Bleaching in lemon, Changshou kumquat
(Fortunella obovata), ‘Guangxi Shatian’
pummelo shoots using TRV to silence CitChlI
(Wang F. et al., 2019)
Altered citric acid levels in ‘Dafen-4’ and
‘Weizhang’ mandarin fruit using TRV to
silence CS and ACL (Chen et al., 2023)

Fruit ripening and
pericarp
colouration in
mango using TRV
to silence RCCR
(Liu et al., 2021)
Fruit ripening and
aroma in
‘Dashehari’ using
TRV to silence
MiPMK (Pathak
et al., 2023)

CRISPR
gene editing

Unknown Precocious flowering in ‘Gala’ by
editing MdTFL1.1 (Charrier
et al., 2019)
Reduced fire blight susceptibility
in ‘Gala’ and ‘Golden Delicious’
by editing MdDIMP4 (Pompili
et al., 2020)
Increased ring rot resistance in
‘Fuji’ fruit by editing MdCNGC2
(Zhou et al., 2020)
Reduced ring rot resistance in
‘Orin’ by editing MdMAPKKK1
(Wang N. et al., 2022)

Resistance to citrus canker by editing CsLOB1
in ‘Duncan’ grapefruit (Citrus x paradisi; Jia
et al., 2016a; Jia et al., 2017; Jia et al., 2022),
‘Wanjincheng’ sweet orange (Peng et al.,
2017), and ‘Hamlin’ sweet orange (Huang
et al., 2022; Su et al., 2023)
Reduced susceptibility to citrus canker in
‘Wanjincheng’ orange by editing CsWRKY22
(Wang Y. et al., 2019)
Loss of thorns and increased branching in
Carrizo citrange by editing TI1 and/or TI2
(Zhang et al., 2020)
Conversion of axillary meristem into thorns in
Carrizo citrange by editing CsCEN (Zhang
et al., 2021)
Decreased citric acid accumulation in
Hongkong kumquat fruit by editing CitPH4
(Huang Y. et al., 2023)

Unknown
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Regulation of crop trait
genetic interactions

The recent and fast-paced advancements in high-throughput

next generation sequencing technologies have also aided in the rapid

increase of omics-based experiments to collect expression data. These

transcriptomic data can be used to infer gene co-expression networks

using a mathematical approach for transcriptomic data analysis

resulting in gene co-expression network inference (Lee et al., 2015;

Haque et al., 2019; Jiang et al., 2023). The network can be broken down

into two components; nodes (genes and their products) represented by

shapes, and edges representing interactions between the nodes. The

network follows a guilt by association principle whereby genes that

observe similar expression patterns are clustered together implying a

potential (co)-regulatory relationship within the endogenous system

(Lee et al., 2015;Haque et al., 2019).This approach is a relatively simple

way to identifymany of the genetic components underlying important

agricultural traits and has already been implemented to study different

traits for apple (Ding et al., 2021), peach (Khanet al., 2022), apricot (Yu

et al., 2020), sweet cherry (Prunusavium; YangH.et al., 2021), kiwifruit

(Brian et al., 2021), andVitis spp. (Toups et al., 2020; Tan et al., 2023).

However, as co-expression network inference is an in silico inference

method to identify genes of interest, these predictions need to be

validated via experimental approaches (Haque et al., 2019) such as

chromatin immunoprecipitation sequencing (ChIP-seq) (Robertson

et al., 2007) and DNA affinity purification sequencing (DAP-seq)

(O’Malley et al., 2016).

ChIP-seq is an in vivo technique first implemented on

mammalian HeLa cells which utilises antibody-driven chromatin

immunoprecipitation and DNA sequencing to identify direct

genetic targets of transcription factors via read mapping against a

reference genome (Robertson et al., 2007). The potential of ChIP-

seq was further expanded to identify histone modifications in the

genome landscape which are correlated with gene expression

changes (Pillai et al., 2009). ChIP-seq has since been used for

studying both the targets of transcription factors as well as the

genome-wide patterns of histone modifications underlying traits

such as fruit ripening, dormancy, and stress-response in various

horticulture crops including peach (de la Fuente et al., 2015; Canton

et al., 2022; Jin et al., 2022; Zhao et al., 2023), sweet cherry (Vimont

et al., 2019), kiwifruit (Wu et al., 2018), and apple (Chen et al., 2020;

Hu et al., 2020; Chen et al., 2022; Hu et al., 2022a; Hu et al., 2022b).

In contrast to ChIP-seq which requires costly antibodies and is

not easily upscaled, an alternative in vitro method called DAP-seq

was created by O’Malley et al. (2016). The technique uses an affinity

tagged transcription factor to bind genomic DNA and identify

downstream target genes via DNA sequence read mapping. The

number of regulators can be easily upscaled in this method, with

O’Malley et al. (2016) using DAP-seq on 1812 Arabidopsis

transcription factors and the maize ZmARF29 transcription

factor. DAP-seq has since been used in numerous horticultural

perennial crops including apple (Chen et al., 2020; Falavigna et al.,

2021), sweet orange (Wang W. et al., 2023), grapevine (Vitis

vinifera; Orduña et al., 2022) and avocado (Núñez-Lillo et al.,

2023) to study traits like flowering, fruit softening, starch

synthesis, disease resistance, and stress-induced responses.
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Network inference is a promising tool for molecular breeding as

it allows the use of transcriptomic data to confirm the association of

genes previously identified through functional genomics

experiments with traits of interest, and associate new genes with

these traits. Furthermore, it can allow us to identify potential

interactions between previously identified and newly identified

genes for validation via techniques like ChIP-seq and DAP-seq.

Finally, network inference can assist with selecting the best

candidates for manipulation of single traits.
In planta bioassays – leveraging
knowledge from trees in the field for
selecting seedlings with desirable traits

Plants have evolved to synchronise flowering with favourable

environmental conditions to ensure successful reproduction (Kim

et al., 2009). The ability of plants to flower in response to the correct

environmental stimuli is gained during either the vegetative or

reproductive phases of organ development. The prolonged juvenile

phase of perennials makes it difficult to unravel molecular

mechanisms controlling reproductive organ development and

floral initiation in the early years of perennial growth, and to

assess horticultural traits such as fruit quality can take years.

There is a need for more creative approaches by comparing

gene regulatory processes in different tissues from trees growing in

the field with those growing in an environmentally controlled

growth environment. For example, by examining transcriptomic

profiles in field grown tree tissues responding to a decline in

photoperiod, cold snaps, and progressive chilling period, it would

be possible to untangle the gene regulatory networks sensing,

responding, and modulating phases of floral bud dormancy and

the hence the onset of flowering. An integrated approach that

evaluates gene regulatory processes in source tissues such as the

leaves and sink tissues such as floral buds could enable predictions

of the key events modulating early to late cultivar floral initiation.

