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Improved stacking ensemble
learning based on feature
selection to accurately predict
warfarin dose
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and Wei-Feng Rao2

1Department of Pharmacy, Fuwai Yunnan Cardiovascular Hospital, Kunming, China, 2School of
Mechanical Engineering (Shandong Institute of Mechanical Design and Research), Qilu University of
Technology (Shandong Academy of Sciences), Jinan, Shandong, China, 3Department of Pathology,
Qujing First People’s Hospital, Qujing, Yunnan, China
Background: With the rapid development of artificial intelligence, prediction of
warfarin dose via machine learning has received more and more attention. Since
the dose prediction involve both linear and nonlinear problems, traditional
machine learning algorithms are ineffective to solve such problems at one time.
Objective: Based on the characteristics of clinical data of Chinese warfarin
patients, an improved stacking ensemble learning can achieve higher
prediction accuracy.
Methods: Information of 641 patients from southern China who had reached a
steady state on warfarin was collected, including demographic information,
medical history, genotype, and co-medication status. The dataset was randomly
divided into a training set (90%) and a test set (10%). The predictive capability is
evaluated on a new test set generated by stacking ensemble learning. Additional
factors associatedwithwarfarin dosewere discovered by feature selectionmethods.
Results: A newly proposed heuristic-stacking ensemble learning performs better
than traditional-stacking ensemble learning in key metrics such as accuracy of
ideal dose (73.44%, 71.88%), mean absolute errors (0.11 mg/day, 0.13 mg/day),
root mean square errors (0.18 mg/day, 0.20 mg/day) and R2 (0.87, 0.82).
Conclusions: The developed heuristic-stacking ensemble learning can
satisfactorily predict warfarin dose with high accuracy. A relationship between
hypertension, a history of severe preoperative embolism, and warfarin dose is
found, which provides a useful reference for the warfarin dose administration
in the future.
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1 Introduction

Warfarin is a medication used for anticoagulant therapy, primarily aimed at

preventing and treating blood clot formation, such as deep vein thrombosis and

pulmonary embolism. It is characterized by a narrow therapeutic range and significant

dose variability. Despite these challenges, warfarin remains an effective option in

managing thrombotic conditions. Research has found that important genetic factors for

warfarin dosing are the variants in two genes, cytochrome P450 family 2 subfamily C

member 9 (CYP2C9) and vitamin K epoxide reductase complex subunit 1 (VKORC1)

(1–3). However, genetic testing is costly and warfarin dosing has wide inter- and intra-
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individual variability. In addition, when facing patients of the same

race, a large number of genes are consistent, and factors other than

genes need attention. In fact, patient clinical characteristics such as

age, sex, weight, concomitant medications, and medical history

affect warfarin dosing significantly (4). A study by Emery et al.

(5) also showed that a patient’s history of heart valve surgeries,

namely, mitral valve replacement (MVR), aortic valve

replacement (AVR), and tricuspid valve replacement (TVR),

affects the level of anticoagulation targets. These surgeries can

lead to changes in warfarin dosing, which were ignored in

previous prediction studies.

On some occasions, clinicians rely on blood tests and their

personal experience to determine the right dosage of warfarin for

patients. However, incorrect dosing of warfarin can have severe

and potentially fatal consequences. The use of personal

experience as a determining factor is challenging to standardize

and widely implement. Therefore, it is crucial to explore

alternative methods, apart from blood tests, that can accurately

prescribe the appropriate warfarin dose based on individual

patient factors. This approach would not only reduce costs but

also provide convenience to patients.

Warfarin stable dose prediction models based on machine

learning for different racial populations have been developed (6–9).

To improve prediction accuracy, people usually focus on comparing

different algorithms and adjusting the hyperparameters. Some

works ignore the impact of feature selection (10, 11). Although

multiple linear regression algorithms have performed well in some

dose prediction occasions, studies have shown that there may be a

non-linear relationship between some factors and warfarin dose

(12). In this case, linear regression is difficult to deal with

such problems. To improve the accuracy and generalization

ability of warfarin dose prediction, ensemble learning is

gradually introduced (13–17).

