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Predicting rapid intensification
of tropical cyclones in the
western North Pacific: a machine
learning and net energy gain
rate approach
Sung-Hun Kim1, Woojeong Lee2*, Hyoun-Woo Kang1

and Sok Kuh Kang1

1Korea Institute of Ocean Science and Technology, Busan, Republic of Korea, 2Forecast Research
Department, National Institute of Meteorological Sciences, Seogwipo, Jeju, Republic of Korea
In this study, a machine learning (ML)-based Tropical Cyclones (TCs) Rapid

Intensification (RI) prediction model has been developed by using the Net Energy

Gain Rate Index (NGR). This index realistically captures the energy exchanges

between the ocean and the atmosphere during the intensification of TCs. It does

so by incorporating the thermal conditions of the upper ocean and using an accurate

parameterization for sea surface roughness. To evaluate the effectiveness of NGR in

enhancing prediction accuracy, five distinct ML algorithms were utilized: Decision

Tree, Logistic Regression, Support Vector Machine, K-Nearest Neighbors, and Feed-

forward Neural Network. Two sets of experiments were performed for each

algorithm. The first set used only traditional predictors, while the second set

incorporated NGR. The outcomes revealed that models trained with the inclusion

ofNGR exhibited superior performance compared to those that only used traditional

predictors. Additionally, an ensemblemodel was developed by utilizing a hard-voting

method, combining the predictions of all five individual algorithms. This ensemble

approach showed a noteworthy improvement of approximately 10% in the skill score

of RI prediction when NGR was included. The findings of this study emphasize the

potential ofNGR in refining TC intensity prediction and underline the effectiveness of

ensemble ML models in RI event detection.
KEYWORDS

rapid intensification of the tropical cyclone, drag coefficient, tropical cyclone-ocean

interaction, tropical cyclone-induced vertical ocean mixing, machine learning
1 Introduction

Tropical cyclones (TCs), as one of the most devastating natural hazards in the world,

have caused huge social, and economic damage and loss of life. The recent global

TC activity showed a significant increasing trend in major TCs, rapid intensification

(RI) events, and TC-induced damage (Balaguru et al., 2018; Kossin et al., 2020;
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Klotzbach et al., 2022). Many studies have warned the possible

serious disasters due to the increase in the very intense TC

frequency above category 4 and lifetime maximum intensity, with

human-induced climate change (Murakami et al., 2013; Knutson

et al., 2020). To reduce the damage of the TCs in the future

anticipated to become much stronger, the demand for more

accurate forecasts of TC intensity is greater than ever. While

there has been some recent progress in intensity prediction due to

the emergence of several skillful guidance, the prediction of RI

defined as a change in maximum sustain wind 30 kt per 24-hr

(Kaplan and DeMaria, 2003) remains a challenging area of several

operational TC centers (DeMaria et al., 2021).

There have been many attempts and efforts to improve intensity

change, including RI, prediction skills based on statistical (DeMaria

and Kaplan, 1994; DeMaria and Kaplan, 1999; Li et al., 2018) or

dynamical approaches (Bender et al., 2007; Biswas et al., 2018; Liu

et al., 2020; Zhang et al., 2020; Zhang et al., 2023), or their

combination (Knaff et al., 2005; Kim et al., 2018) over past few

decades. TC intensity prediction of statistical models have been

developed utilizing diverse statistical method such as multiple linear

or logistic regression (DeMaria and Kaplan, 1994; Rozoff and

Kossin, 2011; Li et al., 2018). The dynamical approaches largely

focused on improving model physics (Chen et al., 2022; Lee et al.,

2022; Wang et al., 2022), increasing model horizontal and vertical

resolutions (Feng and Wang, 2021; Magnusson et al., 2021),

improving TC vortex initialization (Liu et al., 2020; Li et al.,

2021) and data assimilation (Zhang et al., 2020; Lu et al., 2022).

The statistical-dynamical models have been primarily

developed over the decades in two respects: (1) by applying new

statistical approaches and (2) by finding atmospheric and oceanic

predictors highly related to TC intensity change. With the

development of new learning algorithms and computer

technology, more complicated machine learning (ML) techniques

have been applied to predict TC intensity change, besides

conventional statistical regression approaches such as multi-linear

(Kim et al., 2018), Bayesian (Song et al., 2018), logistic (Rozoff and

Kossin, 2011; Kaplan et al., 2015) and regression trees (Gao et al.,

2016). Cloud et al. (2019) and Su et al. (2020) showed that neural

network methods can provide more accurate predictions of TC

intensity change, including RI. Shaiba and Hahsler (2016) predicted

RI events with popular ML-based models, support vector machines

(SVM), logistic regression, Naïve-Bayes classifier, and classification

and regression trees classifier. Mercer and Grimes (2017) performed

an ensemble of the three ML methods, SVM, artificial neural

networks, and random forests to generate probabilistic RI

forecasts for Atlantic TCs. Griffin et al. (2022) developed a

probabilistic model for predicting RI in Atlantic and eastern

North Pacific TCs based on a convolutional neural network

(CNN). Xu et al. (2021) developed a TC intensity prediction

model based on multilayer perceptron (MLP) for the Atlantic

basin. Wei et al. (2023) used the CNN to predict the occurrence

of RI and non-RI. These advanced ML-based prediction results have

been shown to outperform skill existing several operational TC

intensity guidance.

Before the applying ML methods in TC intensity forecasting, it

is known that the statistical-dynamical-based forecast models using
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climatological, persistence, and numerical model predictors provide

the highest skill in intensity (Goldenberg et al., 2015; Kim et al.,

2018). Yamaguchi et al., 2018; Xu et al., 2021; Ko et al., 2023). The

statistical-dynamical model developed by Kim et al. (2018) showed

the smallest mean absolute errors at short lead time (up to 24 h) for

TC intensity prediction compared to operational dynamical forecast

models (Kim et al., 2018). After a 24-h lead time, their model

showed still comparable to the best operational dynamical models

such as Global Forecast System (GFS) and Hurricane weather

research and forecasting model (HWRF). The Typhoon Intensity

Forecast Scheme (TIFS) for western North Pacific (WNP) using

SHIPS and Global Spectral Model (GSM) of Japan Meteorological

Administration (JMA) showed the considerable forecast skill

relative to the GSM and stated that TIFS has helped improve the

accuracy of JMA intensity forecasts (Yamaguchi et al., 2018). With

the advent of ML in recent years, ML-based TC intensity prediction

studies demonstrated outperformed results the statistical-

dynamical models. The MLP model correctly predicted more RI

events than other operational TC intensity models as well as

outperformed the statistical-dynamical models such as SHIPS,

DSHIPS and LGEM by 5-22% in simulating real-time operational

forecasts (Xu et al., 2021). A Consensus Machine Learning (CML)

model with the input data extracted from HWRF for TC intensity

change, especially for RI reached 56% the probability of detection

(POD) and 46% the false alarm ratio (FAR), while the operational

models (GFS, HWRF, SHIPS) had only 10-30% POD but 50-60%

FAR (Ko et al., 2023).

The vertical wind shear is the most important atmospheric

predictor of TC intensity change, with large wind shear generally

being unfavorable for intensification (DeMaria and Kaplan, 1994).

In the oceanic predictors, the intensification potential (POT)

defined as the difference between maximum potential intensity

(MPI) and maximum wind at the initial time has been considered

the most important predictor (Kaplan et al., 2010). These predictors

have been essentially included in the predictor pools in the

representative operational TC intensity prediction models,

Statistical Hurricane Intensity Prediction Scheme (DeMaria and

Kaplan, 1994; DeMaria and Kaplan, 1999), and Statistical Typhoon

Intensity Prediction Scheme (Knaff et al., 2005; Kim et al., 2018).

The MPI enables estimating the theoretical maximum intensity

of TC given the atmospheric environment and ocean sea surface

temperature (SST) (Emanuel, 1988; Emanuel, 1995). However, it

often overestimates the maximum intensity of the TC because it

does not consider TC-induced SST cooling. Lin et al. (2013)

modified the MPI by using depth-averaged temperature (DAT)

(Price, 2009) instead of SST and suggested the ocean coupling

potential intensity (OC_PI). They demonstrated that OC_PI which

reflects the ocean cooling effect by TC-induced vertical mixing can

more realistically estimate the maximum intensity of TCs than MPI.