By simulating these climate events within a controlled environment,

it might be possible to replicate the transcriptomic networks of gene

regulations within seedling tissues thereby enabling the fast-

forwarding screening of individuals in a segregating population

that perform according to the tree growing in the field.

This approach could be routinely established by also combining

external chemical treatments to the seedlings growing in a

controlled environment to further simulate the use of plant

growth regulators used within field conditions to alter gene

regulatory networks that facilitate flowering. The role of

phytohormones and their crosstalk with environmental signals

during flowering in annuals is well studied (Gerashchenkov and

Rozhnova, 2013), but less so in perennials due to the long juvenile

period. Mølmann et al. (2005) experimented with juvenile hybrid

aspen by treating with paclobutrazol combined with low night

temperature and short-day conditions. As expected, paclobutrazol

reduced GA and caused growth cessation. It also promoted bud set

and improved cold hardiness, a trait that is important for perennials

to survive harsh environmental conditions during endodormancy.

However, it did not promote dormancy suggesting that the ABA
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pathway can maintain dormancy independent of GA. The

application of omics approaches to quantify hormones,

metabolites, and gene expression in tissues from trees and

seedlings grown in controlled environments, could fast-track

knowledge of how the environment modulates dormancy and

flowering. Ultimately, devising a tree to seedling bioassay could

improve the development of new molecular markers to screen for

important tree crop traits and reduce the number of trees from

segregating populations to be planted in the field.
Functional genetics for trait
characterisation and improvement

The development of the first transgenic plant in 1983 (Herrera-

Estrella et al., 1983) gave scientists and plant breeders high hopes

that transgenic technology would revolutionise our understanding

of plant molecular biology and fast-track crop breeding. However,

the negative public perception and intense biosecurity regulation

did not allow transgenic technology to be used to its full potential. A

prime example of this was the development of transgenic American

chestnut (Castanea dentata) which is resistant to fungal blight

disease (Powell et al., 2019). Blight disease has destroyed billions

of wild-type American chestnuts, yet transgenic plants with

resistance to this disease have not yet been deregulated for public

use. Nevertheless, it must also be noted that the regulations

restricting genetically modified organisms (GMOs) are slowly

being relaxed in different countries. This has resulted in a steady

increase in the total acreage under GM crop cultivation in the last

decade (Lobato-Gómez et al., 2021). In Australia, commercial

cultivation of four genetically-modified crops: canola (Brassica

napus), mustard (Brassica juncea), cotton (Gossypium hirsutum)

and safflower (Carthamus tinctorius) has been approved (OGTR,

2023). Globally, different transgenic crop cultivars including several

horticultural crops such as apple, plum, papaya (Carica papaya),

eggplant (Solanum melongena), sweet pepper (Capsicum frutescens)

and watermelon (Citrullus lanatus) have been approved for

commercial cultivation (Baranski et al., 2019). These GM crops

have improved agronomic traits such as fruit browning in apple

(Waltz, 2015), resistance to insects in eggplant (Ahmed et al., 2021),

and resistance to viral disease in plum (Singh et al., 2021), papaya

(Gonsalves et al., 2007), watermelon (Lin et al., 2012) and sweet

pepper (Chen et al., 2003). The future of GM crops is encouraging

since many crop cultivars are in the pipeline for deregulation, and

public perception and legalities are changing around the world with

many countries slowly beginning to embrace GM crops.

Transgenic technologies have provided alternatives to

employing forward genetics in horticultural trees. Predicting gene

functions using forward genetics requires developing mapping

populations which is time-consuming and resource-intensive due

to the long juvenile phase of trees and resources needed for

maintaining a large number of trees. Transgenic technologies in

addition to the public availability of genome databases of different

horticultural trees and along with the progress in the development

of different tools for phylogenetic analysis have simplified gene

function studies in trees. These techniques have been used to
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identify homologs of genes from model plants in tree crops and

transgenically overexpress those genes either in Arabidopsis or in

the trees themselves. These techniques have been used in several

tree crops for studying genes related to different biological

processes, including those already described in this review such as

tree architecture, bud dormancy and flowering time. In addition to

these processes, transgenic approaches have also been used to study

fruit quality, disease resistance and other traits of economic

significance. For example, in Carrizo citrange, overexpression of

Thionin increased resistance to citrus canker and Huanglongbing

disease in transgenic citrus plants (Hao et al., 2016). While

transgenic overexpression of peach NAC25 in Nanlin895 poplar

(Populus x euramericana) shoots increased anthocyanin

biosynthesis and transport resulting in redder shoot tips,

indicating that NAC25 could play an important role in red fruit

colour development in peach (Geng et al., 2022). Results from these

and other studies have shown that gene function knowledge from

model plants can be exploited using transgenic technologies to

bridge the gap in functional genomic studies between model plants

and tree crops.

In contrast to transgenic overexpression where the gain-of-

function strategy is utilised to characterise gene functions, another

transgenic tool called RNAi utilises a loss-of-function strategy to

characterise gene functions. RNAi induced post-transcriptional

gene silencing has been used to characterise genes related to

different biological pathways in transgenic plants (Small, 2007).

For example, in apple three DAM and two SVP genes were silenced

simultaneously resulting in the development of an evergrowing

phenotype (Wu et al., 2021) similar to that observed in the natural

evergrowing peach mutant (Bielenberg et al., 2008). While in

transgenic strawberries (Fragaria x ananassa), an RNAi construct

designed using a jasmonic acid biosynthetic gene ALLENE OXIDE

SYNTHASE (AOS) from grapevine triggered silencing of FaAOS

and caused an un-colouring phenotype in strawberry fruit (Jia et al.,

2016b). Apart from gene function studies, RNAi-based gene

silencing has also been used for improving cultivars and

rootstocks. One of the first RNAi-based transgenic commercial

cultivars was developed in papaya to protect against Papaya

ringspot virus (PRV; Ferreira et al., 2002). A similar strategy was

used in developing the plum ‘Honeysweet’ cultivar, which contains

an RNAi construct with plum pox virus coat protein-derived

hairpin and is resistant to plum pox virus (Scorza et al., 1994).

Apple cultivar Arctic®, grown by Okanagan Specialty Fruit Inc., is

another RNAi-based cultivar with a browning resistance phenotype

(https://osfruits.com/science/biotech-information/). Meanwhile,

RNAi-induced knockdown of six apple GH3 genes increased

drought tolerance in apple rootstock and increased scion growth

and photosynthesis (Jiang et al., 2022). And in a sour cherry

(Prunus cerasus x P. canescens) rootstock, expression of an RNAi

construct containing a Prunus necrotic ringspot virus (PNRSV)

RNA3 hairpin caused resistance to PNRSV in wild-type scion

grafted on transgenic rootstock (Zhao and Song, 2014). These

findings highlight the potential of RNAi in both gene-function

studies and crop improvement.