In collaboration with medical centers in southern China, a

comprehensive dataset was gathered, comprising information on

641 hospitalized patients who underwent either mechanical heart

valve replacement (MHVR) or bioprosthetic heart valve

replacement (BHVR). This dataset not only included clinical

characteristics, concurrent medications, medical history, and

surgical history but also incorporated data on the presence of

severe embolic conditions before and after the surgeries. To

handle multiple parameters effectively, feature selection methods

were employed to identify the most relevant subset of features.

Correlation coefficients were then utilized to assess the

relationship between each variable and the dosage of warfarin, a

commonly used medication. Building upon the optimal feature

subset, a heuristic-stacking ensemble learning algorithm was

developed to train a predictive model. This novel model

integrated various feature selection methods and provided a

comprehensive assessment of the impact of surgical history on

warfarin dosage. The correlation coefficients were instrumental in

determining the association between each variable and the

appropriate warfarin dose. Evaluation metrics such as root mean

square error (RMSE), coefficient of determination (R2), mean

absolute error (MAE), and the proportion of patients within

±20% error were employed to gauge the accuracy of the
Frontiers in Cardiovascular Medicine 02
predictions. The results demonstrated that the heuristic stacking

ensemble learning approach outperformed other methods,

delivering highly accurate warfarin dosage recommendations.
2 Material and methods

2.1 Datasets

The data of 641 warfarin patients from southern China were

obtained through authorized patient medical records, including

gender, age, weight, height, ethnicity, smoking and drinking

status, surgical history, co-medication status, genotype, and

personal medical history (see Table 1 for details). The mean age

of the 641 patients was 46.6 years. The majority were Han

Chinese (96.6%), and 259 of these 641 patients were men

(40.4%). A majority (78.9%) had undergone mechanical heart

valve replacement surgery and their international normalized

ratio (INR) ranged from 1.7 to 2.5, while 21.1% underwent

bioprosthetic heart valve replacement with an INR between 1.6

and 2.0. Warfarin is mainly used to treat thrombosis, which is an

important risk factor for systemic thromboembolism and sudden

death. In addition to the above two procedures, whether the

patients had undergone thrombectomy or other information

related to thrombosis was recorded. The results of Ambuj et al.

(18) showed that patients with left atrial thrombosis should

undergo thrombectomy promptly, and they concluded that atrial

fibrillation causes left atrial thrombosis, so patients with atrial

fibrillation (32.3%) were also included in the dataset. Several

studies also found an association between warfarin usage and

diabetes (19), coronary artery disease (20), and hypertension

(21). There are 2.5%, 1.2%, and 7.6% of patients in these three

conditions from our dataset, respectively.

Since patients’ genotypes are unpredictable, they lead to a large

difference in the amount of data between the common CYP2C9*1/

*1 (90.8%) and the rare CYP2C9*3/*3 (0.5%). This problem is also

present in the VKORC1 genotype case. VKORC1 has three

manifestations CC, TC, and TT accounting for 1.0%, 19.0%, and

80.0%, respectively. This extreme data distribution will cause data

leakage potentially, thus allowing the model to perform high

prediction falsely. Because of this, data preprocessing is

particularly important (preprocessing results are shown in

Supplementary Table S1). χ2 test (for continuous variables) and

a Fisher exact test (for categorical variables) were used to verify

both the training set (90%) and test set (10%). We found that

“Severe postoperative plagiocephaly”, “Decrease INR drug”,

“Increase INR drug”, “Amiodarone”, “Tartine”, “ Inducer”,

“Thyroxine Tablets”, “Fluconazole”, and “Aspirin”, these eight

variables, should not be included in the subsequent machine

learning model training to prevent data leakage due to

insufficient data for Fisher’s exact test. Although the co-

administration data described above are scarce, it has been

shown (16) that co-administration can have an effect on warfarin

dose, so it should be included in the study for correlation analysis.

The classification of patients into high (>4 mg/day),

moderate (>2 mg/day and <4 mg/day), and low (<2 mg/day)
frontiersin.org
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TABLE 1 Demographic and clinical characteristics were collected from 641 patients.

