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Development and verification of
a combined immune- and
cancer-associated fibroblast
related prognostic signature for
colon adenocarcinoma
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Xin Chen1,2,3, Wei Lu1,2,3, Hang Yang1,2,3, Dongliang Fu1,2,3,
Yimin Fang1,2,3, Xinyi Zhou1,2,3, Qian Xiao1,2,3, Yang Tang1,2,3*

and Kefeng Ding1,2,3*

1Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and
Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical
Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou,
Zhejiang, China, 2Department of Colorectal Surgery and Oncology, Zhejiang Provincial Clinical
Research Center for Cancer, Hangzhou, Zhejiang, China, 3Department of Colorectal Surgery and
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Introduction: To better understand the role of immune escape and cancer-

associated fibroblasts (CAFs) in colon adenocarcinoma (COAD), an integrative

analysis of the tumor microenvironment was performed using a set of 12

immune- and CAF-related genes (ICRGs).

Methods: Univariate and least absolute shrinkage and selection operator (LASSO)

Cox regression analyses were used to establish a prognostic signature based on

the expression of these 12 genes (S1PR5, AEN, IL20RB, FGF9, OSBPL1A, HSF4,

PCAT6, FABP4, KIF15, ZNF792, CD1B and GLP2R). This signature was validated in

both internal and external cohorts and was found to have a higher C-index than

previous COAD signatures, confirming its robustness and reliability. To make use

of this signature in clinical settings, a nomogram incorporating ICRG signatures

and key clinical parameters, such as age and T stage, was developed. Finally, the

role of S1PR5 in the immune response of COAD was validated through in vitro

cytotoxicity experiments.

Results: The developed nomogram exhibited slightly improved predictive

accuracy compared to the ICRG signature alone, as indicated by the areas

under the receiver operating characteristic curves (AUC, nomogram:0.838;

ICRGs:0.807). The study also evaluated the relationships between risk scores

(RS) based on the expression of the ICRGs and other key immunotherapy

variables, including immune checkpoint expression, immunophenoscore (IPS),

and microsatellite instability (MSI). Integration of these variables led to more

precise prediction of treatment efficacy, enabling personalized immunotherapy

for COAD patients. Knocking down S1PR5 can enhance the efficacy of PD-1

monoclonal antibody, promoting the cytotoxicity of T cells against HCT116

cells ((p<0.05).
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Discussion: These findings indicate that the ICRG signature may be a valuable

tool for predicting prognostic risk, evaluating the efficacy of immunotherapy, and

tailoring personalized treatment options for patients with COAD.
KEYWORDS
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Introduction

Colorectal cancer (CRC) is one of the most common malignant

tumors worldwide, with China and the United States ranking

second and fourth, respectively, in incidence and fifth and second,

respectively, in mortality (1). In 2020, it was estimated that over 1.9

million patients would be newly diagnosed with CRC, including

anal cancer, resulting in approximately 935,000 deaths, accounting

for roughly 10% of both newly diagnosed cancers and cancer deaths

worldwide (2). CRC is mainly treated with surgery, radiation and

chemotherapy, although immune checkpoint inhibitors have played

an increasingly important role in its recent treatment. The

KEYNOTE-177 clinical study indicated that pembrolizumab

should be the standard first-line treatment for patients with

microsatellite instability-high or mismatch repair-deficient (MSI-

H/dMMR) metastatic CRC (mCRC) (3). Only 13% of CRC patients,

however, are MSI-H, with the remaining CRC patients being

insensitive to immunotherapy (4). These differences in treatment

outcomes may be attributed primarily to the heterogeneity and

complexity within the tumor microenvironment (TME) (5). A

prognostic signature specific to the TME of CRC patients may

therefore aid in the effective delivery of immunotherapy.

The TME consists mainly of blood vessels, cancer-associated

fibroblasts (CAFs), the extracellular matrix (ECM), and tumor-

infiltrating immune cells (6). CAFs in the TME have several critical

functions, including remodeling of the extracellular matrix (ECM),

engaging in reciprocal signaling interactions with cancer cells and

communicating with infiltrating leukocytes (7). Both the CAFs and

tumor-infiltrating immune cells in the TME are indispensable in

regulating the occurrence and development of tumors. CAFs can

secrete a variety of cytokines and regulate immune cells through a

variety of pathways. Signals from other cells within the TME can

also influence CAF function. For example, activation of T cells can

induce their production of interferon-gamma (IFNg), a cytokine

that can stimulate CAFs to increase the expression of programmed

death-ligand 1 (PD-L1), with PD-L1 subsequently inhibiting the

activity of T cells (8).

Prognostic predictive signatures based solely on immune-related

genes have been developed. For example, a prognostic signature

based on immune-related genes was found to predict survival in CRC

patients and may reflect the state of the TME (9). In addition, a
02
prognostic signature was designed based on subsets of CAFs in CRC

and their interactions with nonspecific immune cells (10). These

findings indicate the importance of investigating the prognostic

implications of interactions between the immune system and CAFs.