Transgenic technologies have inherent limitations in fruit trees.

For example, developing transgenic plants requires a long time and
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many fruit tree species are recalcitrant to tissue culture required for

development of transgenic plants (Lobato-Gómez et al., 2021).

These limitations can be overcome by using a virus-induced gene

regulation (VIGR) system. VIGR technology exploits the ability of

viruses to multiply in plants and the plant antiviral defence system

to overexpress (virus-induced gene overexpression (VIGO)) and

silence (VIGS) target genes in plants (Paudel et al., 2022). Tobacco

rattle virus (TRV) and apple latent spherical virus (ALSV) based

VIGR systems are two of the most common systems used for VIGS

and VIGO in fruit trees such as peach, apple, European pear,

Japanese pear, almond and mango (Paudel et al., 2022; Pathak

et al., 2023). In fruit trees, VIGR systems have been mostly used for

functional genomics to characterise genes regulating different

biological pathways such as carotenoid accumulation and fruit

ripening in peach (Li et al., 2017) and mango (Pathak et al.,

2023), pathogen resistance in peach (Cui and Wang, 2017), and

flowering in apple, citrus, Japanese pear and Vitis spp. (Velázquez

et al., 2016; Yamagishi et al., 2016; Maeda et al., 2020). Apart from

functional genomics studies, VIGR can also be used to reduce the

juvenile phase in fruit trees for fast-track tree breeding (Figure 4).

This approach was used in apple to select a fire blight-resistant

apple genotype in fifth generation plants within seven years

(Schlathölter et al., 2018). Considering that the juvenile phase of

apple lasts for 5-12 years, this process would have taken several

decades using traditional breeding methods.

However, there are also limitations to VIGR, including a limited

host range of the viruses used (Silva et al., 2010), non-uniform gene

silencing (Burch-Smith et al., 2004), and immunogenicity and

unintended mutations in the host (Li et al., 2018). The use of

nanoparticles to deliver RNA for gene silencing or plasmid DNA for

gene expression may overcome some of these issues. One advantage

of nanoparticles is their small size ranging from 1-100 nm in at least

one dimension (Cunningham et al., 2018). As such nanoparticles

can be designed to fit within the size exclusion limit of cell wall

pores, usually ~20 nm (Kumar et al., 2020) allowing for the

application of nanoparticles to potentially any plant species.

Larger nanoparticles can also be modified to cause structural

changes to the cell wall to allow their entry (Kumar et al., 2020),

which is beneficial for delivering larger cargo such as plasmid DNA.

Modifications to nanoparticles can also allow for targeted

subcellular localisation such as to the chloroplast or mitochondria

(Yoshizumi et al., 2018; Thagun et al., 2022). Furthermore,

nanoparticles can deliver a wide range of cargo to the cell,

including DNA, RNA, protein, plant hormones and chemicals

such as pesticides and fertilisers (Kumar et al., 2020; Hu and

Xianyu, 2021). While nanoparticles have been tested often in

model species e.g. to deliver dsRNA or siRNA for gene silencing

(Jiang et al., 2014; Demirer et al., 2019; Schwartz et al., 2020; Yong

et al., 2022), plasmid DNA for transient overexpression (Chang

et al., 2013; Demirer et al., 2019) or stable transformation (Burlaka

et al., 2015; Zhao et al., 2017), or protein for stable transformation

(Martin-Ortigosa et al., 2014), limited studies have been done in

tree crops. Lipid-based nanovectors were used to deliver the

phytohormones indo le-3-butyr ic ac id ( IBA) and 1-

Naphthaleneacetic acid (NAA) to olive trees to improve the

rooting process both in vitro and in vivo (Clemente et al., 2018).
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And a recent study by Qiao et al. (2023) used nanovesicles for

dsRNA delivery to induce gene silencing for crop protection against

a fungal pathogen in grapevine, fox grape (Vitis labrusca), rose

(Rosa hybrida), lettuce (Lactuca sativa) and tomato, demonstrating

the applicability of this technology in tree crops and other perennial

herbaceous crops.
Engineering new varieties by gene editing

Since the discovery of the Nobel prize winning CRISPR-Cas9

system by Jinek et al. (2012), the use of CRISPR-Cas9 and other Cas

proteins to perform directed changes to the genome has dominated

the field of genetic engineering. The benefits of this system are the

precise manner in which these changes can be made, the potential

for the technology to be applied to theoretically any organism, and

the potential for engineering non-GM gene edited varieties. In fact,

some CRISPR-edited crops have already been released such as ɣ-
aminobutyric acid (GABA)-enriched tomatoes with improved

nutritional profiles (Ezura, 2022) and mustard salad greens with

loss-of-function myrosinase genes to improve the taste profile by

eliminating pungency (Karlson et al., 2022). Several examples of

CRISPR-edited tree and woody crops also exist (e.g. apple (Charrier

et al., 2019), kiwifruit (Herath et al., 2022), Hongkong kumquat

(Citrus hindsii; Zhu et al., 2019), sweet orange (Jia and Wang, 2014)

and avocado (https://www.prnewswire.com/news-releases/ag-

biotech-innovator-greenvenus-achieves-breakthrough-in-non-

browning-avocado-through-gene-editing-301842939.html),

although none have been commercially released yet, and many tree

crops like macadamia and mango have no published examples of

CRISPR-editing. Despite the successful use of CRISPR technologies

in several tree crops, many challenges remain.

One challenge faced with CRISPR technologies is the

transfection step. Agrobacterium is commonly used as the

transfection vector for the CRISPR-Cas transgene, however,

transfection rates are lower for differentiated tissue (e.g. epicotyl)

compared to cell-based cultures (Dutt et al., 2018) and many species

are not amenable to transfection by Agrobacterium (Song et al.,

2019). The use of ribonucleoproteins (RNPs) (Mout et al., 2017b;

Zhang et al., 2022) and/or nanoparticles (Mout et al., 2017a) to

deliver CRISPR-Cas products may be one solution for species not

amenable to Agrobacterium-mediated transformation. The use of

cell-based cultures can also reduce the risk of chimerism, an issue

often encountered when tissues such as epicotyls are transfected,

however, this does not eliminate the risk completely (Sahijram and

Bahadur, 2015). Chimerism may also be reduced through multiple

rounds of shoot regeneration, as shown by Ding et al. (2020) in

‘Shanxin’ poplar (Populus davidiana × P. bolleana) trees. These

methods also all require tissue culture to regenerate gene edited

plants, which itself is a challenge in many tree crops. Recent

innovative methods have successfully bypassed the tissue culture

process by overexpressing developmental regulators to stimulate

organogenesis in somatic cells generating gene edited plantlets

within 2-4 weeks in maize (Lowe et al., 2018), Arabidopsis,

Nicotiana benthamiana (Maher et al., 2020), and sorghum

(Sorghum bicolor; Che et al., 2022). Another issue with many of
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these methods is the requirement for the insertion of transgenes

expressing the CRISPR components. This means that the T1

generation is transgenic, and conventional breeding is required to

select out the transgene. Yang L. et al. (2023) demonstrated a

method to create a transgene-free T1 generation using rootstocks

expressing mobile Cas9 mRNA and gRNA to create gene edited

Arabidopsis and Brassica rapa. Mendelian genetics potentially

allows for a transgene free T1 generation that carries a gene edit,

even with a transgenic T0 generation, providing the transgene and

gene edited allele are not linked. Cross-pollination allows for the T1

generation to be added to the conventional breeding pipeline, thus

complementing, and not replacing known plant breeding

techniques. However, the use of many of these advances in

CRISPR have not yet been demonstrated in tree crops.