Variables All dataset (N = 641) Training dataset (N = 577) Test dataset (N = 64) p-value

Basic characteristics
Male 259 (40.4) 232 (40.2) 27 (42.2) .80

Age (years)a 46.6 (10.9) 46.6 (10.9) 46.4 (11.1) .88

Height (cm)a 160.6 (8.1) 160.6 (8.0) 160.8 (8.6) .94

Weight (kg)a 56.4 (9.3) 56.3 (9.3) 57.4 (9.0) .40

Han Chinese 619 (96.6) 558 (96.7) 61 (95.3) 1.00

Habit
Smoking 67 (10.5) 61 (10.6) 6 (9.4) .58

Drinking 33 (5.1) 30 (5.2) 3 (4.7) 1.00

Genetics
CYP2C9 genotype .44

*1/*1 582 (90.8) 529 (91.7) 53 (82.8)

*1/*3 56 (8.7) 46 (8.0) 10 (15.6)

*3/*3 3 (0.5) 2 (0.3) 1 (1.6)

VKORC1 genotype 1.00

CC 6 (1.0) 5 (0.9) 1 (1.6)

TC 122 (19.0) 109 (18.9) 13 (20.3)

TT 513 (80.0) 463 (80.2) 50 (78.1)

Surgery
MHVR 506 (78.9) 453 (78.5) 53 (82.8) .26

BHVR 135 (21.1) 124 (21.5) 11 (17.2) .26

MVR 519 (81.0) 470 (81.5) 49 (76.6) .27

AVR 287 (44.8) 255 (44.2) 32 (50.0) .45

TVR 37 (6.8) 34 (5.9) 3 (4.7) 1.00

Thrombus removal 55 (8.6) 54 (9.4) 1 (1.6) 1.00

Comorbidity
High blood pressure 49 (7.6) 44 (7.6) 5 (7.8) 1.00

Coronary heart disease 8 (1.2) 7 (1.2) 1 (1.6) 1.00

Diabetes 16 (2.5) 13 (2.3) 3 (4.7) 1.00

Atrial fibrillation 207 (32.3) 185 (32.1) 22 (34.4) .79

Indication
HSEBO 34 (5.3) 32 (5.5) 2 (3.1) 1.00

PSES 6 (0.9) 6 (1.0) 0 (0.0) –

Medication
Increase INR drugb 21 (3.3) 20 (3.5) 1 (1.6) 1.00

Decrease INR drugb 2 (0.3) 2 (0.3) 0 (0.0) –

Amiodarone 9 (1.4) 8 (1.3) 1 (1.6) –

Tartine 8 (1.2) 8 (1.3) 0 (0.0) –

Inducerc 2 (0.3) 2 (0.3) 0 (0.0) –

Thyroxine tablets 2 (0.3) 2 (0.3) 0 (0.0) –

Fluconazole 3 (0.5) 3 (0.5) 0 (0.0) –

Aspirin 8 (1.2) 7 (1.2) 1 (1.6) –

HSEBO, history of severe embolism before operation; PSES, postoperative severe embolism symptoms.
aData was shown as mean (standard deviation), and others were shown as frequency (%).
bAll other drugs that may affect warfarin dose except for Amiodarone, Tartine, Inducer, Thyroxine Tablets, Fluconazole, and Aspirin.
cCYP2C9 and VKORC1 inducers.
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dose levels (22) revealed many missing data, mainly focusing

on co-medication, smoking status, drinking status, medical

history, and genotype of patients at high and low doses. Faced

with these data deficiencies, it is necessary to find the optimal

subset of features. This study uses recursive feature

elimination with cross-validation (RFECV), correlation

coefficient-based filtering method, and gini importance-based

bidirectional search (BDS) (23, 24) to find the globally optimal

feature subset.
Frontiers in Cardiovascular Medicine 03
2.2 Methods

The authors conducted correlation tests based on these data. The

tests aimed to indicate the degree of correlation between the targeted

characteristic variables. The correlation coefficient can be used to

objectively represent the correlation. However, some correlation

coefficients can only indicate whether there is a linear relationship

or not. So Pearson’s coefficient (25), Spearman’s coefficient (26),

and Kendall’s tau-b coefficient tests (27) were introduced to
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1320938
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Wang et al. 10.3389/fcvm.2023.1320938
comprehensively describe the relationship. The arithmetic mean of

the absolute values of the three coefficients was analyzed to find

out the correlation between different variables and warfarin dose. In

this study, IBM SPSS 26.0 statistical software was used to calculate

the three correlation coefficients, and the results are shown in

Supplementary Figures S1–S4. Three correlation coefficients showed

that the CYP2C9 and VKORC1 genotypes of patients had a high

correlation with warfarin dose, and patients with CYP2C9 *3

mutation required less warfarin dose (p < 0.001). VKORC1-1173

locus was a CT mutation and CC was a wild type. Patients with

CT mutation required less warfarin dose than wild type, and

patients with TT mutation required less dose than CT mutation

(p < 0.001), which is consistent with the previous findings (28).
FIGURE 1

Descriptions of spearman coefficient, Pearson coefficient, and Kendall Tau-B
variables correlated with warfarin dose. *Negatively correlated with warfa
postoperative severe embolism symptoms.