The present study utilized RNA sequencing to assess differential

gene expression of CAFs stimulated with activated peripheral blood

mononuclear cells (aPBMCs) in patients with colorectal

adenocarcinoma (COAD). Immune- and CAF-related gene

signatures in COAD were subjected to systematic and

comprehensive integrative analyses, with the prognostic value of

these signatures were analyzed. A prognostic nomogram was

developed to provide a quantitative analytic tool for predicting

prognostic risk in patients with COAD.
Materials and methods

Data acquisition

Gene expression levels and clinical information of 476 patients

with COAD patients and 41 normal individuals were obtained from

the Cancer Genome Atlas (TCGA) database (https://

portal.gdc.cancer.gov/). In addition, gene expression levels and

clinical information of 566 patients with COAD were obtained

from the GSE39582 dataset in the Gene Expression Omnibus

(GEO) database (https://www.ncbi.nlm.nih.gov/geo/). The latter

patients were randomly allocated into two groups, a training

group (70%) and a testing group (30%). The testing group in the

TCGA-COAD cohort and the GEO cohort were used as internal

validation sets. Immune-related genes were obtained from the

ImmPort database (https://www.immport.org) (11). CAFs were

stimulated by aPBMCs, and changes in expression of CAF genes

were determined by RNA sequencing.
Preparation of primary cancer-
associated fibroblasts

CRC tumor tissue samples were collected from three patients of

the Second Affiliated Hospital of Zhejiang University, School of

Medicine. CRC tissue samples were obtained from fresh, surgically
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resected samples and transferred to the laboratory in phosphate-

buffered saline (PBS; Gibco, Carlsbad, CA) containing 10%

povidone iodine within 30 min. The tissue samples were rinsed

three times in PBS containing 500 U/mL streptomycin and

penicillin, minced with surgical scissors into 2–4 mm3 pieces and

plated in 60 mm-culture plates in RPMI 1640 containing 10% fetal

bovine serum (FBS; Gibco, Brazil), 100 U/mL streptomycin and

penicillin and 2.5 mg/mL amphotericin B. To ensure adherence to

the culture plate, the tissue specimens were not submerged in

culture medium. The tissue samples were cultured at 37°C in an

atmosphere containing 5% CO2, with the culture medium changed

every 3–4 days. One to three weeks after plating, the proliferating

fibroblasts could be observed near the minced tissue. The primary

CAFs were subsequently passaged and the remaining tissues were

discarded. The study protocol was approved by the ethical review

board of our institution (Approval number 2022-1130), and all

patients provided written informed consent for tumor resection.
Preparation of peripheral blood
mononuclear cells

Withdraw 6 ml of peripheral blood from one healthy individual,

placed it in an anticoagulant tube with Ethylene Diamine

Tetraacetic Acid (EDTA), and gently mixed by rocking it back

and forth to prevent blood coagulation. The blood samples were

collected from the Second Affiliated Hospital of Zhejiang

University, School of Medicine. Fresh anticoagulant-treated blood

samples were diluted 1:1 with PBS, with each sample layered onto 3

mL of Ficoll-Paque plus solution (Sigma). After centrifugation at

400 g for 15 min, the lymphocyte layer was collected and washed in

PBS. Erythrocytes were eliminated with red blood cell lysis buffer,

and the cells were again washed in PBS. The samples were

centrifuged, and the pellets, consisting of peripheral blood

mononuclear cells (PBMCs), were resuspended in RPMI1640

supplemented with 10% FBS and 1% penicillin/streptomycin and

incubated overnight in a Petri dish to allow monocyte adherence.

The following day, the cells in suspension were transferred to a

second culture bottle. PBMCs were activated by incubation with

anti-CD3/anti-CD28 dynabeads (Thermofisher, US) for 24 hours,

yielding preparations of aPBMCs.
Co-culture of CAFs and aPBMCs

PBMCs in DMEM were prepared as described above. Following

centrifugation and resuspension, a 20 µl aliquot was transferred to cell

counting plate (Counter Star Company) and counted with a cell

counter (Counter Star Company). The PBMCs were diluted to a

concentration of 150,000 cells/100 µl, with a 100 µl aliquot of diluted

PBMCs transferred to each well of a 96-well plate. A suitable volume of

anti-CD3/anti-CD28 Dynabeads (Gibco, Human) was washed with a

magnet stand, followed by removal of the supernatant, resuspension in

DMEM culture medium, and addition of a 3 µl aliquot of suspended

Dynabeads to each well of the 96-well plate containing PBMCs. The
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experimental group co-cultured CAFs and aPBMCs in a 6-well plate

for 24 hours. 2 x 105 aPBMCs were placed in the upper transwell

chamber (6-well plate chamber, 0.4mm pore size), with 2 x 105 CAFs in

the lower chamber. The control group co-cultured unactivated PBMCs

with CAFs for 24 hours. The experiment was conducted with 3

biological replicates.Subsequently, samples from both groups of CAFs

were collected for RNA sequencing to detect the expression level of

differential genes. And the P-value<0.05 and |log2 (fold change) > 1|

were considered as CAF-related differentially expressed genes (CRGs).
Clustering of non-negative
matrix factorization