Another remaining challenge is the issue of chromatin

accessibility influencing gene editing efficiency as chromatin can

impede the Cas9-gRNA complex accessing the target sequence.

Weiss et al. (2022) showed that methods to study chromatin

accessibility, like ChIP-seq (by targeting histones associated with

closed chromatin), Formaldehyde-Assisted Isolation of Regulatory

Elements (FAIRE)-seq, and Assay for Transposase-Accessible

Chromatin (ATAC)-seq, may also provide directions in improving

editing efficiency of certain genes. Since gene expression also varies

over time and per tissue type, gene expression data can also be

leveraged to understand what tissues to target and when. Combining

gene expression data with chromatin accessibility could also provide

more defined targeting strategies.

The CRISPR system itself also has potential for improvement

through methods like base-editing (Komor et al., 2016) and prime-

editing (Anzalone et al., 2019). Both methods improve upon the

standard CRISPR-Cas9 mechanism of inducing double-strand DNA

breaks (DSBs) and relying on endogenous DNA repair pathway

machinery to introduce errors, by inducing specific base pair edits

without requiring DSBs. Base-editing utilises a Cas9 fused with a

deaminase allowing for transition and some transversionmutations to

occur without DSBs, while prime-editing utilises a Cas9 nickase fused

witha reverse transcriptasevariant tocreate a single-strandDNAbreak

which, along with a guide RNA containing an edited RNA template,

can introduce both transition and transversion mutations, as well as

small insertion or deletionmutations (Chen and Liu, 2023). Although

both base-editing and prime-editing have been demonstrated in

several plant species (Azameti and Dauda, 2021), its use in plants is

still in early stages and requires improvement to be viable for

commercial breeding. Other improvements include the use of

different Cas proteins, like Cpf1/Cas12a (Zetsche et al., 2015; Zhang

et al., 2022) with different recognition sites.

Even if the science of CRISPR-Cas shows potential, challenges

remain on the regulatory end. CRISPR-Cas9 is a patented system

with Corteva and MIT, Broad Institute holding the licensing rights

(Corteva Agriscience, n.d.), which means royalties from products

using the technology must be considered. Whether CRISPR-edited

crops are considered a GMO differs around the world. Jurisdictions

like New Zealand (Kershen, 2015) and the European Union (EU;

Court of Justice of the European Union (CJEU), 2018) regulate all

CRISPR gene edited plants as GMOs. While in Australia, a CRISPR

gene edited organism is not considered as a GMO if no foreign
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genetic material is present (Mallapaty, 2019), though this must be

proven to regulators using techniques like genome sequencing. The

legal landscape is also constantly evolving with the EU recently

requesting for comment changes to the regulations surrounding

gene editing (Laaninen, 2021; Mehta, 2023). Additionally, most

CRISPR gene edited plants involve the insertion of a transgene in

the T1 generation, making them GMO in many jurisdictions, and

requiring multiple rounds of breeding to select out the transgene.

The European Patent Office also decided a case in 1999 where a key

decision stated that ‘plant varieties containing genes introduced into

an ancestral plant by recombinant gene technology are excluded

from patentability’ (European Patent Office, 1999, p.35). By

extension, this decision likely applies to CRISPR-edited plants

which are seen as GMOs in the EU further reducing incentives

for using gene editing in the EU agricultural sector. Despite these

legal challenges, CRISPR has opened multiple possibilities for

improving tree breeding. However, the many limitations

associated with the use of CRISPR in trees, along with regulatory

hurdles mean that CRISPR-edited tree products will likely not get to

the market immediately.
Concluding remarks

The rich history of traditional horticultural tree breeding has

domesticated a diverse variety of fruits, refined through generations

of crossing and selection. This process has generated high-yielding

citrus, apple, almond and avocado cultivars, among others, that

have become the staple fruits produced in orchards around the

world. Yet, in the face of evolving challenges and opportunities

posed by shifting climatic patterns, the growing demand for food

and the emergence of automation, the limitations of conventional

breeding methods are becoming increasingly apparent. To effectively

address these threats tohorticultural productionand to rapidlydevelop

resilient varieties, there is a need for greater integration of genome

enabled technologies into horticultural tree breeding programs. Apple

breeding is oneof several industries that has led theway for integration,

showcasing remarkable success in expediting thedevelopment ofnovel

cultivars boasting enhanced disease resistance, drought resilience, and

superior fruit quality. The advent of low-cost, large-scale genome

sequencing and the expanding repertoire of genomic approaches, such

as those outlined in this review, are shifting the research and

development landscape in tree crop species enabling greater

integration of genome-enabled technologies across the horticultural

tree crop breeding sector. By embracing genome enabled technologies

in traditional breeding programs, we not only increase our capacity to

develop new varieties, but also produce tree crops better suited to

existing and emerging challenges, safeguarding the future of next

generation orchards.
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Chagné, D., Vanderzande, S., Kirk, C., Profitt, N., Weskett, R., Gardiner, S. E., et al.
(2019). Validation of SNP markers for fruit quality and disease resistance loci in apple
(Malus × domestica Borkh.) using the OpenArray® platform. Hortic. Res. 6, 30.
doi: 10.1038/s41438-018-0114-2

Chang, F.-P., Kuang, L.-Y., Huang, C.-A., Jane, W.-N., Hung, Y., Hsing, Y. C., et al.
(2013). A simple plant gene delivery system using mesoporous silica nanoparticles as
carriers. J. Mater. Chem. B 1, 5279–5287. doi: 10.1039/C3TB20529K

Charrier, A., Vergne, E., Dousset, N., Richer, A., Petiteau, A., and Chevreau, E.
(2019). Efficient targeted mutagenesis in apple and first time edition of pear using the
CRISPR-Cas9 system. Front. Plant Sci. 10. doi: 10.3389/fpls.2019.00040