Frontiers in Cardiovascular Medicine 04
In addition, to find out other influences with weaker

correlations, we temporarily removed CYP2C9 and VKORC1

genotypes and found that the four variables of patients’ age,

height, weight, and whether they were taking Aspirin had higher

correlations compared with others, as shown in Figure 1.

Smokers require higher warfarin doses than non-smokers

(p < 0.001). Some studies (29) have also shown that tobacco

increases warfarin clearance, which leads to a decrease in

warfarin action, so clinicians should monitor patients’ smoking

status closely. If the combination of Aspirin with warfarin may

increase the risk of bleeding, the risk of thromboembolism and

bleeding should be dynamically evaluated, and INR and bleeding

should be monitored intensively (p < 0.001). In the Tartine class,
coefficient, as well as the arithmetic mean of the above three for the 27
rin dose. HSEBO, history of severe embolism before operation; PSES,

frontiersin.org
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FIGURE 2

Random forest regression was used to predict warfarin dose based
on data optimized by three feature selection methods. “Ideal”
refers to the warfarin dose prediction error within ±20%. “Original”
refers to the dataset that has not undergone feature selection.

Wang et al. 10.3389/fcvm.2023.1320938
fluvastatin and simvastatin lead to an enhanced warfarin action,

and rosuvastatin may enhance warfarin action but with large

individual variation. Patients who require a combination of

Tartine class drugs and warfarin should be monitored after

initiation of Tartine class drugs and throughout the whole

treatment period (p < 0.05). One study (30) showed that patients

who underwent AVR surgery required more warfarin (p < 0.05),

and there was also a linear relationship between the five medical

histories on warfarin dose, with a negative correlation between

HSEBO and warfarin dose (p < 0.001). The possible association

between variables, exhibited a low correlation with warfarin, and

on the other hand, insufficient data for certain variables could

lead to non-significant statistically. The effect of variables on

warfarin dose should also be considered in conjunction with the

subsequent search for a global optimal subset of features, and

the correlation coefficients were calculated for subsequent

feature selection.

The correlation analysis showed that the six variables of

patients, CYP2C9 genotype, VKORC1 genotype, age, height,

weight, and Aspirin, have a large effect on warfarin dose, which

is agreed to by Liyan et al. (31). The distribution of training data

affects the accuracy of model prediction, so the above variables

were screened out to observe their distribution in the dataset as

shown in Supplementary Figure S5.
3 Results and discussion

3.1 Optimal feature subset

Feature selection is very suitable for these cases with high

dimensionality and complex relationships. Feature selection can

determine the upper limit of the model’s accuracy, and the

algorithm selection only allows the model to converge to this

limit infinitely. Random forest regression (RF) is used to test

the effectiveness of the three feature selection methods. Figure 2

shows that the Wrapper method works best (ideal cases are

more than others), and the extrapolation capability is

substantially improved compared to the other two feature

selection methods.

Some studies (32) demonstrated that bidirectional feature

search methods can effectively avoid getting trapped in a local

optimization point. The global optimal subset of features after

screening based on the BDS method contains nine variables: age,

smoking history, VKORC1, CYP2C9, MHVR, BHVR, blood

pressure, coronary heart disease, and HSEBO. Feature

importance was calculated using scikit-learn (33), and the results

are shown in Supplementary Figure S6. Wypasek’s study (30)

showed an effect of coronary artery disease on warfarin dose,

which is necessary to include as a variable.
3.2 Performance measures

Four indicators, R2, RMSE, MAE, and the proportion of

patients with prediction errors within ±20%, are used to evaluate
Frontiers in Cardiovascular Medicine 05
the prediction accuracy of the algorithms, which are calculated

below (13, 22):

MAE ¼ 1
n

Xn

i¼1
jbyi � yij (1)

RMSE ¼
ffiffiffi
1
n

r Xn

i¼1
(byi � yi)

2 (2)

R2 ¼ 1�
Pn

i¼1 (yi � byi)2Pn
i¼1 (yi � y)2

(3)

ERR+20% ¼ Dideal

Dtest
� 100% (4)

where yi is the actual output, �y is the sample mean value, n and

Dtest are the number of samples in the test set, ŷi is the predicted

output, and Dideal is the number of samples with an error within

±20% between predicted and actual output.