Non-negative matrix factorization (NMF) is a matrix

factorization technique used to divide a matrix into two non-

negative matrices. DEGs in tumor and normal samples were

screened out based on a |log2 (fold change) > 1| and a false

discovery rate (FDR) < 0.05. DEGs correlating with prognosis

were screened out by univariate COX regression analysis, and the

COAD samples were classified based on the expression of

prognostic relevant genes using the “NMF” package. The number

of clusters K was set in the range of 2 to 10.
Development of the combined immune-
and CAF related prognostic signature

Prognostic genes in the TCGA training cohort were identified by

univariate Cox regression analysis, followed by least absolute

shrinkage and selection operator (LASSO) Cox regression analysis

using the “glmnet” package. Based on the median risk score (RS), the

training cohort was divided into two groups, a low-risk and a high-

risk group. The results obtained from the TCGA training cohort were

subsequently validated in the TCGA test cohort and the GEO cohort.

After the construction of the ICRG prognostic signature, the resulting

RS was combined with the clinicopathological information obtained

from patient records, and a prognostic nomogram predicting

outcomes in patients with COAD was constructed. The predictive

ability of the nomogram was assessed by determining survival risks.

The calibration curves were drawn using the “rms” package.
Evaluation of the responses
to immunotherapy

Comprehensive immunogenomic data were obtained from the

Cancer Immunome Database (TCIA) (https://tcia.at/home). The

relationships between ICRG signatures and predicted responses to

treatment were analyzed based on four immune checkpoints: PD1,

PD-L1,PD-L2 and CTLA4.In addition, the association between

ICRG signatures and MSI was assessed to determine the efficacy

of immunotherapy.
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T cell cytotoxicity assay

The plates were incubated for 48 hours to obtain aPBMCs, the

anti-CD3/anti-CD28 Dynabeads were removed magnetically, and

the cells were resuspended in DMEM containing IL-2 (10 ng/ml)

for another 5 days. This process can cool aPBMC to prevent non-

specific killing. HCT116 cells were transfected with negative control

short interfering RNA (si-NC) or si-S1PR5 for 48 hours and plated

at 10,000 cells per well in 96-well plates. The siRNA sequences are as

follows (5’→3’): si-NC: UUCUCCGAACGUGUCACGUTT;si-

S1PR5-1:CCGCUAUCUGUGCACUCUA(dT)(dT); si-S1PR5-2:

CAUCGUGCUAGAGAAUCUA(dT)(dT).The next day, 40,000

aPBMCs and anti-PD1 monoclonal antibody (4 mg/ml) were

added as appropriate to each well. Killed HCT116 cells were

measured after 48-72 hours, with the results verified by

microscopy and crystal violet staining.
ELISA assay for IFNg expression

After co-culturing PBMCs with HCT116, the supernatant was

collected and centrifuged to remove the cells. The Human IFNg
ELISA kit (Code: EK0373, Boster, China) was used to detect the

expression of IFNg in the supernatant. The supernatant was added

to each well of the enzyme-labeled plate in 100ul aliquots. The plate

was then covered with a sealing membrane and incubated at 37°C

for 90 minutes. After the liquid was removed from the enzyme-

labeled plate, the working solution of biotinylated anti-human

IFNG antibody (excluding the TMB blank colorimetric wells) was

added, and the plate was sealed for another 90 minutes at 37°C.

Following a wash, 100ul of ABC working solution was added to each

well (excluding the TMB blank colorimetric wells), and the plate

was sealed for 30 minutes at 37°C. After the wash, 90ul of TMB

color development solution was added to each well and incubated at

37°C in the dark for 25 minutes. Subsequently, 100ul of stop

solution was added to each well. The OD value at 450nm was

measured using an enzyme immunoassay analyzer, with the TMB

blank colorimetric well set as the control.
Statistical analysis

Univariate and multivariate Cox hazard regression analyses were

performed using the “survival” package of R software. Pearson

correlation analysis was performed using the “corrplot” package of

R software. Differences between two groups were evaluated using the

Wilcoxon test, and receiver operator characteristic (ROC) curves and

areas under the curve (AUC) analyzed using the “timeROC” package

in R sofware. Survival outcomes were determined by the Kaplan-

Meier method and compared by log-rank tests. All statistical analyses

were performed using R software (version 4.2.1), with P-values <0.05

considered statistically significant.
Frontiers in Immunology 04
Results

Classification of COAD subtypes according
to the NMF algorithm

CAFs and aPBMCs were co-cultured for 24 hours, and gene

expression levels in CAFs were measured by RNA-sequence analysis.