Che, P., Wu, E., Simon, M. K., Anand, A., Lowe, K., Gao, H., et al. (2022). Wuschel2
enables highly efficient CRISPR/Cas-targeted genome editing during rapid de novo shoot
regeneration in sorghum. Commun. Biol. 5, 344 doi: 10.1038/s42003-022-03308-w

Chen, Z.-L., Gu, H., Li, Y., Su, Y., Wu, P., Jiang, Z., et al. (2003). Safety assessment for
genetically modified sweet pepper and tomato. Toxicology 188, 297–307. doi: 10.1016/
S0300-483X(03)00111-2

Chen, P. J., and Liu, D. R. (2023). Prime editing for precise and highly versatile
genome manipulation. Nat. Rev. Genet. 24, 161–177. doi: 10.1038/s41576-022-00541-1

Chen, T., Niu, J., Sun, Z., Chen, J., Wang, Y., Chen, J., et al. (2023). Transcriptome
analysis and VIGS identification of key genes regulating citric acid metabolism in
citrus. Curr. Issues Mol. Biol. 45, 4647–4664. doi: 10.3390/cimb45060295

Chen, W., Tamada, Y., Yamane, H., Matsushita, M., Osako, Y., Gao-Takai, M., et al.
(2022). H3K4me3 plays a key role in establishing permissive chromatin states during
bud dormancy and bud break in apple. Plant J. 111, 1015–1031. doi: 10.1111/tpj.15868

Chen, J., Xie, J., Duan, Y., Hu, H., Hu, Y., and Li, W. (2016). Genome-wide
identification and expression profiling reveal tissue-specific expression and
differentially-regulated genes involved in gibberellin metabolism between Williams
banana and its dwarf mutant. BMC Plant Biol. 16, 123. doi: 10.1186/s12870-016-0809-1

Chen, P., Yan, M., Li, L., He, J., Zhou, S., Li, Z., et al. (2020). The apple DNA-binding
one zinc-finger protein MdDof54 promotes drought resistance. Hortic. Res. 7, 195.
doi: 10.1038/s41438-020-00419-5

Chu, L. L., Yan, Z., Sheng, X. X., Liu, H. Q., Wang, Q. Y., Zeng, R. F., et al. (2023).
Citrus ACC synthase CiACS4 regulates plant height by inhibiting gibberellin
biosynthesis. Plant Physiol. 192, 1947–1968. doi: 10.1093/plphys/kiad159

Clemente, I., Menicucci, F., Colzi, I., Sbraci, L., Benelli, C., Giordano, C., et al. (2018).
Unconventional and sustainable nanovectors for phytohormone delivery: insights on
Olea europaea. ACS Sustain. Chem. Eng. 6, 15022–15031. doi: 10.1021/
acssuschemeng.8b03489

Cooke, J. E. K., Eriksson, M. E., and Junttila, O. (2012). The dynamic nature of bud
dormancy in trees: environmental control and molecular mechanisms. Plant Cell
Environ. 35, 1707–1728. doi: 10.1111/j.1365-3040.2012.02552.x

Corteva Agriscience CRISPR-Cas: growing more, sustainably. Available at: https://
www.openinnovation.corteva.com/what-we-offer/crispr-cas-growing-more-
sustainably.html.

Court of Justice of the European Union (CJEU). (2018). Case number = C-528/16.
Available at: https://curia.europa.eu/juris/documents.jsf?num=C-528/16.

Cui, H., and Wang, A. (2017). An efficient viral vector for functional genomic studies
of Prunus fruit trees and its induced resistance to Plum pox virus via silencing of a host
factor gene. Plant Biotechnol. J. 15, 344–356. doi: 10.1111/pbi.12629

Cunningham, F. J., Goh, N. S., Demirer, G. S., Matos, J. L., and Landry, M. P. (2018).
Nanoparticle-mediated delivery towards advancing plant genetic engineering. Trends
Biotechnol. 36, 882–897. doi: 10.1016/j.tibtech.2018.03.009

Dardick, C., Callahan, A., Horn, R., Ruiz, K. B., Zhebentyayeva, T., Hollender, C.,
et al. (2013). PpeTAC1 promotes the horizontal growth of branches in peach trees and
is a member of a functionally conserved gene family found in diverse plants species.
Plant J. 75, 618–630. doi: 10.1111/tpj.12234

Das, A., Geetha, G. A., Ravishankar, K. V., Shivashankara, K. S., Roy, T. K., and
Dinesh, M. R. (2019). Interrelations of growth regulators, carbohydrates and expression
of flowering genes (FT, LFY, AP1) in leaf and shoot apex of regular and alternate
bearing mango (Mangifera indica L.) cultivars during flowering. Sci. Hortic. 253, 263–
269. doi: 10.1016/j.scienta.2019.04.027

de Jong, M., Mariani, C., and Vriezen, W. H. (2009). The role of auxin and gibberellin
in tomato fruit set. J. Exp. Bot. 60, 1523–1532. doi: 10.1093/jxb/erp094

de la Fuente, L., Conesa, A., Lloret, A., Badenes, M. L., and Rıós, G. (2015). Genome-
wide changes in histone H3 lysine 27 trimethylation associated with bud dormancy
release in peach. Tree Genet. Genomes 11, 45. doi: 10.1007/s11295-015-0869-7

Demirer, G. S., Zhang, H., Matos, J. L., Goh, N. S., Cunningham, F. J., Sung, Y., et al.
(2019). High aspect ratio nanomaterials enable delivery of functional genetic material
Frontiers in Plant Science 17
without DNA integration in mature plants. Nat. Nanotechnol. 14, 456–464.
doi: 10.1038/s41565-019-0382-5

Dinesh, M. R., and Reddy, B. M. C. (2012). “Physiological basis of growth and fruit
yield characteristics of tropical and sub-tropical fruits to temperature,” in Tropical fruit
tree species and climate change. Eds. B. Sthapit, V. R. Rao and S. Sthapit (New Delhi:
Bioversity International), 97–125.