Although the effects and importance of wind speed-dependent

exchange coefficients on TCs have been demonstrated in several

previous studies (Ooyama, 1969; Emanuel, 1986), the OC_PI still

uses a default value of the enthalpy exchange coefficient (Ck) and

drag coefficient (Cd). Lee et al. (2019); LEE19 emphasized that

changes in sea surface roughness due to wind significantly impact

flux exchange in the air-sea interface. They revised the OC_PI by
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calculating a more realistic frictional dissipation, considering

the wind-dependent Cd. This new predictor called the Net Energy

Gain Rate (NGR), improved the 24-hour TC intensity prediction by

16% and outperformed traditional POTs, which are generally

considered the most reliable predictors in statistical-dynamical

TC intensity models. Kim S. H. et al. (2022) explored the impact

of a reduced Cd in high winds on TC intensity, specifically focusing

on RI and lifetime maximum intensity. Utilizing the NGR as a

key metric, the study delved into how each term of NGR is

influenced by the decrease in Cd. They found that reduced Cd in

high winds lessens frictional dissipation and limits sea surface

cooling, leading to an increase in net energy that significantly

influences TC intensification.

In this study, we propose a simple deterministic binary

classification model based on popular and primarily used five ML

classifiers and ensemble methods to predict an RI event. Each model

was trained and tested using the NGR which considers wind-

dependent Cd and ocean cooling effect by TC-induced vertical

mixing in addition to the widely used predictors. A verification of

each model is conducted using the confusion matrix. The results

will be compared to the results of the latest studies based on a

similar idea and finally show that RI prediction can be used to

improve intensity forecasts.
2 Data and methods

2.1 Data

For this research, we used the best track dataset for TCs inWNP

with wind speeds of 34 kt or higher. This data was provided by the

Joint Typhoon Warning Center (JTWC) and spans from 2004 to

2021. Oceanic variables, specifically SST and DAT, were computed

using analysis/reanalysis data from the Hybrid Coordinate Ocean

Model and the Navy Coupled Ocean Data Assimilation nowcast/

forecast system (HYCOM+NCODA), as provided by the Naval

Research Laboratory. DAT values were calculated at varying depths

ranging from 10 m to 120 m, at 10 m intervals (DAT10 through

DAT120). These values were used to compute various oceanic

components such as MPI (MPI10 to MPI120, henceforth referred

to as MPIs), POT (POT10 to POT120, henceforth referred to as

POTs), OC_PI (OC_PI10 to OC_PI120, henceforth referred to as

OC_PIs), and NGR (NGR10 to NGR120, henceforth referred to as

NGRs). Atmospheric variables were obtained from the Global

Forecasting System analysis, provided by the National Centers for

Environmental Prediction (NCEP), with a spatial resolution of 1° x

1° and a temporal resolution of 6 hours. The average radius of gale-

force winds in WNP is approximately 200 km (Kim et al., 2022).

Wang and Toumi (2021) have identified that the effective radius for

TC-induced sea surface cooling is roughly of the same magnitude.

To accurately capture the effects caused by a TC, we averaged both

oceanic and atmospheric variables within a 200 km radius of the TC

center. Furthermore, to isolate and remove the influence of the TC

from our data, we analyzed conditions from three days before the

storm’s arrival.
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2.2 NGR and the other predictors

NGR is calculated as the difference between the rate of energy

generation (G) and the rate of surface frictional dissipation (D), all

within the context of Emanuel’s MPI framework. Kim et al. (2022)

showed that Cd is the most critical factor in determining the

magnitude of NGR. This Cd not only significantly influences D

but also plays an important role in vertical mixing within the ocean,

which in turn affects the saturation enthalpy determined by SST.

Therefore, using a more realistic Cd is crucial for comprehending

the mechanisms of TC intensification. In this study,

Cdparameterization from Soloviev et al. (2014), based on two-

phase parameterization and observations from previous studies,

was used.

The NGR is computed using Emanuel’s software package, with a

modification: the SST in the original equation is replaced by DAT.

Additionally, the model employs a wind-speed-dependent drag

coefficient (Cd(V)) rather than using a constant drag coefficient.

The equations are as follows:

NGR = G − D =
DAT − To

To
Ckr(k*o − k) − Cd(V)rV

3

DAT   =  
1
d
∫
0

−d
T(z)dz

where DAT is the depth-averaged temperature (Price, 2009), To

represents the TC outflow temperature, Ck is the enthalpy

coefficient, r is the air density, ko* is the sea surface saturation

enthalpy, k is the surface enthalpy in the TC environment, Cd is the

drag coefficient, and V is the surface wind speed.

Higher NGR values suggest that more energy is available for TC

intensification. Given its superior performance in predicting short-

term TC intensification, NGR can be used as an ideal predictor for

RI events. Its ability to more accurately capture the ocean’s

contribution to TC intensity changes within a 24-hour range

makes it especially suitable for the RI events prediction.

The TC-induced vertical mixing depth is determined by various

parameters such as the size, intensity, and translation speed of TC,

the Coriolis effect, and the vertical structure of the upper ocean. The

depth of this mixing is crucial because it determines the SST where

heat exchange occurs during the intensification of TC. Lin et al.

(2013) showed that using an average mixed layer depth of 80 m

minimizes the bias in the MPI for TCs that are the Saffir-Simpson

scale Category 2 or higher. Price (2009) indicated that 0-100 m

DAT can adequately represent the mixing caused by major TCs.

Meanwhile, LEE19 conducted a sensitivity analysis using the NGR

for various depths of mixing and showed that fixing the depth at

50 m yielded the highest predictive performance for changes in the

intensity of the overall TCs. In this study, we took a comprehensive

approach to account for the sensitivity of vertical mixing depth and

to explore all possible combinations of predictors. We calculated all

major predictors, including POT, NGR, and OC_PI, based on

DATs. These calculations were done at 10-meter intervals up to a

depth of 120 meters and were subsequently included in our

predictors pool (Table 1).
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Besides NGR, this study incorporates other well-established

predictors commonly employed in statistical-dynamical models

for TC intensity forecasting by various organizations (DeMaria

et al., 2005; Knaff et al., 2005; Kim et al., 2018). In this study, we

utilized a total of 65 potential predictors, encompassing a diverse

range of factors. These include 5 static predictors, 7 atmospheric

synoptic predictors, SST, MPI and the POT derived from it, OHC,

and 49 predictors based on the DAT. All these predictors are

summarized in Table 1. To evaluate the impact of NGR on the

ML-based prediction of RI events, our study uses two distinct sets of

these predictors. The first set consists of commonly used predictors

related to TC intensity change, as identified in numerous statistical

models (in Table 1, excluding NGRs). The second set incorporates

NGR into the first set in Table 1 (as illustrated in Figure 1).
2.3 Implementation of machine
learning techniques

In this study, we employ a diverse ensemble of well-known

classifiers to predict RI events in the WNP. The ensemble includes a

Decision Tree (DT), Logistic Regression (LR), SVM, k-nearest

Neighbors (KNN), and Feed Forward Neural Network (FNN).

DT serves as a comprehensive data-mining tool, which is adept at
Frontiers in Marine Science 04
generating decision-making rules, identifying patterns, and

uncovering knowledge embedded in archived databases (Quinlan,

1987). More specifically, the DT algorithm evaluates the

conduciveness of environmental conditions for RI by

systematically checking whether specific environmental predictors

satisfy the thresholds set by the trained tree model. LR is used to

predict a categorical variable such as the class label (Walker and

Duncan, 1967). It is an extension of linear regression, where the

classification problem is converted into a regression problem by

estimating the log (odds) of each class in place of probability itself.

The model uses the logistic function to squash the output of a linear

equation between 0 and 1, making it interpretable as a probability.