A total of 2013 CRGs were identified, and 2483 immune-related

genes (IRGs) were obtained from https://www.immport.org/

(Supplementary Table 1). These CRGs and IRGs were combined,

with 3415 ICRGs screened during follow-up. Analysis of the levels of

expression of these ICRGs in normal and colon cancer samples from

the TCGA database, resulted in the selection of 1095 significantly

DEGs with FDR<0.05 and |log2 (fold change) > 1|. The NFM

algorithm was applied to these 1095 DEGs to identify three

molecular subtypes (Figure 1A). The appropriate rank values were

determined by analyzing the cophenetic, silhouette, and dispersion

metrics (Supplementary Figures 1, 2), with a heatmap showing the

expression of genes in the different clusters (Figure 1B). Kaplan–

Meier analysis showed that overall survival (OS) (P=0.05) and

progression free survival (PFS) (P=0.002) were significantly lower

in Cluster 2 than in Clusters 1 and 3 (Figures 1C, D). Evaluation of

the status of the TME showed that immune cell infiltration and

stromal infiltration were significantly higher in Cluster 1 than in

Clusters 2 and 3 (P<0.001) (Figure 1E). Furthermore, analysis of the

infiltration of 10 types of immune cells showed that immune cell

infiltration was highest in Cluster 1 and lowest in Cluster 2

(Figure 1F). The higher level of immune cell infiltration in Cluster

1 may indicate that this cluster was associated with a stronger

immune response than the other clusters. A heatmap showed that

the infiltration of endothelial cells, fibroblasts, myeloid dendritic cells

and cells of the monocytic lineage was higher in Cluster 1 than in the

other two clusters (Figure 1G).
Construction of an ICRG prognostic
signature by LASSO Cox regression analysis

The TCGA-COAD cohort was randomly split into two

subgroups, a training cohort (70%) and a testing cohort (30%),

which showed no significant differences in clinical characteristics

(Supplementary Table 2). Based on the above results, we performed

univariate analysis on 1905 significantly different ICRGs and

selected 47 prognostic-related ICRGs, followed by application of

the LASSO-Cox regression algorithm to the selected ICRGs in the

TCGA training cohort. Based on coefficients of independent

variables and optimal log values of lambda in LASSO regression

analysis, 23 genes were identified (Figures 2A, B). Risk scores (RS)

were subsequently calculated by multivariate Cox regression

analysis, resulting in an ICRG signature based on 12 genes

(SIPR5, AEN, IL20RB, FGF9, OSBPL1A, HSF4, PCAT6, FABP4,

KIF15, ZNF792, CD1B and GLP2R) (Figure 2C), along with their

corresponding coefficients (Supplementary Table 3).
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FIGURE 1

Identification of molecular subtypes of colon adenocarcinoma (COAD) using a non-negative matrix factorization (NMF) algorithm. (A) Heatmap of an
NMF consensus matrix of K = 3. (B) Unsupervised clustering of the immune- and CAF-related genes (ICRGs) expression profiles of the three clusters.
The heatmap displayed the expression levels of ICRG within the three clusters based on NMF classification. (C, D) Analysis of the differences in
survival among the three clusters based on the NMF algorithm. Kaplan–Meier analysis of the (C) overall survival (OS) and (D) progression-free survival
(PFS) of patients with the three subtypes of COAD. (E) Comparison of the TME scores of the three subtypes using the estimate algorithm. The TME
scores were divided into stromalscore, immunescore, and estimatescore, with cluster 2 having the lowest scores, showing significant discrepancies
(P<0.001). (F) Comparison of MCP counter algorithm-derived immune scores of the three subtypes. The bar chart showed the infiltration levels of
immune cells in the tumor immune microenvironment of three subgroups. (G) Immune scores of immune cells for ESTIMATE and MCP counter
algorithms displayed on the heatmap. P < 0.05, **P < 0.01, ***P <0.001, ****P<0.0001.
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Based on the median RS, the TCGA training cohort was divided

into two groups, those with high RS and low RS, to predict the

prognosis of patients with COAD. A risk plot was generated to show

played the distribution of RSs and their relationship to survival

outcomes and a heatmap showed the levels of expression levels of

risk genes in the high and low RS groups (Figures 2D, E,

Supplementary Table 4). Kaplan–Meier analysis showed that

patient prognosis was significantly lower in the high than in the

low RS group (P<0.001) (Figure 2F). Analysis of the areas under the

curve (AUCs) of the ICRG risk model showed that the 1-, 3, and 5-
Frontiers in Immunology 06
year AUCs were 0.868, 0.810 and 0.770, respectively (Figure 2G).