Ding, L., Chen, Y., Ma, Y., Wang, H., and Wei, J. (2020). Effective reduction in
chimeric mutants of poplar trees produced by CRISPR/Cas9 through a second round of
shoot regeneration. Plant Biotechnol. Rep. 14, 549–558. doi: 10.1007/s11816-020-
00629-2

Ding, J., and Nilsson, O. (2016). Molecular regulation of phenology in trees —
because the seasons they are a-changin’. Curr. Opin. Plant Biol. 29, 73–79. doi: 10.1016/
j.pbi.2015.11.007

Ding, F., Zhang, S., Chen, H., Peng, H., Lu, J., He, X., et al. (2018). Functional analysis
of a homologue of the FLORICAULA/LEAFY gene in litchi (Litchi chinensis Sonn.)
revealing its significance in early flowering process. Genes Genomics 40, 1259–1267.
doi: 10.1007/s13258-018-0739-4

Ding, F., Zhang, S., Chen, H., Su, Z., Zhang, R., Xiao, Q., et al. (2015). Promoter
difference of LcFT1 is a leading cause of natural variation of flowering timing in
different litchi cultivars (Litchi chinensis Sonn.). Plant Sci. 241, 128–137. doi: 10.1016/
j.plantsci.2015.10.004

Ding, T., Zhang, R., Zhang, H., Zhou, Z., Liu, C., Wu, M., et al. (2021). Identification
of gene co-expression networks and key genes regulating flavonoid accumulation in
apple (Malus × domestica) fruit skin. Plant Sci. 304, 110747. doi: 10.1016/
j.plantsci.2020.110747

Doebley, J., Stec, A., and Gustus, C. (1995). teosinte branched1 and the origin of
maize: evidence for epistasis and the evolution of dominance. Genetics 141, 333–346.
doi: 10.1093/genetics/141.1.333

Doebley, J., Stec, A., and Hubbard, L. (1997). The evolution of apical dominance in
maize. Nature 386, 485–488. doi: 10.1038/386485a0

Dougherty, L., Borejsza-Wysocka, E., Miaule, A., Wang, P., Zheng, D., Jansen, M.,
et al. (2023). A single amino acid substitution in MdLAZY1A dominantly impairs shoot
gravitropism in Malus. Plant Physiol. 193, 1142–1160. doi: 10.1093/plphys/kiad373

Dutt, M., Erpen, L., and Grosser, J. W. (2018). Genetic transformation of the ‘W
Murcott’ tangor: comparison between different techniques. Sci. Hortic. 242, 90–94.
doi: 10.1016/j.scienta.2018.07.026

Dutt, M., Mahmoud, L. M., Nehela, Y., Grosser, J. W., and Killiny, N. (2022). The
Citrus sinensis TILLER ANGLE CONTROL 1 (CsTAC1) gene regulates tree
architecture in sweet oranges by modulating the endogenous hormone content. Plant
Sci. 323, 111401. doi: 10.1016/j.plantsci.2022.111401

Duval, H., Van Ghelder, C., Callot, C., and Esmenjaud, D. (2018). Characterization of
the RMja resistance gene to root-knot nematodes from the ‘Alnem’ almond rootstock.
Acta Hortic. (1219), 325–330. doi: 10.17660/ActaHortic.2018.1219.49

Elo, A., Lemmetyinen, J., Novak, A., Keinonen, K., Porali, I., Hassinen, M., et al.
(2007). BpMADS4 has a central role in inflorescence initiation in silver birch (Betula
pendula). Physiol. Plant 131, 149–158. doi: 10.1111/j.1399-3054.2007.00947.x

Elsysy, M., and Hirst, P. M. (2019). Molecular basis of flower formation in apple
caused by defoliation and gibberellins. J. Amer. Soc Hortic. Sci. 144, 414–419.
doi: 10.21273/jashs04760-19

Endo, T., Shimada, T., Fujii, H., Kobayashi, Y., Araki, T., and Omura, M. (2005).
Ectopic expression of an FT homolog from Citrus confers an early flowering phenotype
on trifoliate orange (Poncirus trifoliata L. Raf.). Transgenic Res. 14, 703–712.
doi: 10.1007/s11248-005-6632-3

European PatentOffice. (1999).G0001/98 (Transgenic plant/NOVARTIS II) 20-12-1999.
Available at: https://www.epo.org/en/case-law-appeals/decisions/recent/g980001ex1.

Ezura, H. (2022). Letter to the editor: the world’s first CRISPR tomato launched to a
Japanese market: the social-economic impact of its implementation on crop genome
editing. Plant Cell Physiol. 63, 731–733. doi: 10.1093/pcp/pcac048

Fadón, E., Herrera, S., Guerrero, B., Guerra, M., and Rodrigo, J. (2020). Chilling and
heat requirements of temperate stone fruit trees (Prunus sp.). Agronomy 10, 409.
doi: 10.3390/agronomy10030409

Falavigna, V. D. S., Severing, E., Lai, X., Estevan, J., Farrera, I., Hugouvieux, V., et al.
(2021). Unraveling the role of MADS transcription factor complexes in apple tree
dormancy. New Phytol. 232, 2071–2088. doi: 10.1111/nph.17710

Fan, Z.-Y., He, X.-H., Fan, Y., Yu, H.-X., Wang, Y.-H., Xie, X.-J., et al. (2020).
Isolation and functional characterization of three MiFTs genes from mango. Plant
Physiol. Biochem. 155, 169–176. doi: 10.1016/j.plaphy.2020.07.009

Felipe, J. E. L., Lachica, J. A. P., Dela Cueva, F. M., Laurel, N. R., Alcasid, C. E., Sison,
M. L. J., et al. (2022). Validation and molecular analysis of b-1,3-GLU2 SNP marker
associated with resistance to Colletotrichum gloeosporioides in mango (Mangifera
indica L.). Physiol. Mol. Plant Pathol. 118, 101804. doi: 10.1016/j.pmpp.2022.101804

Feng, C., Zhang, X., Du, B., Xiao, Y., Wang, Y., Sun, Y., et al. (2023).
MicroRNA156ab regulates apple plant growth and drought tolerance by targeting
transcription factor MsSPL13. Plant Physiol. 192, 1836–1857. doi: 10.1093/plphys/
kiad099

Ferreira, S. A., Pitz, K. Y., Manshardt, R., Zee, F., Fitch, M., and Gonsalves, D. (2002).
Virus coat protein transgenic papaya provides practical control of Papaya ringspot virus
in Hawaii. Plant Dis. 86, 101–105. doi: 10.1094/PDIS.2002.86.2.101
frontiersin.org