This method is prized for its simplicity, interpretability, and

effectiveness in various domains. The SVM is designed to

discover a hyperplane that best separates the data classes (Cortes

and Vapnik, 1995). It achieves this by maximizing the margin

between different classes in the feature space. The KNN algorithm

makes predictions by storing all training data and identifying the

classes of the k closest neighbors to each test sample (Keller et al.,

1985). It aims to classify an unknown sample based on the known

classifications of its nearest neighbors. Finally, FNN is a

straightforward artificial neural network composed of an input

layer and an output layer. The flow of crucial input information

in FNN moves strictly from its input layer to its output layer,

making the model especially well-suited for parameter

identification tasks (Zhang et al., 2022). Each of these classifiers

brings its own set of strengths to the ensemble, contributing to a

more robust and reliable RI prediction for the WNP.

To enhance predictability, we employ a hard-voting ensemble

method that combines the predictions of the individual classifiers.

In this approach, each classifier ‘votes’ for a class when presented

with a test instance. The ensemble then selects the class that receives

the majority of votes as its final prediction. By employing this hard-

voting scheme, we aim to benefit from the complementary strengths

of each classifier, thereby achieving a more robust and accurate

model for predicting RI events in theWNP. Given that RI events are

not commonly observed, as shown in Table 2, there is a clear class

imbalance in our dataset. To effectively address and rectify this

imbalance, we made use of the Synthetic Minority Over-sampling

Technique, commonly known as SMOTE (Chawla et al., 2011).

This method effectively tackles the issue of class imbalance in

datasets, which is critical in many ML applications. Generating

synthetic data for the minority class and creating new data points

between existing ones helps balance the dataset. This balance is

crucial for training unbiased models and ensuring they effectively

learn the characteristics of all classes. This approach ultimately leads

to an enhancement in the overall accuracy and performance of the

model, making it more reliable for real-world applications. In this

study, Principal Component Analysis (PCA) was applied to the pool

of predictors to combat multicollinearity within the model. The

integration of PCA into our ML-based classification model brought

several advantages. It effectively streamlined the dataset by reducing

dimensionality, which helped mitigate issues related to the curse of

dimensionality and overfitting. This feature reduction also led to

improved computational efficiency. Additionally, by focusing on the

primary directions of data variance, PCA successfully filtered out
TABLE 1 List of atmospheric and oceanic potential predictors used to
build the machine learning-based RI prediction model.

Predictor Description

iWIND Initial max wind speed

DVMX Intensity change during previous 12 h

LON Longitude

LAT Latitude

MOV TC translational speed

RHHI Relative humidity at 500-300 hPa

RHLO Relative humidity at 850-700 hPa

SH200 200-850 hPa vertical wind shear

SH500 500-850 hPa vertical wind shear

T200 Air temperature at 200 hPa

U200 Zonal wind at 200 hPa

RV850 Relative vorticity at 850 hPa

SST Sea surface temperature

MPI Maximum potential intensity

POT MPI – iWIND

OHC Ocean heat content

DATd Depth-averaged ocean temperature (Price, 2009), from 10-
120 m, 10 m interval

OC_PId DAT-based MPI (Lin et al., 2013)

POTd OC_PI-based POT

NGRd DAT-based net energy gain rate (Lee et al., 2019)
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noise and irrelevant information, resulting in a more refined dataset

(Tefas and Pitas, 2016). Notably, we only used those principal

components that represented at least 99% of the cumulative

explained variance as predictors in our model. Given the limited

size of our dataset, we employed a 10-fold cross-validation

approach, ensuring the selection of the most effective models and

preventing overfitting during training. The dataset from 2004 to

2018 was designated for training, while data from 2019 to 2021 was

reserved for testing. Within the training data, there were 627 RI

cases and 3,388 non-RI cases. Meanwhile, the testing dataset

comprised 103 RI cases and 581 non-RI cases, as detailed in Table 2.
Frontiers in Marine Science 05
2.4 Evaluating metrics

In the realm of binary classification models, the evaluation of

predictor significance is pivotal for model accuracy and

interpretability. Among various statistical measures, Cohen’s d is

an effective tool for quantifying the discriminative power of

predictors. Originally designed to measure the standardized

difference between two means in psychological research, Cohen’s

d can be adapted to assess how individual predictors differentiate

between the two classes of the model, typically labeled positive and

negative. By calculating the difference in means of a predictor for

each class and dividing it by the pooled standard deviation, Cohen’s

d provides a standardized effect size, facilitating direct and

quantifiable comparison of the predictor’s impact across different

models and datasets. Cohen’s d calculated as:

d =
M1 −M2

SDpooled

where M1 and M2 are the means of the predictor values for each

of the two classes. SDpooledis the pooled standard deviation of the

predictor values across both classed. It is computed as:
FIGURE 1

The flowchart of machine learning-based RI prediction model development. The dataset is divided into two parts: the training set and the testing set.
The training dataset is used to build the machine learning classifiers and the testing data set is used to evaluate the performance. The ensemble
classifier for RI prediction is also constructed and evaluated by using the hard-voting method.
TABLE 2 The comparison of the number of RI and non-RI cases for
training (2004–2018) and test (2019–2021) period in the western
North Pacific.

RI case The number of non-RI

Training period
(2004–2018)

627 3388

Test period
(2019–2021)

103 581
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SDpooled =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(SD2

1 � n1) + (SD2
2 � n2)

n1 + n2 − 2

s

where SD1 and SD2 are the standard deviations for each class,

and n1 and n2 are the sample sizes. A higher Cohen’s d value

indicates greater separation between the classes based on the

predictor, signifying its importance in the classification task.

Typically, Cohen’s d values around 0.2 are considered small,

around 0.5 medium, and 0.8 or higher, large. This gradation helps

in pinpointing the predictors with the most significant roles in

distinguishing between classes.

In binary forecasts where models predict an RI event or non-RI

event for a training and test set, evaluation metrics comprise

elements from a confusion matrix that compare observations to

model forecasts (Table 3). True Positive (TP) is the number of

correct forecasts of RI events, whereas False Positive (FP) is the

number of incorrect forecasts. False Negative (FN) is the number

where the model did not forecast RI but, RI was observed. True

Negative (TN) is the number where the model did not forecast RI

and RI was not observed.

Accuracy (ACC) is used to measure the overall performance of a

binary classifier and is measured as

ACC =  
TP + TN

TP + FP + TN + FN

FAR is the number of incorrect forecasts of RI divided by the

total number of RI forecasts. FAR is calculated as

FAR =
FP

TP + FP

POD) is the ratio of the correct forecasts of RI occurrences to

the actual number of RI occurrences and is calculated as

POD =
TP

TP + FN

Precision measures the accuracy of positive predictions in

classification problems. It’s the ratio of the correct forecasts of RI

occurrences to the total number of positive predictions (which

includes both TP and FP). Precision is calculated as

Precision =
TP

TP + FP

Peirce skill score (PSS), also known as the Hanssen-Kuipers skill

score measures skill relative to an unbiased random reference

forecast and is calculated as
Frontiers in Marine Science 06
PSS =  
(TP � TN) − (FP � FN)
(TP + FN)� (FP + TN)

The F-1 score is a way of combining the precision and POD of

the model, and it is defined as the harmonic mean of the model’s

precision and POD. The F-1 score is calculated as

F − 1   score = 2� POD� Precision
POD + Precision

A perfect forecast model would achieve an ACC, POD, and PSS

score of 1 and a FAR score of 0. In general, higher values of ACC,

POD, Precision, PSS and F-1 score, coupled with a lower FAR,

indicate superior model performance.
3 Results

3.1 Characterization of
individual predictors

In this section, we examine the classification performance of

potential predictors for RI events before developing a classification

model. The mean distribution for RI and non-RI classes for each

predictor, the effect size of the mean differences between these

classes, and the correlation coefficients with the 24-hour intensity

change were analyzed (Table 4; Figures 2, 3). Excluding DAT-based

predictors, the ocean temperature and MPI theory-based predictors

(SST, MPI, POT, OHC) exhibited the highest Cohen’s d and

correlation coefficients. Following these, static predictors such as

DVMX and LAT displayed the next highest values of Cohen’s d.