These results showed that this prognostic model based on ICRGs

had good predictive performance in patients with COAD.
Validation of the ICRG
prognostic signature

To further evaluate the predictive value of this ICRG risk model,

it was used to analyze the TCGA testing cohort and TCGA-COAD
A B

D E

F G

C

FIGURE 2

Determination of a prognostic signature for ICRGs by LASSO Cox regression analysis of the TCGA training cohort. (A) Determination of the
coefficients of independent variables by LASSO Cox regression analysis. (B) Calculation of the optimal lambda value, as indicated by the first black
dotted line from the left on the logarithmic scale. (C) Bar chart showing the correlation coefficients of each gene that constituted the ICRG
prediction signature. (D) Distribution of risk score (RS) and survival status according to the ICRG prediction signature. (E) Heat map depicting the
gene expression profiles of the ICRGs included in high-risk and low-risk groups based on the prognostic signature. (F) Kaplan-Meier analysis
comparing survival rates in the high-risk and low-risk groups, which were classified based on the median RS. The prognosis of patients in the high-
risk group was significantly lower than that of the low-risk group, with statistical significance (P<0.001). (G) ROC curves showing the predictive
accuracy of the ICRG prognostic signature at 1, 3, and 5 years.
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cohort for internal validation and the GEO cohort for external

validation. Each of these cohorts was divided into two groups, those

with high and low RS. The relationships between the distribution of

risk groups and patient survival status are shown in Figures 3A–C,

with a heatmap showing the expression of ICRGs in this risk model

(Figures 3D–F). Kaplan-Meier analysis of survival in the testing
Frontiers in Immunology 07
cohorts was also performed to validate the prognostic value of this

ICGR risk model. Patient prognoses were significantly higher in the

low than in the high RS groups in the TCGA testing cohort

(P=0.011), the TCGA-COAD cohort (P<0.001) and the GEO

cohort (P<0.001) (Figures 3G–I). Moreover, the 1-year AUCs of

the risk model in the TCGA testing cohort, the TCGA-COAD
A B

D E F

G IH

J K L

C

FIGURE 3

Internal and external validation of the prognostic value of the ICRG signature in the TCGA testing cohort (A, D, G, J), the entire TCGA-COAD cohort
(B, E, H, K), and the GEO cohort (C, F, I, L). (A-C) Distribution of risk scores (RS) and survival status in the internal and external cohorts. (D-F) Heat
maps showing the gene expression profiles of the ICRGs in high-risk and low-risk groups. (G-I) Kaplan-Meier analysis comparing the survival rates in
the high-risk and low-risk groups based on ICRG signature. (J-L) ROC curves showing the predictive accuracy of the IMRG prognostic signature at 1,
3, and 5 years.
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cohort and the GEO cohort were 0.707, 0.821 and 0.655,

respectively, validating the good predictive performance of this

model in patients with COAD (Figures 3J–L).
Relationships between the ICRG
prognostic signature and
clinical characteristics

To further explore the associations between the ICRG

prognostic signature and patients’ clinical characteristics, RSs

were compared in the TCGA-COAD cohort using independent t

tests. Based on their clinical characteristics, patients were grouped

into high and low risk groups and differences in prognosis were

determined. Prognosis was significantly worse in patients in the

high-risk than in the low-risk group based on clinical
Frontiers in Immunology 08
characteristics, such as age (P<0.001), gender (P<0.001), T3-4

status (P<0.001) and stage (P<0.001) (Figures 4A–D). Analyses of

differences in RSs between groups classified by clinical features

showed that RS was not affected by age or gender (Figure 4E). In

contrast, RSs increased gradually and significantly as tumor stage

and TNM increased (Figures 4F, G). These results demonstrated

that this prognostic signature based on ICRGs showed a high degree

of overall predictive power across various clinical characteristics.

In addition, the entire TCGA-COAD cohort was subjected to

gene set enrichment analysis (GSEA) to identify gene sets

significantly associated with both the low-risk and high-risk

groups. Genes enriched in the low-risk group were associated

with chemokine and cytokine pathways, whereas genes enriched

in the high-risk group were associated with tumor-related

signaling pathways (Figure 4H). Pathway enrichment analysis

therefore showed that changes in signaling pathways and
A B

D

E F

G H

C

FIGURE 4

Correlations between the ICRG prognostic signature and clinical features in patients with COAD. (A–D) Kaplan-Meier analysis of overall survival (OS)
in COAD patients assorted by (A) age (<65 vs. ≥ 65 years), (B) sex (males vs. females), (C) TNM stage (TI-II vs. TIII-IV) and (D) tumor stage (I-II vs. III-
IV). (E–G) Relationships between risk scores (RS) and clinical characteristics, including age, sex, TNM stage and tumor stage. (H) Results of GSEA
enrichment analysis in both the high-risk and low-risk groups.
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chemokines could lead to differences in immune states in low- and

high-risk groups.
Comparison of the ICRG prognostic
forecasting model with other
published models