https://doi.org/10.3103/S009545271506002X
https://doi.org/10.1016/j.scienta.2011.07.011
https://doi.org/10.1016/j.scienta.2011.07.011
https://doi.org/10.1186/s13007-022-00876-0
https://doi.org/10.1186/s13007-022-00876-0
https://doi.org/10.1038/s41438-018-0114-2
https://doi.org/10.1039/C3TB20529K
https://doi.org/10.3389/fpls.2019.00040
https://doi.org/10.1038/s42003-022-03308-w
https://doi.org/10.1016/S0300-483X(03)00111-2
https://doi.org/10.1016/S0300-483X(03)00111-2
https://doi.org/10.1038/s41576-022-00541-1
https://doi.org/10.3390/cimb45060295
https://doi.org/10.1111/tpj.15868
https://doi.org/10.1186/s12870-016-0809-1
https://doi.org/10.1038/s41438-020-00419-5
https://doi.org/10.1093/plphys/kiad159
https://doi.org/10.1021/acssuschemeng.8b03489
https://doi.org/10.1021/acssuschemeng.8b03489
https://doi.org/10.1111/j.1365-3040.2012.02552.x
https://www.openinnovation.corteva.com/what-we-offer/crispr-cas-growing-more-sustainably.html
https://www.openinnovation.corteva.com/what-we-offer/crispr-cas-growing-more-sustainably.html
https://www.openinnovation.corteva.com/what-we-offer/crispr-cas-growing-more-sustainably.html
https://curia.europa.eu/juris/documents.jsf?num=C-528/16
https://doi.org/10.1111/pbi.12629
https://doi.org/10.1016/j.tibtech.2018.03.009
https://doi.org/10.1111/tpj.12234
https://doi.org/10.1016/j.scienta.2019.04.027
https://doi.org/10.1093/jxb/erp094
https://doi.org/10.1007/s11295-015-0869-7
https://doi.org/10.1038/s41565-019-0382-5
https://doi.org/10.1007/s11816-020-00629-2
https://doi.org/10.1007/s11816-020-00629-2
https://doi.org/10.1016/j.pbi.2015.11.007
https://doi.org/10.1016/j.pbi.2015.11.007
https://doi.org/10.1007/s13258-018-0739-4
https://doi.org/10.1016/j.plantsci.2015.10.004
https://doi.org/10.1016/j.plantsci.2015.10.004
https://doi.org/10.1016/j.plantsci.2020.110747
https://doi.org/10.1016/j.plantsci.2020.110747
https://doi.org/10.1093/genetics/141.1.333
https://doi.org/10.1038/386485a0
https://doi.org/10.1093/plphys/kiad373
https://doi.org/10.1016/j.scienta.2018.07.026
https://doi.org/10.1016/j.plantsci.2022.111401
https://doi.org/10.17660/ActaHortic.2018.1219.49
https://doi.org/10.1111/j.1399-3054.2007.00947.x
https://doi.org/10.21273/jashs04760-19
https://doi.org/10.1007/s11248-005-6632-3
https://www.epo.org/en/case-law-appeals/decisions/recent/g980001ex1
https://doi.org/10.1093/pcp/pcac048
https://doi.org/10.3390/agronomy10030409
https://doi.org/10.1111/nph.17710
https://doi.org/10.1016/j.plaphy.2020.07.009
https://doi.org/10.1016/j.pmpp.2022.101804
https://doi.org/10.1093/plphys/kiad099
https://doi.org/10.1093/plphys/kiad099
https://doi.org/10.1094/PDIS.2002.86.2.101
https://doi.org/10.3389/fpls.2023.1321555
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Kerr et al. 10.3389/fpls.2023.1321555
Fichtner, F., and Lunn, J. E. (2021). The role of trehalose 6-phosphate (Tre6P) in
plant metabolism and development. Annu. Rev. Plant Biol. 72, 737–760. doi: 10.1146/
annurev-arplant-050718-095929

Fisher, D. V. (1969). Spur-type strains of McIntosh for high density plantings. Br.
Columbia Fruit Growers’ Assoc. Q. Rep. 14, 3–10.

Flachowsky, H., Le Roux, P.-M., Peil, A., Patocchi, A., Richter, K., and Hanke, M.-V.
(2011). Application of a high-speed breeding technology to apple (Malus × domestica)
based on transgenic early flowering plants and marker-assisted selection. New Phytol.
192, 364–377. doi: 10.1111/j.1469-8137.2011.03813.x

Flachowsky, H., Peil, A., Sopanen, T., Elo, A., and Hanke, V. (2007). Overexpression
of BpMADS4 from silver birch (Betula pendula Roth.) induces early-flowering in apple
(Malus × domestica Borkh.). Plant Breed. 126, 137–145. doi: 10.1111/j.1439-
0523.2007.01344.x

Flachowsky, H., Szankowski, I., Waidmann, S., Peil, A., Tränkner, C., and Hanke, M.-
V. (2012). The MdTFL1 gene of apple (Malus x domestica Borkh.) reduces vegetative
growth and generation time. Tree Physiol. 32, 1288–1301. doi: 10.1093/treephys/tps080

Freiman, A., Golobovitch, S., Yablovitz, Z., Belausov, E., Dahan, Y., Peer, R., et al.
(2015). Expression of flowering locus T2 transgene from Pyrus communis L. delays
dormancy and leaf senescence in Malus × domestica Borkh, and causes early flowering
in tobacco. Plant Sci. 241, 164–176. doi: 10.1016/j.plantsci.2015.09.012

Freiman, A., Shlizerman, L., Golobovitch, S., Yablovitz, Z., Korchinsky, R., Cohen, Y.,
et al. (2012). Development of a transgenic early flowering pear (Pyrus communis L.)
genotype by RNAi silencing of PcTFL1-1 and PcTFL1-2. Planta 235, 1239–1251.
doi: 10.1007/s00425-011-1571-0

Fu, X. Z., Khan, E. U., Hu, S. S., Fan, Q. J., and Liu, J. H. (2011). Overexpression of the
betaine aldehyde dehydrogenase gene from Atriplex hortensis enhances salt tolerance in
the transgenic trifoliate orange (Poncirus trifoliata L. Raf.). Environ. Exp. Bot. 74, 106–
113. doi: 10.1016/j.envexpbot.2011.05.006

Geng, M., Shao, Y., Zhang, M., Zheng, X., Tan, B., Wang, W., et al. (2022).
Overexpression of peach NAC25 promotes anthocyanin biosynthesis in poplar
shoots. Fruit Res. 2, 1–9. doi: 10.48130/FruRes-2022-0021

Gerashchenkov, G. A., and Rozhnova, N. A. (2013). The involvement of
phytohormones in the plant sex regulation. Russ. J. Plant Physiol. 60, 597–610.
doi: 10.1134/S1021443713050063

Goldberg-Moeller, R., Shalom, L., Shlizerman, L., Samuels, S., Zur, N., Ophir, R., et al.
(2013). Effects of gibberellin treatment during flowering induction period on global
gene expression and the transcription of flowering-control genes in Citrus buds. Plant
Sci. 198, 46–57. doi: 10.1016/j.plantsci.2012.09.012

Gonsalves, C., Lee, D. R., and Gonsalves, D. (2007). The adoption of genetically
modified papaya in Hawaii and its implications for developing countries. J. Dev. Stud.
43, 177–191. doi: 10.1080/00220380601055650

Goonetilleke, S. N., March, T. J., Wirthensohn, M. G., Arús, P., Walker, A. R., and
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Polo-Oltra, Á., Romero, C., López, I., Badenes, M. L., and Zuriaga, E. (2020). Cost-
effective and time-efficient molecular assisted selection for PPV resistance in apricot
based on ParPMC2 allele-specific PCR. Agronomy 10, 1292. doi: 10.3390/
agronomy10091292