Synoptic predictors, apart from wind shear-related predictors

(SH200, SH500, U200), generally demonstrated lower

predictive performance.

DAT-based predictors demonstrated higher Cohen’s d values

compared to those derived from traditional SST (Figure 2). For

DAT-based predictors, excluding NGRd, Cohen’s d between the two

classes increased progressively with greater mixing depths, peaking

at depths of 100-110 meters. NGRd, in contrast, displayed a steadily

increasing Cohen’s d value with depth, reaching a peak at 60 meters

and demonstrating a higher Cohen’s d value that overshadowed the

other potential predictors. Figure 3 illustrates distinct patterns of

correlation for each predictor as a function of mixing depth,

indicating that the relationship between predictors and TC

intensity change is sensitive to the mixing depth. Notably, NGRd
emerges as a superior predictor, with its maximum correlation

coefficient occurring at a mixing depth of 60 meters (Figure 3, red

line). This is not only higher than those of other predictors but also

aligns with the depth where Cohen’s d—a statistical measure of

effect size—reaches its peak (Figure 2D, blue line). The consistency

of the NGRd peak with the maximum of Cohen’s d at 60 meters

suggests a strong and possibly causal relationship between DATs of

this depth and TC intensification rates, as well as RI events. This

underscores the value of NGRd, based on 60-meter DAT, as a

potentially powerful single predictor for anticipating changes in TC

intensity, which is crucial for early warning systems and

preparedness measures in vulnerable coastal regions.
TABLE 3 Confusion matrix for a binary RI and non-RI classifier.

Observation

RI Non-RI

Forecast

RI
Hits
TP

False alarms
FP

Non-RI
Misses
FN

Correct rejects
TN
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3.2 Assessment of model
predictive performance

As outlined in Figure 4 and Table 5, our study includes a

comprehensive summary of the performance metrics — POD, PSS,

FAR, Precision, ACC, and F-1 score — for individual ML models.

These were evaluated during the training period running from 2014

to 2018. A modest change emerged when we incorporated NGRs

into the predictor pools: the metrics of POD, Precision, PSS, F-1

score and ACC generally increased across the models, while the

FAR metric correspondingly decreased. The only exception to this

was observed in the DT model. This underscores the relevance and

value of incorporating NGRs into the feature set, as models with

NGRs consistently outperformed those without. Individually, the

NGR-based FNN exhibited the highest predictive performance

overall, closely followed by the SVM model.

During the test period of 2019 to 2021, summarized in Figure 5

and Table 6, the favorable impact of NGRs was further

corroborated. NGRs-based models once again outperformed their

counterparts that lacked this feature. This improvement is related to

the increase in the number of samples in TN. NGR-based models

detected non-RI cases relatively better (Figure 5). Among the

individual models, the NGR-based SVM emerged as the best

performer, particularly in terms of PSS. The consistency of this

impact across both training and test periods reaffirms the

generalizability and reliability of our methodological approach.

An interesting point of divergence between the training and test
Frontiers in Marine Science 07
periods was in the performance indicators. In addressing the class

imbalance, oversampling was applied during the training phase.

However, this method artificially inflates the TP count. The notable

increase in POD and a corresponding decrease in FAR during the

training period is attributable to the oversampling technique

employed. Because oversampling is not performed in the testing

phase, the ratio of RI cases decreases significantly compared to the

training phase. This results in a relatively large decrease in TP,

which in turn inflates FAR. This highlights the distortion in model

performance metrics due to the uneven application of oversampling

across training and testing datasets.

To generate an ensemble forecast, we employ a hard-voting

method based on the collective performance metrics of five distinct

classifiers. Our ensemble performance metrics for the training and

test are shown in Table 5 and Table 6, respectively. What becomes

evident is that integrating NGRs into our ensemble model

substantially augments its predictive capabilities. This improvement

is noticeable during the test period. Notably, the PSS and F-1 score

saw a 10% increase whenNGRswere included in the ensemble model,

demonstrating a more skillful forecast (Table 6).

To contextualize our ensemble’s performance, it is useful to

compare it with other contemporary ML-based RI forecasting

models. Wei et al. (2023) presented a deep learning network

model called TCNET, which they compared against two

Statistical Hurricane Intensity Prediction Schemes (SHIPS)-based

models (COR-SHIPS and LLE-SHIPS), along with other models

from Yang (2016); henceforth referred to as Y16) and Kaplan et al.
TABLE 4 Mean distribution of potential predictors for RI and non-RI events, p-value (student t-test) and Cohen’s d of the difference between the
two groups.

Predictor unit RI non-RI p-value Cohen’s d R

iWIND kt 65.9 ± 21.0 73.2 ± 33.2 < 0.001 -0.23 -0.39

DVMX kt 11.1 ± 9.5 3.1 ± 11.4 < 0.001 0.72 0.36

LON ° 137.0 ± 10.0 136.3 ± 12.2 0.16 0.06 0.01

LAT ° 16.8 ± 4.6 20.9 ± 6.8 < 0.001 -0.62 -0.36

MOV m s-1 5.1 ± 2.0 5.3 ± 3.1 0.11 -0.06 -0.12

RHHI % 54.1 ± 14.0 50.2 ± 14.9 < 0.001 0.26 0.17

RHLO % 71.2 ± 7.2 68.8 ± 8.7 < 0.001 0.28 0.18

SH200 m s-1 13.5 ± 4.0 15.9 ± 5.8 < 0.001 -0.43 -0.36

SH500 m s-1 5.5 ± 2.0 6.7 ± 2.7 < 0.001 -0.45 -0.36

T200 K 221.3 ± 1.1 221.7 ± 1.3 < 0.001 -0.29 -0.13

U200 m s-1 -2.7 ± 5.9 1.3 ± 9.4 < 0.001 -0.45 -0.39

RV850 10-6 s-1 3.5 ± 5.9 2.7 ± 6.8 0.003 0.12 0.13

SST °C 29.2 ± 0.7 28.4 ± 1.4 < 0.001 0.60 0.45

MPI kt 178.8 ± 15.8 159.6 ± 32.2 < 0.001 0.76 0.46

POT kt 112.9 ± 27.6 86.4 ± 46.3 < 0.001 0.61 0.60

OHC kJ cm-2 78.2 ± 27.2 53.9 ± 32.8 < 0.001 0.62 0.41
frontier
The correlation coefficient indicates the relationship between the predictor and the 24-hour intensity change. Absolute values of Cohen’s d greater than 0.5 (medium or greater) are indicated
in bold.
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(2015); henceforth referred to as KRD15). Ko et al. (2023) explored

the application of a consensus machine learning (CML) model in

TC intensity change forecasting and indicated the CML exhibits

better performance on RI predictions compared to the operational

models such as SHIPS, GFS. Narayanan et al. (2023) proposed a

simple deterministic binary classification model based on the co-

occurrence of environmental parameters (MCE) to predict an RI

event. Their results indicated that MCE shows improved skill over

the decision tree and logistic regression models, with more accurate

RI predictions in the overall testing dataset. The PSS values for these

models, displayed in Figure 6, show that our ensemble model

(NGR-ENS), with a PSS of 0.56 and a POD of 0.79, surpasses all

these competing models including TCNET (0.48), MCE (0.40) and

CML (0.50). TCNET has the lowest FAR (0.43) followed by CML

(0.50), LLE-SHIPS (0.56) and NGR-ENS (0.62). This holds even

when considering different target periods or datasets. In essence,

our ensemble approach fortified by the inclusion of NGRs offers

superior predictive accuracy for RI events with an advantage of the

noticeably high POD rate and the relatively low FAR rate.

Lee et al. (2016) suggested that the bimodal distribution of

lifetime maximum intensity in TCs can be attributed to two distinct
Frontiers in Marine Science 08
types of TC: those that experience RI (RI storms) and those that do

not (non-RI storms). They showed that a significant majority—79%

—of major TCs, those classified as category 3 or above, belong to the

RI storm. Conversely, only a small fraction—6%—of non-RI storms

ever escalate to become major TCs. Therefore, RI prediction

performance in major TCs can represent the overall prediction

performance. During the test period (2019 –2021), our ensemble

model showed noticeable performance improvements when NGR

was included as a variable (Table 7). A recent Cd parameterization

study showed that Cd decreases after saturating at 33 m s-1, which

leads to an increase in NGR, which can induce RI (Kim et al., 2022).