The relative predictive ability of the immune- and CAF-

associated model described in this study was compared with the

predictive ability of four previously-described prognostic models

(12–15). To ensure the comparability of these signatures, the same

method for calculating and converting the RS was applied to the

entire TCGA-COAD cohort. Three of the previously published

signatures were effective in categorizing the COAD samples into

high- and low-risk groups, with the differences being statistically

significant (Figures 5A–D). However, ROC curve analysis showed
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that the AUCs in the present model were higher than those of the

four previously published signatures. Specifically, the present model

had AUCs of 0.821, 0.803, and 0.732 for 1-, 3-, and 5-year survival,

respectively (Figures 5E–H). In addition, the C-index of the present

model was highest at 0.78, whereas the four other signatures had C-

indices of 0.651 (16), 0.633 (17), 0.636 (18), and 0.609 (19). These

results suggest that the prognostic performance of the ICRG

prognostic signature consistently outperformed other evaluated

signatures (Figure 5I).
Development of a nomogram using the
ICRG prognostic signature and assessment
of its clinical relevance

The clinical suitability of the ICRG prognostic signature was

determined by Cox regression analyses of the TCGA-COAD
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FIGURE 5

Comparison of the predictive accuracy of the ICRG prognostic signature with that of four previously published signatures. (A-D) Kaplan–Meier
survival curve analysis of the four published signatures. (E-H) ROC curves showing the predictive accuracy of the four published signatures.
(I) Comparison of the C-indices of the ICRG prognostic model with that of the other four prognostic models.
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cohort. RS correlated significantly with prognosis on both

univariate (P < 0.001) (Figure 6A) and multivariate (P < 0.001)

(Figure 6B) regression analyses. A reliable nomogram predicting

survival risk for individuals was constructed based on multiple

regression analysis, which found that three variables, age, stage, and
Frontiers in Immunology 10
RS, had P values <0.05 (Figure 6C). Moreover, calibration curves

suggested a strong correlation between the survival rates predicted

by the nomogram and the actual survival rates (Figure 6D).

Decision curve analysis (DCA) can be used to evaluate the

practical clinical benefit of the nomogram. These curves are based
frontiersin.o
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FIGURE 6

Construction of a nomogram based on the ICRG prognostic signature and evaluation of its clinical significance in the TCGA-COAD cohort.
(A, B) Univariate and multivariate Cox regression analyses assessing the relationships between risk scores (RS) and clinical characteristics of patients
in the TCGA-COAD cohort. (C) Development of a nomogram model predicting 1-, 3-, and 5-year overall survival (OS) in the TCGA-COAD cohort.
The nomogram assigned points to each variable, with the points added to calculate a total score for each patient. Based on this score, the bottom
scale was used to predict the probability of OS at the specified time points. (D) Calibration curve evaluating the agreement between the predicted
probabilities of survival at 1-, 3-, and 5-years generated by the nomogram and the actual survival outcomes. The graph visually displays the degree
of consistency between the predicted and observed survival rates. (E) DCA curve analysis of the clinical value of the nomogram model.
(F) Comparison the ROC curves of clinical factors and the risk model. The nomogram model demonstrates better accuracy and performance in
predicting the survival of patients with COAD.
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on a series of possible thresholds and can compare the net benefit of

the model with other decision strategies. If the net benefit of the

nomogram was higher than that of other decision strategies, then

this model was considered to have clinical value. DCA showed that

the nomogram had better predictive ability than any other
Frontiers in Immunology 11
predictors (Figure 6E). In additionally, the nomogram had an

AUC of 0.838, outperforming other variables (Figure 6F). Thus,

these findings showed that the ICRG-based nomogram correlated

significantly with patient prognosis, suggesting that this nomogram

could effective aid in predicting cancer progression.
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FIGURE 7

Prognostic ability of the ICRG signature to predict patient response to immunotherapy. (A) Correlation analyses of RS, MSI, and immune-related
cells. (B) Comparative expression of immune checkpoint molecules (e.g. CD274, MSH6, MCM6, POLE2 and MSH2) in the high- and low-risk groups.
(C) Heatmap showing the correlations between RS and immune checkpoint expression. (D) Comparative immune cell infiltration in the high- and
low-risk groups. (E) Heatmap showing the correlations between RS and immune cell infiltration. (F) Correlation between RS and four IPS scores
associated with a single ICI (anti-CTLA4 or anti-PD1) or their combination.
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Ability of the ICRGs prognostic signature to
predict response to immunotherapy