After literature research, it was found that RF (8), GBRT (17),

MLR (34), and SVR (8) performed well in warfarin dose prediction,

and RF and GBRT are one of the commonly used ensemble

learning algorithms for Bagging and Boosting, respectively. Stacking

ensemble learning is an algorithm that can easily fall into

overfitting. So in addition to introducing K-fold cross-validation,

KRR, SGD, Bayes, and GPR were selected as base learners, where

KRR and SGD introduced L2 parametric regularization methods to

reduce overfitting, and Bayes used Gaussian prior probability

distribution instead of regularization methods to reduce overfitting

(35). GPR was chosen because it uses the kernel trick in KRR to

implement a Gaussian process. GPR’s predictions are interpolations

of observations and its extrapolation is weak (36), but an algorithm

with different features is needed in stacking ensemble learning. To

control the time cost, the subsequent selection of the base learner

does not consider artificial neural networks.
frontiersin.org
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TABLE 2 Comparison of prediction performance of machine
learning algorithms.

Algorithms R2 RMSE MAE ERR ± 20%

RF 0.41 0.79 0.57 68.75%

GPR 0.50 0.72 0.56 68.75%

SGD 0.50 0.73 0.56 64.06%

GBRT 0.46 0.76 0.55 64.06%

Bayes 0.50 0.72 0.56 64.06%

KRR 0.41 0.79 0.60 59.38%

MLR 0.50 0.72 0.56 60.94%

SVR 0.45 0.76 0.55 70.31%

Wang et al. 10.3389/fcvm.2023.1320938
Table 2 summarizes the preliminary results of the above four

indicators. GPR and SVR are the two most effective algorithms;

this good prediction accuracy result cannot be attributed to the

algorithms only but illustrates the importance of the global

optimal feature subset (Figure 2). On the other hand, considering

only R2, RMSE, and MAE (Equations 1–3), these three

indicators, one of Bayes and MLR should be chosen as the meta-

learner. However, these two algorithms perform poorly at

ERR ± 20% (Equation 4), so SVR is more suitable as a meta-

learner. The kernel function of SVR uses radial basis functions.

All other parameters use the default parameters from scikit-learn.
3.3 Heuristic-stacking ensemble learning

The commonly used methods for ensemble learning are

bagging, boosting, and stacking. However, the first two are often

used in classification tasks (37). In addition, both methods are
FIGURE 3

Heuristic-stacking ensemble learning development strategy. RF, random for
tree; SGD, stochastic gradient descent; MLR, multiple linear regression; SVR
and test set are stacked to form a new training set and new test set. The re
cross-validation before prediction processing. The blue line indicates that e
average based on the reciprocal of the RMSE.
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homogeneous ensemble learning, while stacking is heterogeneous

ensemble learning, which can effectively integrate different

algorithms to solve the problem of simultaneous non-linearity

and linearity. Stacking ensemble learning should satisfy the

following conditions as much as possible (38):

• The prediction accuracy of the meta-learners should be better

than others.

• Selected algorithms should have different characteristics.

Traditional-stacking ensemble learning has obvious drawbacks,

as shown in Supplementary Figure S7. Traditional-stacking

ensemble learning uses arithmetic averaging to generate a new

test set. This method will erase the superiority of the base learner

in the training set. Wolpert said the improvement direction of

stacking ensemble learning can be considered with RMSE

(Equation 2) reciprocal weighting and multilayer grid structure

(38). But this grid structure suffers from serious overfitting and

therefore is not included in the subsequent improvement

directions. Weighted-stacking ensemble learning is a weighted

average of the inverse of the RMSE instead of the arithmetic

average, as shown in Supplementary Figure S8. However, there is

no objective metric to measure the difference between the two

algorithms. Bidirectional feature search is recruited to choose an

algorithm (meta-learner) for stacking. The pseudocode of

heuristic-stacking ensemble learning is shown in Supplementary

Table S2. There are three requirements to use proposed heuristic-

stacking ensemble learning:

• Base learners added by forward learner search cannot be deleted

by backward learner search.
est; GPR, Gaussian process regression; GBRT, gradient boost regression
, support vector regression. The green line indicates that the training set
d lines indicate that the training set is sent to each algorithm for 5-fold
ach algorithm was an ensemble for the test set after taking a weighted

frontiersin.org
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TABLE 3 Comparison of three stacking ensemble learning prediction
performances.