These findings suggest that accurately simulating flux exchanges,

especially in storms ranging from categories 1–3, can substantially

enhance the model’s ability to predict RI accurately.
4 Conclusions and discussions

In this study, the binary RI prediction model by incorporating

the NGR which was derived using the upper ocean thermal

structure of pre-storm ocean and a realistic parameterization of
B

C D

A

FIGURE 2

The comparison of the mean distribution of each class for (A) DATd, (B) OC_PId, (C) POTd and (D) NGRd. The predictors are based on the computed
average ocean temperature from the surface down to a depth of 120 meters (in 10-meter intervals) over the period 2004–2021. The red (black)
solid line and shade indicate the mean value and ±1 s range of RI (non-RI) class, respectively. Cohen’s d values (blue line) show the effect size of
mean differences between RI and non-RI classes.
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sea surface roughness, into the ML models have been developed for

the WNP. Five ML experiments were conducted to predict RI

classification predictions, using five ML techniques- DT, LR,

SVM, KNN, and FNN-trained with widely used predictors. To

investigate the impact of NGR on RI prediction, two sets of

experiments were conducted for each ML model. In the first set,

models were trained only with well-known existing predictors,

while in the second set, NGR was also included. For the training

period, compared with the traditional predictors, the results with

the newly used predictors, NGRs, in this study show improved skill

over all the MLmodels except for DT. For the test period, all the ML

models trained with NGRs are, again, better performance with

higher POD, PSS, ACC, and lower FAR than the same model but

trained without NGRs. An ensemble average of the individual five

ML models is constructed based on the hard-voting method. We

show that the ensemble ML model produces noteworthy

improvements for RI in the WNP. The inclusion of the NGRs

input from the predictor pool in the ensemble model enhances RI

prediction performance (PSS) by approximately 10% compared to

the ensemble model without NGRs. These results suggest that the

inclusion of NGR contributes to more accurate statistical-dynamical

predictions of RI, corroborating previous findings that the NGR

index better estimates changes in TC intensity in theWNP (LEE19).

In our study, we employed PCA to tackle the challenges

associated with a high-dimensional dataset, particularly the risk of
Frontiers in Marine Science 09
overfitting. Overfitting could jeopardize both the model’s reliability

and its ability to generalize to new data. PCA ameliorated this by

compressing the data dimensions while retaining the most

important variance, thereby enhancing the model’s reliability. In

this study, we checked the performance of the prediction model with

and without PCA to confirm the improvement in prediction

performance through PCA. During the training period, the

application of PCA did not significantly impact the predictive

performance of the model. However, during the test period, the

model that applied PCA showed approximately 10% higher

prediction performance than the model that did not apply it

(based on NGR-ENS). Using PCA to reduce model overfitting

effectively reduces dimensions while retaining key information and

eliminating unnecessary noise. This approach prevents the model

from being overly optimized for training data, enhancing its

generalization ability. PCA lowers the risk of overfitting seen in

high-dimensional data when considering all features, which can lead

to better performance on both training and testing data. Thus, PCA

plays a crucial role in decreasing model complexity and improving

predictive capabilities by capturing essential patterns and structures.

However, it is worth noting that PCA comes with limitations, such as

reduced interpretability due to the transformation of original

variables into principal components. This makes it difficult to

make intuitive sense of the model’s features. Additionally, PCA

may overlook non-linear relationships between variables, potentially
FIGURE 3

The comparison of the correlation coefficients between depth-averaged temperature-based predictors and 24-hour intensity change. The
predictors are based on the computed average ocean temperature from the surface down to a depth of 120 meters (in 10-meter intervals) over the
period 2004–2021. Pentagrams represent the location of the maximum correlation coefficient for each group.
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missing out on important data patterns. Despite these drawbacks,

the computational efficiency and reduced risk of overfitting achieved

through PCA were indispensable for improving our model’s overall

reliability and stability.

This study focused on the WNP. To ascertain the broader

applicability of these models, they should be trialed in different
Frontiers in Marine Science 10
basins. It is pivotal to understand if the NGR-based approach’s

efficacy remains consistent irrespective of region. The current study

employs a 10-m intervals depth-based DAT in NGR calculations. A

more adaptive approach might involve modulating the depth

contingent on real-time TC characteristics like its intensity, speed,

latitude, and size. Such dynamism can potentially enhance the
B C

D E F

A

FIGURE 4

Binary confusion metrics of the developed models during the training period: (A) DT, (B) LR, (C) SVM, (D) KNN, (E) FNN, and (F) hard voting
ensemble (ENS) of the above models. The red indicates the NGR-based model’s outcomes, while the blue shows the performance of the non-
NGR model.
TABLE 5 Performance metrics for the individual model and ensemble with NGR-based predictors and without NGR-based predictors for the training
period (2014–2018).

Model POD FAR Precision PSS F-1 score ACC

DT
w/o 0.90 0.23 0.77 0.63 0.83 81.7%

with 0.83 0.20 0.80 0.62 0.81 81.0%

LR
w/o 0.84 0.29 0.71 0.50 0.77 74.9%

with 0.82 0.24 0.76 0.56 0.79 78.1%

SVM
w/o 0.88 0.21 0.79 0.64 0.83 82.2%

with 0.89 0.21 0.79 0.66 0.84 83.0%

KNN
w/o 0.94 0.30 0.70 0.53 0.80 76.5%

with 0.94 0.29 0.71 0.56 0.81 77.9%

FNN
w/o 0.88 0.17 0.83 0.69 0.85 84.5%

with 0.90 0.16 0.84 0.73 0.87 86.7%

Ensemble
(hard voting)

w/o 0.90 0.21 0.79 0.66 0.84 82.8%

with 0.93 0.22 0.78 0.67 0.85 83.6%
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precision of the NGR, leading to improved predictions. Apart from

NGR, there might be other indices or predictors that can be tested

alongside or against the NGR to see which provides the most

accurate results. This could lead to a more robust model or a

combination of indices for improved RI prediction. The choice of

the hard-voting ensemble method was predominantly due to SVM’s

characteristics. Yet, diversifying into other ensemble strategies,

including weighted voting or stacking, may offer a finer

prediction approach.
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Understanding time series data often unveils serial dependence,

where each data point is potentially influenced by its predecessors.

This temporal dependency implies that past observations

significantly impact present and future values (Box and Pierce,

1970; Ljung and Box, 1978). Similarly, in spatial data, we observe a

spatial dependency, where the characteristics of a specific location

may be influenced by its neighboring areas. Traditional ML models

typically struggle with these dependencies. They often assume that

data points are independent and identically distributed, an
B C

D E F

A

FIGURE 5

Same as Figure 4, but for test period.
TABLE 6 Same as Table 5, but for the test period (2019–2021).

Model POD FAR Precision PSS F-1 score ACC

DT
w/o 0.72 0.71 0.29 0.40 0.41 68.7%

with 0.77 0.66 0.34 0.50 0.47 74.1%

LR
w/o 0.83 0.72 0.28 0.44 0.42 65.1%

with 0.80 0.66 0.34 0.52 0.47 73.4%

SVM
w/o 0.73 0.62 0.38 0.51 0.50 77.8%

with 0.76 0.61 0.39 0.55 0.51 78.4%

KNN
w/o 0.90 0.71 0.29 0.52 0.44 65.6%

with 0.87 0.70 0.30 0.51 0.45 67.5%

FNN
w/o 0.64 0.65 0.35 0.43 0.46 76.9%

with 0.70 0.61 0.39 0.51 0.50 79.2%

Ensemble
(hard voting)

w/o 0.79 0.67 0.33 0.51 0.47 73.1%

with 0.79 0.62 0.38 0.56 0.51 77.6%
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assumption that falls short in the context of time series and spatial

data. To better handle these types of data, it’s crucial to integrate

information about past values in the case of time series (lagged

values) and details about neighboring locations in spatial data into

the models. This enrichment of the feature set allows the models to

acknowledge and utilize these dependencies, enhancing their

effectiveness. While advanced deep learning methods, like CNNs

and Recurrent Neural Networks (RNNs), provide comprehensive

solutions for handling these complexities, simpler adaptations to

existing methodologies can also be effective and offer more

interpretability. The future of research in this area lies in

exploring these strategies to improve the capabilities of models,

making them more accurate and reliable in mirroring the dynamics

of time series and spatial data. This improvement is particularly

relevant for robust and accurate prediction in real-world

applications, such as RI prediction. By focusing on these aspects,

significant advancements in the robustness and accuracy of RI

prediction models are anticipated, enhancing their applicability in

practical scenarios.
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FIGURE 6

Performance metric values for the COR-SHIPS (blue), LLE-SHIPS (green), TCNET (purple), Y16 (yellow), KRD15 (brown), MCE (pink), CML (gray)
models and the comparisons of NGR-ENS (red) model developed in this study.
TABLE 7 Performance metrics for the ensemble of five prediction models for major TCs during the test period (2019–2021).