To better understand the impact of the IMRG prognostic

signature on immunotherapy outcomes, the correlations between

RSs and the level of immune infiltration within the TME were

analyzed. RS showed a positive correlation with the infiltration of

cytotoxic lymphocytes and fibroblasts (Figure 7A). Moreover, the

levels of expression of immune checkpoint proteins, including

CD274, CTLA4, MSH6, MCM6, POLE2, andMSH2, were found to

differ significantly in the high- and low-risk groups (Figure 7B),

indicating a close relationship between RS and immune

checkpoint proteins (Figure 7C). The proportions of B cells,

monocytes, and myeloid dendritic cells were lower, whereas the

proportions of fibroblasts were higher, in the high- than in the

low-risk group (Figure 7D). Furthermore, correlation analysis

showed that RS correlated significantly with cytotoxic

lymphocytes and fibroblasts (Figure 7E). Analysis of the

correlation between RS and IPS, which are valuable predictors

of the effectiveness of immunotherapy, showed significant

differences in IPS and IPS-CTLA4 between the high- and low-
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risk groups (Figure 7F). These results suggested that the

prognostic signature based on ICRGs could indicate immune

infiltration status and predict patient response to immunotherapy.
Downregulation of S1PR5 improved the
efficacy of anti-PD1 treatment in CRC

T cell killing experiments were performed to verify the role of

S1PR5 in CRC immunity. PBMCs from healthy donors were

activated for 48 hours with CD3/CD28 beads to obtain aPBMCs.

To reduce non-specific killing, aPBMCs were incubated in the cold

for 5 days and co-cultured with HCT116 cells in which S1PR5 had

been knocked down, followed by the addition of anti-PD1 to test the

effect of S1PR5 on T cell killing ability (Figure 8A). Western blotting

showed that transfection of S1PR5 siRNA downregulated S1PR5

protein expression in HCT116 cells (Figure 8B). Crystal violet

staining results showed that knock down of S1PR5 did not

significantly increase the cytotoxic capacity of T cells, whereas the

addition of anti-PD1 monoclonal antibody significantly enhanced

the cytotoxic capacity of T cells (P<0.01) (Figures 8C, D). IFNg was
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FIGURE 8

Effect of S1PR5 knockdown on the therapeutic efficacy of anti-PD1 monoclonal antibody. (A) Diagram of the T-cell killing assay. (B) Effect of si-
S1PR5 on the expression of S1PR5 protein, as shown by western blotting. (C-E) Effect of S1PR5 knockdown and anti-PD1 antibody on T-cell
cytotoxicity, as shown by crystal violet staining, with fewer tumor cells and a smaller staining area indicating stronger T-cell killing ability.
Knockdown of S1PR5 alone did not significantly enhance T-cell killing ability (p>0.05), whereas the combination of S1PR5 knockdown and treatment
with anti-PD1 antibody significantly enhancing T-cell killing ability (p<0.05). The expression level of IFNg in cell culture supernatants is detected using
ELISA method. Knocking down S1PR5 alone or using PD1 monoclonal antibody treatment did not significantly upregulate the expression levels of
IFNg, while the combination of s1PR5 knockdown with PD1 monoclonal antibody treatment significantly upregulated the expression levels of IFNg
(P<0.001). (F, G) Clonogenic assay, showing that S1PR5 knockdown did not affect the proliferation of HCT116 cells (p>0.05).
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one of the markers of T cell activation and can effectively reflect the

cytotoxicity of T cells. We concurrently performed an ELISA-based

detection of the protein expression level of IFNg in the cell

supernatant. The experimental results indicated a significant

upregulation in the expression of IFNg in the group with

knockdown of S1PR5 combined with PD1 monoclonal antibody

(P<0.001), suggesting that the knockdown of S1PR5 significantly

enhanced the efficacy of PD1 monoclonal antibody, thereby

promoting the cytotoxicity of T cells (Figure 8E). To exclude

cytotoxicity resulting from cell proliferation, the effects of S1PR5

on colorectal cancer cell proliferation were evaluated by testing

clone formation. S1PR5 knockdown did not affect clone formation

by HCT116 cells, suggesting that S1PR5 does not affect tumor

proliferation (P>0.05) (Figures 8F, G). Taken together, these results

indicate that knocking down S1PR5 can effectively enhance the

therapeutic efficacy of anti-PD1 and promote the killing ability of T

cells, suggesting that inhibition of S1PR5 could promote the

therapeutic effects of anti-PD1.
Discussion

The emergence of cancer immunotherapies and immune

checkpoint inhibitors (ICIs) has enhanced the ability to treat

cancer patients. To date, the programmed cell death-1 (PD-1)/

programmed cell death ligand-1 (PD-L1) signaling pathway has

been the most extensively studied pathway in tumor

immunotherapy (20). Activation of this pathway can inhibit T

cell proliferation, differentiation and secretion of cytokines, thus

inhibiting T cell activity, impairing tumor immunosurveillance and

triggering tumor immune tolerance and escape (21). Although ICIs

have changed the treatment pattern of many tumors, the

therapeutic effects of ICIs in some tumors are not obvious. One

of the main factors affecting the therapeutic effects of ICIs is the

complex TMEs, which are composed of CAFs and immune cells.