Algorithms R2 RMSE MAE ERR ± 20%

Traditional-stacking 0.82 0.20 0.13 71.88%

Weighted-stacking 0.83 0.20 0.13 71.88%

Heuristic-stacking 0.87 0.18 0.11 73.44%

Wang et al. 10.3389/fcvm.2023.1320938
• Base learners deleted by backward learner search cannot be

added by forward learner search.

• Stop searching when both searches find the same combination

of base learners.

Our proposed specific strategy for heuristic-stacking ensemble

learning is shown in Figure 3, and the combination of five

algorithms (RF, GPR, GBRT, MLR, and SGD) is the result of

a bidirectional search. Because the deviation of the dataset

generated by the base learner from the original dataset does

not accurately represent the proportion of patients with a

prediction error within ±20% (Equation 4), 10% of the

data was left as an additional test set at the beginning to

calculate the proportion of patients with a prediction error

within ±20% (Equation 4).

To quantify performance differences, three ensemble algorithms

are compared: traditional-stacking ensemble learning, weighted-

stacking ensemble learning (using RMSE reciprocal weighting

process), and proposed heuristic-stacking ensemble learning. The

stacking ensemble learning algorithms use scikit-learn (33) to

build the prediction models and run them in Python 3.7.2. The

predicted performances are shown in Table 3.
3.4 Discussion

One can see that the heuristic-stacking ensemble learning is

better than the other two learnings, even though the other two

recruit more base learners (see Supplementary Figures S7, S8).

ERR ±20% (Equation 4) of heuristic-stacking ensemble learning

can reach 73.44%.

Warfarin dose is prone to extreme bias in the collection of

clinical data for a particular variable due to the complexity and

variety of influencing factors. The high cost of data collection

leads to insufficient data volume, which in turn creates the

problem of data leakage. If the prediction model has known data

characteristics of a variable, prediction results will lead

researchers to mistakenly believe that adding some variables into

a model will effectively improve the accuracy. Therefore, when

dividing the training and test sets, it is necessary to consider

whether there is a connection between these two groups.

A statistical analysis is needed such as a test of variance between

the two sets unless there is enough data.

The BDS feature selection method gives the global optimal

feature subset. The improvement of model prediction accuracy

by this method is better than the RFECV and filtering

methods. Furthermore, the global optimal feature subset

indicates that hypertension and a history of severe

preoperative embolism are important for predicting warfarin
Frontiers in Cardiovascular Medicine 07
doses. Clinicians should pay more attention to patients with

these two situations in the future.

Moreover, there is a lack of variables like genotype that have a

strong influence on warfarin dose. An evaluation index fitting the

current situation is needed until a strong influence is found. For

example, the International Warfarin Pharmacogenome Consortium

(IWPC) (22) proposed that within ±20% error counts as a

clinically meaningful evaluation metric.

Future studies could complement warfarin studies with

prospective data and experiments. For example, the

experience of doctors can be used as the results of the control

group. The results of the experimental group are given by the

machine learning model. When the results given by machine

learning deviate significantly from the doctor’s experience

and the patient’s response after taking the corresponding dose

is different, this time period can be set as the follow-up

period. Then, the machine learning model needs to be

adjusted and intervened.
4 Conclusion

The prediction performance of the heuristic-stacking ensemble

learning proposed in this study is better than traditional ones, with

a proportion of patients within ±20% error of the prediction

reaching 73.44% and the degree of regression fit R2 reaching

0.87. The BDS feature selection method is significantly better

than the RFECV and filtering methods to select the suitable

meta-learners. When using ensemble learning in warfarin dose

prediction, to be alert to data leakage when data volume is

insufficient, feature selection can play a great role to solve this

problem. In addition, our results suggest that clinicians should

pay attention to hypertension and a history of severe

preoperative embolism. They can collect data from these aspects

when determining a patient’s stable warfarin dose to develop new

evaluation metrics in the future.
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