Ensemble POD FAR Precision PSS F-1 score ACC

w/o NGRs 0.86 0.48 0.52 0.61 0.65 77.7%

With NGRs 0.91 0.45 0.55 0.68 0.69 80.2%
frontie
rsin.org

https://www.ncei.noaa.gov/data/international-best-track-archive-for-climate-stewardship-ibtracs/v04r00/access/netcdf/
https://www.ncei.noaa.gov/data/international-best-track-archive-for-climate-stewardship-ibtracs/v04r00/access/netcdf/
https://www.ncei.noaa.gov/data/international-best-track-archive-for-climate-stewardship-ibtracs/v04r00/access/netcdf/
https://www.ncei.noaa.gov/data/global-forecast-system/access/
https://www.hycom.org/dataserver/gofs-3pt1/analysis
https://www.hycom.org/dataserver/gofs-3pt1/analysis
https://doi.org/10.3389/fmars.2023.1296274
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Kim et al. 10.3389/fmars.2023.1296274
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This

research was a part of the project titled “Study on Northwestern

Pacific warming and genesis and rapid intensification of typhoon”,

funded by the Ministry of Oceans and Fisheries, Korea (20220566).

This work was also funded by the Korea Meteorological

Administration Research and Development Program “Development

of Asian Dust and Haze Monitoring and Prediction Technology”

under Grant (KMA2018-00521).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Frontiers in Marine Science 13
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online at:

https://www.frontiersin.org/articles/10.3389/fmars.2023.1296274/

full#supplementary-material
References
Balaguru, K., Foltz, G. R., and Leung, L. R. (2018). Increasing magnitude of hurricane
rapid intensification in the central and eastern tropical Atlantic. Geophys. Res. Lett. 45
(9), 4238–4247. doi: 10.1029/2018GL077597

Bender, M. A., Ginis, I., Tuleya, R., Thomas, B., andMarchok, T. (2007). The operational
GFDL coupled hurricane–ocean prediction system and a summary of its performance.
Monthly Weather Rev. 135 (12), 3965–3989. doi: 10.1175/2007MWR2032.1

Biswas, M. K., Abarca, S., Bernardet, L., Ginis, I., Grell, E., Iacono, M., et al. (2018).
Hurricane weather research and forecasting (HWRF) Model: 2017 scientific
Documentation (Technical Report) (Boulder, CO: National Center for Atmospheric
Research and Developmental Testbed Center).

Box, G. E. P., and Pierce, D. A. (1970). Distribution of residual autocorrelations in
autoregressive-integrated moving average time series models. J. Am. Statist. Assoc. 65,
1509–1526. doi: 10.1080/01621459.1970.10481180

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2011). SMOTE:
Synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357.
doi: 10.1613/jair.953

Chen, X., Bryan, G. H., Hazelton, A., Marks, F. D., and Fitzpatrick, P. (2022).
Evaluation and improvement of a TKE-based eddy-diffusivity mass-flux (EDMF)
planetary boundary layer scheme in hurricane conditions. Weather Forecast. 37 (6),
935–951. doi: 10.1175/WAF-D-21-0168.1

Cloud, K. A., Reich, B. J., Rozoff, C. M., Alessandrini, S., Lewis, W. E., and Delle
Monache, L. (2019). A feed forward neural network based onmodel output statistics for
short-term hurricane intensity prediction. Weather Forecasting 34 (4), 985–997.
doi: 10.1175/WAF-D-18-0173.1

Cortes, C., and Vapnik, V. (1995). Support-vector networks.Mach. Learn (20), 273–297.
doi: 10.1007/BF00994018

DeMaria, M., Franklin, J. L., Onderlinde, M. J., and Kaplan, J. (2021). Operational
forecasting of tropical cyclone rapid intensification at the National Hurricane Center.
Atmosphere 12 (6), 683. doi: 10.3390/atmos12060683

DeMaria, M., and Kaplan, J. (1994). Sea surface temperature and the maximum
intensity of Atlantic tropical cyclones. J. Climate 7 (9), 1324–1334. doi: 10.1175/1520-
0442(1994)007<1324:SSTATM>2.0.CO;2

DeMaria, M., and Kaplan, J. (1999). An updated statistical hurricane intensity prediction
scheme (SHIPS) for the Atlantic and eastern North Pacific basins. Weather Forecasting 14
(3), 326–337. doi: 10.1175/1520-0434(1999)014<0326:AUSHIP>2.0.CO;2

DeMaria, M., Mainelli, M., Shay, L. K., Knaff, J. A., and Kaplan, J. (2005). Further
improvements to the statistical hurricane intensity prediction scheme (SHIPS).
Weather Forecast. 20 (4), 531–543. doi: 10.1175/WAF862.1

Emanuel, K. A. (1986). An air-sea interaction theory for tropical cyclones. Part I:
Steady-state maintenance. J. Atmospheric Sci. 43 (6), 585–605. doi: 10.1175/1520-0469
(1986)043<0585:AASITF>2.0.CO;2

Emanuel, K. A. (1988). The maximum intensity of hurricanes. J. Atmos. Sci. 45 (7),
1143–1155. doi: 10.1175/1520-0469(1988)045<1143:TMIOH>2.0.CO;2
Emanuel, K. A. (1995). Sensitivity of tropical cyclones to surface exchange coefficients
and a revised steady-state model incorporating eye dynamics. J. Atmospheric Sci. 52 (22),
3969–3976. doi: 10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2

Feng, J., and Wang, X. (2021). Impact of increasing horizontal and vertical resolution
during the HWRF hybrid En Var data assimilation on the analysis and prediction of
Hurricane Patricia, (2015). Monthly Weather Rev. 149, 419–441. doi: 10.1175/MWR-
D-20-0144.1

Gao, S., Zhang, W., Liu, J., Lin, I. I., Chiu, L. S., and Cao, K. (2016). Improvements in
typhoon intensity change classification by incorporating an ocean coupling potential
intensity index into decision trees. Weather Forecasting 31 (1), 95–106. doi: 10.1175/
WAF-D-15-0062.1

Goldenberg, S. B., Gopalakrishnan, S. G., Tallapragada, V., Quirino, T., Marks, F. Jr.,
Trahan, S., et al. (2015). The 2012 triply nested, high-resolution operational version of
the Hurricane Weather Research and Forecasting Model (HWRF): Track and intensity
forecast verifications. Weather Forecasting 30 (3), 710–729. doi: 10.1175/WAF-D-14-
00098.1

Griffin, S. M., Wimmers, A., and Velden, C. S. (2022). Predicting rapid intensification
in North Atlantic and eastern North Pacific tropical cyclones using a convolutional
neural network. Weather Forecasting 37 (8), 1333–1355. doi: 10.1175/WAF-D-21-
0194.1

Kaplan, J., and DeMaria, M. (2003). Large-scale characteristics of rapidly intensifying
tropical cyclones in the North Atlantic basin. Weather forecasting 18 (6), 1093–1108.
doi: 10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2