CAFs play an important role in tumor immunity. Activation of the

immune system and T cells can trigger the expression of multiple

inflammatory cytokines by CAFs (22). This can result in a polarized

imbalance of immune cells in the TME, making it difficult even for

existing immune cells to effectively attack tumor cells (22).

Simultaneously, CAFs can inhibit the function of immune cells,

reducing the effectiveness of immune responses (23). The

significant roles played by immune cells and CAFs in the TME

suggest that the model described in the present study, based on the

expression of immune and CAF-related genes, will accurately

predict prognosis in patients with COAD. A thorough evaluation

of immune and CAF-related genes in COAD can aid in the

identification of new methods and pathways that can improve the

efficacy of immunotherapy and enhance patient prognosis.

Co-cultivation of aPBMCs with CAFs enabled detection of

changes in gene expression levels in CAFs and identification of

CAF-related genes. Combining CAF-related genes with immune

genes enabled identification of ICRGs, including those differentially

expressed in the TCGA database. The TCGA-COAD cohort was

divided into three subtypes using the NMF algorithm, and 1095

DEGs were classified. Findings from the ESTIMATE (24) and MCP
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counter showed that the degree of immune cell infiltration was higher

in Cluster 2 than in Clusters 1 and 3, a difference that may have

contributed to poorer prognosis in Cluster 2. These findings also

suggest that the TME in Cluster 2 may be immunosuppressive. A

prognostic signature based on 12 ICRGs was assessed in the TCGA

training cohort using univariate and LASSO Cox regression analyses.

The resulting predictive model categorized patients into high and

low-risk groups based on their median RS, with further analysis

showing that pathological and TNM stages were more advanced in

the high-risk group. Regardless of clinical factors, however, this

prognostic model showed exceptional predictive performance and

was successfully validated in both internal and external cohorts. The

C-index of this ICRG prognostic signature was notably better than

the C-indices of four previously described signatures. Overall, these

findings indicate that the prognostic signature based on ICRGs has

superior prognostic ability than other prognostic signatures.

The ICRG model described in this study was based on 12 genes,

all of which are involved in both tumors and the immune system.

For example, CD1B plays significant roles in antigen presentation in

the immune system (25) and in the progression of various solid

malignancies (18). The present study showed that the gene with the

highest coefficient was S1PR5 (0.90782435), suggesting that higher

levels of expression of S1PR5 in CRC patients were associated with

greater risk of progression and poorer prognosis. Sphingosine-1-

phosphate (S1P), a metabolite of cell membrane sphingolipids, is a

ubiquitous lysophospholipid signaling molecule that regulates

various biological functions through binding to five subtypes of

S1P receptors (S1PR1–S1PR5), all of which belong to the family of

G-protein coupled receptors (GPCRs). Inhibitors have been

developed against all S1PRs or specific S1PRs, with some of them

being utilized clinically as immunomodulators. For example,

fingolimod is an inhibitor that binds to S1PR1, 3, 4, and 5 (16).

Although S1PR5 was originally believed to be primarily located

in the nervous system, recent research has indicated that it is also

involved in the proliferation and migration of gastric and

esophageal cancer cell lines (17). For example, the level of

expression of S1PR5 was found to be significantly higher in

malignant than in benign colon tissues (19). However, the role of

S1PR5 in CRC immunity has not yet been determined. The results

of the present study suggested that knocking down S1PR5 can

significantly promote T cell killing ability and enhance the

therapeutic effect of anti-PD1 antibody. These results indicated

that S1PR5 played an important role in the development of CRC,

and may become a new target in the treatment of CRC.

The present study had several strengths. First, the prognostic

ICRG signature was validated in several datasets, including internal

and external cohorts, making it highly reliable and robust. Second, a

highly useful nomogram was developed to assist in quantitative

calculations, suggesting that this nomogram may be useful in

clinical applications. Third, this study found that S1PR5 could

affect T-cell cytotoxicity, making it a potential target for intervention.

This study also had several limitations. Most importantly, the

development of both the ICRG prognostic signature and the

nomogram was based on a retrospective analysis of data. This

prognostic signature and nomogram will therefore require

validation in large multicenter prospective patient cohorts.
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Conclusion

The present study described the development of an ICRG

prognostic signature, which incorporated immune- and CAF-

related genes. This signature was found to be more accurate in

predicting both prognostic risk and the efficacy of immunotherapy

in patients with COAD. This prognostic signature was subsequently

used to develop a personalized quantitative nomogram, which can

be valuable in designing personalized treatments of patients

with COAD.
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