Pompili, V., Dalla Costa, L., Piazza, S., Pindo, M., and Malnoy, M. (2020). Reduced
fire blight susceptibility in apple cultivars using a high-efficiency CRISPR/Cas9-FLP/
FRT-based gene editing system. Plant Biotechnol. J. 18, 845–858. doi: 10.1111/
pbi.13253

Powell, W. A., Newhouse, A. E., and Coffey, V. (2019). Developing blight-tolerant
American chestnut trees. Cold Spring Harb. Perspect. Biol. 11, a034587. doi: 10.1101/
cshperspect.a034587

Putterill, J., and Varkonyi-Gasic, E. (2016). FT and florigen long-distance
flowering control in plants. Curr. Opin. Plant Biol. 33, 77–82. doi: 10.1016/
j.pbi.2016.06.008

Qiao, L., Niño-Sánchez, J., Hamby, R., Capriotti, L., Chen, A., Mezzetti, B., et al.
(2023). Artificial nanovesicles for dsRNA delivery in spray-induced gene silencing for
crop protection. Plant Biotechnol. J. 21, 854–865. doi: 10.1111/pbi.14001

Robertson, G., Hirst, M., Bainbridge, M., Bilenky, M., Zhao, Y., Zeng, T., et al. (2007).
Genome-wide profi l es of STAT1 DNA associat ion using chromatin
immunoprecipitation and massively parallel sequencing. Nat. Methods 4, 651–657.
doi: 10.1038/nmeth1068

Rottmann, W. H., Meilan, R., Sheppard, L. A., Brunner, A. M., Skinner, J. S., Ma, C.,
et al. (2000). Diverse effects of overexpression of LEAFY and PTLF, a poplar (Populus)
homolog of LEAFY/FLORICAULA, in transgenic poplar and Arabidopsis. Plant J. 22,
235–245. doi: 10.1046/j.1365-313x.2000.00734.x

Rutledge, Z., and Taylor, J. E. (2023). “Economic and societal aspects,” in Advanced
automation for tree fruit orchards and vineyards agriculture automation and control.
Eds. S. G. Vougioukas and Q. Zhang (Cham: Springer International Publishing), 219–
241. doi: 10.1007/978-3-031-26941-7_10

Ruttink, T., Arend, M., Morreel, K., Storme, V., Rombauts, S., Fromm, J., et al.
(2007). A molecular timetable for apical bud formation and dormancy induction in
poplar. Plant Cell 19, 2370–2390. doi: 10.1105/tpc.107.052811

Sahijram, L., and Bahadur, B. (2015). “Somatic embryogenesis,” in Plant biology and
biotechnology plant genomics and biotechnology. Eds. B. Bahadur, M. Venkat Rajam, L.
Sahijram and K. V. Krishnamurthy (New Delhi: Springer), 315–327. doi: 10.1007/978-
81-322-2283-5_15

Saito, T., Bai, S., Ito, A., Sakamoto, D., Saito, T., Ubi, B. E., et al. (2013). Expression
and genomic structure of the dormancy-associated MADS box genes MADS13 in
Japanese pears (Pyrus pyrifolia Nakai) that differ in their chilling requirement for
endodormancy release. Tree Physiol. 33, 654–667. doi: 10.1093/treephys/tpt037

Salojärvi, J., Smolander, O.-P., Nieminen, K., Rajaraman, S., Safronov, O., Safdari, P.,
et al. (2017). Genome sequencing and population genomic analyses provide insights
frontiersin.org

https://doi.org/10.1073/pnas.1902199116
https://doi.org/10.1111/j.1365-313X.2010.04185.x
https://doi.org/10.1111/j.1365-313X.2010.04185.x
https://doi.org/10.1111/j.1365-3040.2005.01395.x
https://doi.org/10.1002/9781118060773.ch5
https://doi.org/10.3390/plants12071567
https://doi.org/10.3389/fpls.2020.01003
https://doi.org/10.1002/pld3.68
https://doi.org/10.1021/acsnano.7b02884
https://doi.org/10.1021/acsnano.6b07600
https://doi.org/10.1093/aob/mcr164
https://doi.org/10.1093/aob/mcr164
https://doi.org/10.1038/hortres.2015.60
https://doi.org/10.1016/j.scienta.2012.03.005
https://doi.org/10.1016/j.cub.2022.04.011
https://doi.org/10.1093/jxb/erv454
https://doi.org/10.1016/j.foodchem.2022.135215
https://doi.org/10.1186/s12864-021-07694-z
https://doi.org/10.21273/HORTSCI13297-18
https://www.ogtr.gov.au/sites/default/files/files/2021-06/11_-_genetically_modified_gm_crops_in_Australia.pdf
https://www.ogtr.gov.au/sites/default/files/files/2021-06/11_-_genetically_modified_gm_crops_in_Australia.pdf
https://doi.org/10.1007/s10265-016-0863-7
https://doi.org/10.1093/treephys/tpaa049
https://doi.org/10.1093/treephys/tpaa049
https://doi.org/10.1016/j.cell.2016.04.038
https://doi.org/10.1080/14620316.2020.1822760
https://doi.org/10.1111/tpj.15686
https://doi.org/10.3390/genes12101635
https://doi.org/10.3390/genes12101635
https://doi.org/10.1016/j.plaphy.2023.01.030
https://doi.org/10.1093/hr/uhab008
https://doi.org/10.1038/85719
https://doi.org/10.1111/tpj.14993
https://doi.org/10.1111/pbi.12733
https://doi.org/10.17660/ActaHortic.2023.1362.30
https://doi.org/10.1007/978-1-59745-190-1_22
https://doi.org/10.1007/978-1-59745-190-1_22
https://doi.org/10.1111/j.1365-3040.2012.02558.x
https://doi.org/10.1111/j.1365-3040.2012.02558.x
https://doi.org/10.3390/agronomy10091292
https://doi.org/10.3390/agronomy10091292
https://doi.org/10.1111/pbi.13253
https://doi.org/10.1111/pbi.13253
https://doi.org/10.1101/cshperspect.a034587
https://doi.org/10.1101/cshperspect.a034587
https://doi.org/10.1016/j.pbi.2016.06.008
https://doi.org/10.1016/j.pbi.2016.06.008
https://doi.org/10.1111/pbi.14001
https://doi.org/10.1038/nmeth1068
https://doi.org/10.1046/j.1365-313x.2000.00734.x
https://doi.org/10.1007/978-3-031-26941-7_10
https://doi.org/10.1105/tpc.107.052811
https://doi.org/10.1007/978-81-322-2283-5_15
https://doi.org/10.1007/978-81-322-2283-5_15
https://doi.org/10.1093/treephys/tpt037
https://doi.org/10.3389/fpls.2023.1321555
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Kerr et al. 10.3389/fpls.2023.1321555
into the adaptive landscape of silver birch. Nat. Genet. 49, 904–912. doi: 10.1038/
ng.3862
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