Kaplan, J., DeMaria, M., and Knaff, J. A. (2010). A revised tropical cyclone rapid
intensification index for the Atlantic and Eastern North Pacific Basins. Weather
Forecast. 25 (1), 220–241. doi: 10.1175/2009WAF2222280.1

Kaplan, J., Rozoff, C. M., DeMaria, M., Sampson, C. R., Kossin, J. P., Velden, C. S.,
et al. (2015). Evaluating environmental impacts on tropical cyclone rapid
intensification predictability utilizing statistical models. Weather Forecasting 30 (5),
1374–1396. doi: 10.1175/WAF-D-15-0032.1

Keller, J. M., Gray, M. R., and Givens, J. A. (1985). A fuzzy k-nearest neighbor
algorithm. IEEE Trans. systems man cybernetics 4), 580–585. doi: 10.1109/
TSMC.1985.6313426

Kim, H. J., Moon, I. J., and Oh, I. (2022). Comparison of tropical cyclone wind
radius estimates between the KMA, RSMC tokyo, and JTWC. Asia-Pac J. Atmos Sci. 58,
563–576. doi: 10.1007/s13143-022-00274-5

Kim, S. H., Kang, H. W., Moon, I. J., Kang, S. K., and Chu, P. S. (2022). Effects of the
reduced air-sea drag coefficient in high winds on the rapid intensification of tropical
cyclones and bimodality of the lifetime maximum intensity. Front. Mar. Sci. 9.
doi: 10.3389/fmars.2022.1032888

Kim, S. H., Moon, I. J., and Chu, P. S. (2018). Statistical–dynamical typhoon intensity
predictions in the Western North Pacific using track pattern clustering and ocean
coupling predictors. Weather Forecasting 33 (1), 347–365. doi: 10.1175/WAF-D-17-
0082.1
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fmars.2023.1296274/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmars.2023.1296274/full#supplementary-material
https://doi.org/10.1029/2018GL077597
https://doi.org/10.1175/2007MWR2032.1
https://doi.org/10.1080/01621459.1970.10481180
https://doi.org/10.1613/jair.953
https://doi.org/10.1175/WAF-D-21-0168.1
https://doi.org/10.1175/WAF-D-18-0173.1
https://doi.org/10.1007/BF00994018
https://doi.org/10.3390/atmos12060683
https://doi.org/10.1175/1520-0442(1994)007%3C1324:SSTATM%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(1994)007%3C1324:SSTATM%3E2.0.CO;2
https://doi.org/10.1175/1520-0434(1999)014%3C0326:AUSHIP%3E2.0.CO;2
https://doi.org/10.1175/WAF862.1
https://doi.org/10.1175/1520-0469(1986)043%3C0585:AASITF%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1986)043%3C0585:AASITF%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1988)045%3C1143:TMIOH%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1995)052%3C3969:SOTCTS%3E2.0.CO;2
https://doi.org/10.1175/MWR-D-20-0144.1
https://doi.org/10.1175/MWR-D-20-0144.1
https://doi.org/10.1175/WAF-D-15-0062.1
https://doi.org/10.1175/WAF-D-15-0062.1
https://doi.org/10.1175/WAF-D-14-00098.1
https://doi.org/10.1175/WAF-D-14-00098.1
https://doi.org/10.1175/WAF-D-21-0194.1
https://doi.org/10.1175/WAF-D-21-0194.1
https://doi.org/10.1175/1520-0434(2003)018%3C1093:LCORIT%3E2.0.CO;2
https://doi.org/10.1175/2009WAF2222280.1
https://doi.org/10.1175/WAF-D-15-0032.1
https://doi.org/10.1109/TSMC.1985.6313426
https://doi.org/10.1109/TSMC.1985.6313426
https://doi.org/10.1007/s13143-022-00274-5
https://doi.org/10.3389/fmars.2022.1032888
https://doi.org/10.1175/WAF-D-17-0082.1
https://doi.org/10.1175/WAF-D-17-0082.1
https://doi.org/10.3389/fmars.2023.1296274
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Kim et al. 10.3389/fmars.2023.1296274
Klotzbach, P. J., Wood, K. M., Schreck, C. J. III, Bowen, S. G., Patricola, C. M., and
Bell, M. M. (2022). Trends in global tropical cyclone activity: 1990–2021. Geophys. Res.
Lett. 49 (6), e2021GL095774. doi: 10.1029/2021GL095774

Knaff, J. A., Sampson, C. R., and DeMaria, M. (2005). An operational statistical
typhoon intensity prediction scheme for the western North Pacific. Weather
Forecasting 20 (4), 688–699. doi: 10.1175/WAF863.1

Knutson, T., Camargo, S. J., Chan, J. C., Emanuel, K., Ho, C. H., Kossin, J., et al.
(2020). Tropical cyclones and climate change assessment: Part II: Projected response to
anthropogenic warming. Bull. Am. Meteorol. Soc. 101 (3), E303–E322. doi: 10.1175/
BAMS-D-18-0194.1

Ko, M. C., Chen, X., Kubat, M., and Copalakrishnan, S. (2023). The Development of
a consensus machine learning model for hurricane rapid intensification forecasts with
hurricane weather research and forecasting (HWRF) data. Weather Forecasting 38,
1253–1270. doi: 10.1175/WAF-D-22-0217.1

Kossin, J. P., Knapp, K. R., Olander, T. L., and Velden, C. S. (2020). Global increase in
major tropical cyclone exceedance probability over the past four decades. Proc. Natl.
Acad. Sci. 117 (22), 11975–11980. doi: 10.1073/pnas.1920849117

Lee, W., Kim, S. H., Chu, P. S., Moon, I. J., and Soloviev, A. V. (2019). An index to
better estimate tropical cyclone intensity change in the western North Pacific. Geophys.
Res. Lett. 46 (15), 8960–8968. doi: 10.1029/2019GL083273

Lee, W., Kim, S. H., Moon, I.-J., Bell, M. M., and Ginis, I. (2022). New parameterization
of air-sea exchange coefficients and its impact on intensity prediction under major tropical
cyclones. Front. Mar. Sci. 9. doi: 10.3389/fmars.2022.1046511

Lee, C. Y., Tippett, M. K., Sobel, A. H., and Camargo, S. J. (2016). Rapid
intensification and the bimodal distribution of tropical cyclone intensity.
Nat. Commun. 7, 10625. doi: 10.1038/ncomms10625

Li, J., Wan, Q., Xu, D., Huang, Y., and Zhang, X. (2021). An initialization scheme
for weak tropical cyclones in the south China sea. J. Meteorol. Res. 35, 358–370.
doi: 10.1007/s13351-021-0069-3

Li, Q., Li, Z., Peng, Y., Wang, X., Li, L., Lan, H., et al. (2018). Statistical regression
scheme for intensity prediction of tropical cyclones in the Northwestern Pacific.
Weather Forecasting 33, 1299–1315. doi: 10.1175/WAF-D-18-0001.1

Lin, I. I., Black, P., Price, J. F., Yang, C. Y., Chen, S. S., Lien, C. C., et al. (2013). An
ocean coupling potential intensity index for tropical cyclones. Geophys. Res. Lett. 40 (9),
1878–1882. doi: 10.1002/grl.50091

Liu, Q., Zhang, X., Tong, M., Zhang, Z., Liu, B., Wang, W., et al. (2020). Vortex
initialization in the NCEP operational hurricane models. Atmosphere 11, 968.
doi: 10.3390/atmos11090968

Ljung, G., and Box, G. C. (1978). On a measure of lack of fit in time series models.
Biometrica 65, 265–270. doi: 10.1093/biomet/65.2.297

Lu, X., Davis, B., and Wang, X. (2022). Improving the Assimilation of enhanced
atmospheric motion vectors for hurricane intensity predictions with HWRF. Remote
Sens. 14, 2040. doi: 10.3390/rs14092040

Magnusson, L., Majumdar, S., Emerton, R., Richardson, D., Alonso-Balmaseda,M., Baugh,
C., et al. (2021). ECMWF Technical MemorandumNo. 888 (European Centre for Medium-
Range Weather Forecasts). doi: 10.21957/zzxzzygwv

Mercer, A., and Grimes, A. (2017). Atlantic tropical cyclone rapid intensification
probabilistic forecasts from an ensemble of machine learning methods. Proc. Comput.
Sci. 114, 333–340. doi: 10.1016/j.procs.2017.09.036

Murakami, H., Wang, B., Li, T., and Kitoh, A. (2013). Projected increase in tropical
cyclones near Hawaii. Nat. Climate Change 3 (8), 749–754. doi: 10.1038/nclimate1890

Narayanan, A., Balaguru, K., Xu, W., and Leung, L. R. (2023). A new method for
predicting hurricane rapid intensification based on co-occurring environmental
parameters. Nat. Hazards. doi: 10.1007/s11069-023-06100-z
Frontiers in Marine Science 14
Ooyama, K. (1969). Numerical simulation of the life cycle of tropical cyclones.
J. Atmospheric Sci. 26 (1), 3–40. doi: 10.1175/1520-0469(1969)026<0003:NSOTLC>2.0.CO;2

Price, J. F. (2009). Metrics of hurricane-ocean interaction: vertically-integrated or
vertically-averaged ocean temperature? Ocean Sci. 5 (3), 351–368. doi: 10.5194/os-5-
351-2009

Quinlan, J. R. (1987). Simplifying decision trees. Int. J. man-machine Stud. 27 (3),
221–234. doi: 10.1016/S0020-7373(87)80053-6

Rozoff, C. M., and Kossin, J. P. (2011). New probabilistic forecast models for
the prediction of tropical cyclone rapid intensification. Weather Forecasting 26 (5),
677–689. doi: 10.1175/WAF-D-10-05059.1

Shaiba, H., and Hahsler, M. (2016). Applying machine learning methods for
predicting tropical cyclone rapid intensification events. Res. J. Appl. Sciences Eng.
Technol. 13 (8), 638–651. doi: 10.19026/rjaset.13.3050

Soloviev, A. V., Lukas, R., Donelan, M. A., Haus, B. K., and Ginis, I. (2014). The air-
sea interface and surface stress under tropical cyclones. Sci. Rep. 4, 5306. doi: 10.1038/
srep05306

Song, X., Zhu, Y., Peng, J., and Guan, H. (2018). Improving multi-model ensemble
forecasts of tropical cyclone intensity using Bayesian model averaging. J. Meteorol. Res.
32 (5), 794–803. doi: 10.1007/s13351-018-7117-7

Su, H., Wu, L., Jiang, J. H., Pai, R., Liu, A., Zhai, A. J., et al. (2020). Applying satellite
observations of tropical cyclone internal structures to rapid intensification forecast with
machine learning.Geophys. Res. Lett. 47 (17), e2020GL089102. doi: 10.1029/2020GL089102

Tefas, A., and Pitas, I. (2016). Principal component analysis. Intelligent Syst. 487.

Walker, S. H., and Duncan, D. B. (1967). Estimation of the probability of an event as
a function of several independent variables. Biometrika 54 (1), 167–179.

Wang, S., and Toumi, R. (2021). Recent tropical cyclone changes inferred from ocean
surface temperature cold wakes. Sci. Rep. 11, 22269. doi: 10.1038/s41598-021-01612-9

Wang, W., Liu, B., Zhang, Z., Mehra, A., and Tallapragada, V. (2022). Improving
low-level wind simulations of tropical cyclones by a regional Hurricane Analysis and
Forecast System. Res. Activities Earth Syst. Model. Working Group on Numerical
Experimentation, WMO, Geneva, pp. 9–10.

Wei, Y., Yang, R., and Sun, D. (2023). Investigating tropical cyclone rapid
intensification with an advanced artificial intelligence system and gridded reanalysis
data. Atmosphere 14 (2), 195. doi: 10.3390/atmos14020195

Xu, W., Balaguru, K., August, A., Lalo, N., Hodas, N., DeMaria, M., et al. (2021).
Deep learning experiments for tropical cyclone intensity forecasts.Weather Forecasting
36 (4), 1453–1470. doi: 10.1175/WAF-D-20-0104.1

Yamaguchi, M., Owada, H., Shimada, U., Sawada, M., Iriguchi, T., Musgrave, K. D.,
et al. (2018). Tropical cyclone intensity prediction in the western North Pacific basin
using SHIPS and JMA/GSM. SOLA 14, 138–143. doi: 10.2151/sola.2018-024

Yang, R. (2016). A systematic classification investigation of rapid intensification of
atlantic tropical cyclones with the SHIPS database. Weather Forecasting 31 (2), 495–513.
doi: 10.1175/WAF-D-15-0029.1

Zhang, Y., Zhang, Y., and Zhou, X. (2022). Classification of power quality
disturbances using visual attention mechanism and feed-forward neural network.
Measurement 188, 110390. doi: 10.1016/j.measurement.2021.110390

Zhang, Z., Tong, M., Sippel, J. A., Mehra, A., Zhang, B., and Wu, K. (2020). The
impact of stochastic physics-based hybrid GSI/EnKF data assimilation on hurricane
forecasts using EMC operation hurricane modeling system. Atmosphere 11, 801.
doi: 10.3390/atmos11080801

Zhang, Z., Wang, W., Doyle, J. J., Maskaitis, J., Komaromi, W. A., Heming, J., et al.
(2023). A review of recent advances, (2018-2021) on tropical cyclone intensity change
from operational perspectives, Part 1: Dynamical model guidance. Trop. Cyclone Res.
Rev. 12 (1), 30–49. doi: 10.1016/j.tcrr.2023.05.004
frontiersin.org

https://doi.org/10.1029/2021GL095774
https://doi.org/10.1175/WAF863.1
https://doi.org/10.1175/BAMS-D-18-0194.1
https://doi.org/10.1175/BAMS-D-18-0194.1
https://doi.org/10.1175/WAF-D-22-0217.1
https://doi.org/10.1073/pnas.1920849117
https://doi.org/10.1029/2019GL083273
https://doi.org/10.3389/fmars.2022.1046511
https://doi.org/10.1038/ncomms10625
https://doi.org/10.1007/s13351-021-0069-3
https://doi.org/10.1175/WAF-D-18-0001.1
https://doi.org/10.1002/grl.50091
https://doi.org/10.3390/atmos11090968
https://doi.org/10.1093/biomet/65.2.297
https://doi.org/10.3390/rs14092040
https://doi.org/10.21957/zzxzzygwv
https://doi.org/10.1016/j.procs.2017.09.036
https://doi.org/10.1038/nclimate1890
https://doi.org/10.1007/s11069-023-06100-z
https://doi.org/10.1175/1520-0469(1969)026%3C0003:NSOTLC%3E2.0.CO;2
https://doi.org/10.5194/os-5-351-2009
https://doi.org/10.5194/os-5-351-2009
https://doi.org/10.1016/S0020-7373(87)80053-6
https://doi.org/10.1175/WAF-D-10-05059.1
https://doi.org/10.19026/rjaset.13.3050
https://doi.org/10.1038/srep05306
https://doi.org/10.1038/srep05306
https://doi.org/10.1007/s13351-018-7117-7
https://doi.org/10.1029/2020GL089102
https://doi.org/10.1038/s41598-021-01612-9
https://doi.org/10.3390/atmos14020195
https://doi.org/10.1175/WAF-D-20-0104.1
https://doi.org/10.2151/sola.2018-024
https://doi.org/10.1175/WAF-D-15-0029.1
https://doi.org/10.1016/j.measurement.2021.110390
https://doi.org/10.3390/atmos11080801
https://doi.org/10.1016/j.tcrr.2023.05.004
https://doi.org/10.3389/fmars.2023.1296274
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

	Predicting rapid intensification of tropical cyclones in the western North Pacific: a machine learning and net energy gain rate approach
	1 Introduction
	2 Data and methods
	2.1 Data
	2.2 NGR and the other predictors
	2.3 Implementation of machine learning techniques
	2.4 Evaluating metrics

	3 Results
	3.1 Characterization of individual predictors
	3.2 Assessment of model predictive performance

	4 Conclusions and discussions
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


